2,941 research outputs found

    Design of Adiabatic MTJ-CMOS Hybrid Circuits

    Full text link
    Low-power designs are a necessity with the increasing demand of portable devices which are battery operated. In many of such devices the operational speed is not as important as battery life. Logic-in-memory structures using nano-devices and adiabatic designs are two methods to reduce the static and dynamic power consumption respectively. Magnetic tunnel junction (MTJ) is an emerging technology which has many advantages when used in logic-in-memory structures in conjunction with CMOS. In this paper, we introduce a novel adiabatic hybrid MTJ/CMOS structure which is used to design AND/NAND, XOR/XNOR and 1-bit full adder circuits. We simulate the designs using HSPICE with 32nm CMOS technology and compared it with a non-adiabatic hybrid MTJ/CMOS circuits. The proposed adiabatic MTJ/CMOS full adder design has more than 7 times lower power consumtion compared to the previous MTJ/CMOS full adder

    A Novel Hybrid Full Adder using 13 Transistors

    Get PDF
    Full adder is a basic and vital building block for various arithmetic circuits such as multipliers. In this paper, a hybrid 1-bit full adder using complementary metal-oxide semiconductor (CMOS) logic style had been designed. This hybrid adder divided into three modules. Module I is a three transistors XOR gate. Module II is a novel sum circuit which successfully modified with the usage of lesser number of transistors used. Module III is a carry circuit which uses the carry output of module I and several other input to generate carry output. Performance parameters such as power and delay were compared to some of the existing designs. With a 1.8V voltage supply, the average power consumption of proposed hybrid adder was found extremely low which is 2.09 μW and a very low delay of 350 ps. Design in both speed and energy consumption becomes even more significant as the wordlength of the adder increases. The full adder design is simulated using Tanner EDA version 16 using General Process Design Kit (GPDK) 250nm technology CMOS processes

    Modified Level Restorers Using Current Sink and Current Source Inverter Structures for BBL-PT Full Adder

    Get PDF
    Full adder is an essential component for the design and development of all types of processors like digital signal processors (DSP), microprocessors etc. In most of these systems adder lies in the critical path that affects the overall speed of the system. So enhancing the performance of the 1-bit full adder cell is a significant goal. In this paper, we proposed two modified level restorers using current sink and current source inverter structures for branch-based logic and pass-transistor (BBL-PT) full adder [1]. In BBL-PT full adder, there lies a drawback i.e. voltage step existence that could be eliminated in the proposed logics by using the current sink inverter and current source inverter structures. The proposed full adders are compared with the two standard and well-known logic styles, i.e. conventional static CMOS logic and Complementary Pass transistor Logic (CPL), demonstrated the good delay performance. The implementation of 8-bit ripple carry adder based on proposed full adders are finally demonstrated. The CPL 8-bit RCA and as well as the proposed ones is having better delay performance than the static CMOS and BBL-PT 8-bit RCA. The performance of the proposed BBL-PT cell with current sink & current source inverter structures are examined using PSPICE and the model parameters of a 0.13 µm CMOS process

    Hand-arm vibration disorder among grass-cutter workers in Malaysia

    Get PDF
    Prolonged exposure to hand-transmitted vibration from grass-cutting machines has been associated with increasing occurrences of symptoms and signs of occupational diseases related to hand-arm vibration syndrome (HAVS). Methods. A cross-sectional study was carried out using an adopted HAVS questionnaire on hand-arm vibration exposure and symptoms distributed to 168 male workers from the grass and turf maintenance industry who use hand-held grass-cutting machines as part of their work. The prevalence ratio and symptom correlation to HAVS between high and low–moderate exposure risk groups were evaluated. Results. There were positive HAVS symptoms relationships between the low–moderate exposure group and the high exposure group among hand-held grass-cutting workers. The prevalence ratio was considered high because there were indicators that fingers turned white and felt numb, 3.63, 95% CI [1.41, 9.39] and 4.24, 95% CI [2.18, 8.27], respectively. Less than 14.3% of workers stated that they were aware of the occupational hand-arm vibration, and it seemed to be related to the finger blanching and numbness. Conclusion. The results suggest that HAVS is under-diagnosed in Malaysia, especially in the agricultural sectors. More information related to safety and health awareness programmes for HAVS exposure is required among hand-held grass-cutting workers

    Design of New High-Performance Full Adder Using Hybrid-CMOS Logic Style for High-Speed Applications

    Get PDF
    This paper, presents a new design for 1-bit full adder cell using hybrid-CMOS logic style. Using a novel structure for implementation of the proposed full adder caused it has better performance in terms of propagation delay and power-delay product (PDP) compared to its counterparts. According to the simulation results, the propagation delay of the proposed full adder is 22.8% less than the propagation delay of next fastest full adder, and the power-delay product of the proposed full adder is 22.7% less than the next best PDP. HSpice simulations using 65nm technology with a power supply of 1.2V was utilized to evaluate the performance of the circuits

    Asynchronous Early Output Dual-Bit Full Adders Based on Homogeneous and Heterogeneous Delay-Insensitive Data Encoding

    Get PDF
    This paper presents the designs of asynchronous early output dual-bit full adders without and with redundant logic (implicit) corresponding to homogeneous and heterogeneous delay-insensitive data encoding. For homogeneous delay-insensitive data encoding only dual-rail i.e. 1-of-2 code is used, and for heterogeneous delay-insensitive data encoding 1-of-2 and 1-of-4 codes are used. The 4-phase return-to-zero protocol is used for handshaking. To demonstrate the merits of the proposed dual-bit full adder designs, 32-bit ripple carry adders (RCAs) are constructed comprising dual-bit full adders. The proposed dual-bit full adders based 32-bit RCAs incorporating redundant logic feature reduced latency and area compared to their non-redundant counterparts with no accompanying power penalty. In comparison with the weakly indicating 32-bit RCA constructed using homogeneously encoded dual-bit full adders containing redundant logic, the early output 32-bit RCA comprising the proposed homogeneously encoded dual-bit full adders with redundant logic reports corresponding reductions in latency and area by 22.2% and 15.1% with no associated power penalty. On the other hand, the early output 32-bit RCA constructed using the proposed heterogeneously encoded dual-bit full adder which incorporates redundant logic reports respective decreases in latency and area than the weakly indicating 32-bit RCA that consists of heterogeneously encoded dual-bit full adders with redundant logic by 21.5% and 21.3% with nil power overhead. The simulation results obtained are based on a 32/28nm CMOS process technology
    corecore