64 research outputs found

    Conditional Entrench Spatial Domain Steganography

    Get PDF
    Steganography is a technique of concealing the secret information in a digital carrier media, so that only the authorized recipient can detect the presence of secret information. In this paper, we propose a spatial domain steganography method for embedding secret information on conditional basis using 1-Bit of Most Significant Bit (MSB). The cover image is decomposed into blocks of 8*8 matrix size. The first block of cover image is embedded with 8 bits of upper bound and lower bound values required for retrieving payload at the destination. The mean of median values and difference between consecutive pixels of each 8*8 block of cover image is determined to embed payload in 3 bits of Least Significant Bit (LSB) and 1 bit of MSB based on prefixed conditions. It is observed that the capacity and security is improved compared to the existing methods with reasonable PSNR

    Towards Optimal Copyright Protection Using Neural Networks Based Digital Image Watermarking

    Get PDF
    In the field of digital watermarking, digital image watermarking for copyright protection has attracted a lot of attention in the research community. Digital watermarking contains varies techniques for protecting the digital content. Among all those techniques,Discrete Wavelet Transform (DWT) provides higher image imperceptibility and robustness. Over the years, researchers have been designing watermarking techniques with robustness in mind, in order for the watermark to be resistant against any image processing techniques. Furthermore, the requirements of a good watermarking technique includes a tradeoff between robustness, image quality (imperceptibility) and capacity. In this paper, we have done an extensive literature review for the existing DWT techniques and those combined with other techniques such as Neural Networks. In addition to that, we have discuss the contribution of Neural Networks in copyright protection. Finally we reached our goal in which we identified the research gaps existed in the current watermarking schemes. So that, it will be easily to obtain an optimal techniques to make the watermark object robust to attacks while maintaining the imperceptibility to enhance the copyright protection

    Augmented watermarking

    Get PDF
    This thesis provides an augmented watermarking technique wherein noise is based on the watermark added to the watermarked image so that only the end user who has the key for embedding the watermark can both remove the noise and watermark to get a final clear image. The recovery for different values of noise is observed. This system may be implemented as a basic digital rights management system by defining a regime of partial rights using overlaid watermarks, together with respectively added layers of noise, in which the rights of the users define the precision with which the signals may be viewed

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    QAM-DWT-SVD Based Watermarking Scheme for Medical Images

    Get PDF
    This paper presents a new semi-blind image watermarking system for medical applications. The new scheme utilizes Singular Value Decomposition (SVD) and Discrete Wavelet Transform (DWT) to embed a textual data into original medical images. In particular, text characters are encoded by a Quadrature Amplitude Modulation (QAM-16). In order to increase the security of the system and protect then the watermark from several attacks, the embedded data is submitted to Arnold Transform before inserting it into the host medical image. To evaluate the performances of the scheme, several medical images have been used in the experiments. Simulation results show that the proposed watermarking system ensures good imperceptibility and high robustness against several attacks

    Robust recursive watermarking technique in discrete wavelet transform

    Get PDF
    Presently, data sharing and information searching is easier to perform on the internet and has resulted in the digital contents becoming widely available and easily accessible. However, many users abuse these contents through piracy and forgery practices, thus there is a need for copyright protection which can be achieved with digital watermarking. A robust digital watermark should be able to withstand intentional and unintentional attacks but the various available techniques for watermarking have yet to attain the best defence performance against these attacks. This study proposed an alternative watermarking technique referred as Recursive Watermarking Technique (RWT) on digital image content where multiple watermarks are embedded in the host image. In this technique, multisegmentation was carried out. Embedding and extracting of watermark was performed in the Discrete Wavelet Transform (DWT) domain, after the image segmentation process. Besides that, reconstruction image stage was carried out to get the most robust watermark. These multiple watermarking processes in RWT have the capability to minimize the effect of the attacks. The robustness of RWT against attacks was tested against motion blur, Gaussian noise (1%, 5% and 10%), salt and pepper noise (0.02), cropped image, JPEG compression, intensity adjustment, sharpen and mosaic tile attacks. The results showed that RWT has a higher NC value which is equal to 1. At the same time, Gaussian blur, salt and pepper noise (0.05 and 0.1), and histogram equalization attacks gained an NC value of 0.99. These results imply that RWT is able to withstand the attacks successfully and performs better than the other known techniques

    Robust watermarking and its applications to communication problems

    Get PDF
    Digital watermarking has recently gained an intense interest in research and applications. An invisible and secret signal, called watermark, is added to the host data. With the help of this watermark issuer of the data can be unveiled, unauthorised users can be identified, illicit copying can be avoided, any attempt to temper with the data can be detected and many other security services can be provided. In this thesis, the relations and differences between watermarking and communication systems are elaborated. Based on these results new methods for both watermarking and communication are derived. A new blind, robust and reversible watermarking scheme based on Code Division Multiple Access (CDMA) is presented in this thesis. Using this scheme watermark is arithmetically added to spatial domain or frequency domain. Watermark is extracted by using spreading codes only. Proposed watermarking scheme is simple, computationally efficient and can be applied to any image format. A novel idea that watermark can be part of the image is presented. By using watermark, which is a part of an image, digital watermarking can be used beyond simple security tasks. A part of an image is selected and embedded in the whole image as watermark. This watermarked image is attacked (transmitted or compressed). By using the extracted watermark and attacked selected part image quality can be assessed or jpeg quantization ratio can be estimated or even image can be equalized blindly. Furthermore, CDMA based watermarking is used to authenticate radio frequency signal. Spreaded watermark is added in the form of noise to the modulated radio frequency signal. If this noise is increased, watermarked signal automatically becomes a scrambled signal. Later watermark is extracted and by using reversibility of proposed scheme watermark is removed. Once the watermarked is removed original signal is restored, hence descrambled

    Identification Recovery Scheme using Quick Response (QR) Code and Watermarking Technique

    Full text link

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin
    • …
    corecore