11 research outputs found

    Robust System Design Using BILP for Wireless Indoor Positioning Systems

    Get PDF

    Proposition of a Novel Multipath-Routing Protocol for Manets Connected Via Positioning of UAVS Using Ant Colony Optimization Meta-Algorithms

    Get PDF
    In the forthcoming operational theatre, combat radio nodes will be strategically positioned to facilitate a myriad of manoeuvres, constituting a dynamic mobile ad-hoc network (MANET), where communication among participating nodes is achieved collaboratively without fixed base stations. However, due to the nodes' mobility, the cohesive formation may fragment into smaller clusters, while conversely, multiple smaller groups might amalgamate into larger entities. In such a dynamic milieu, the integration of unmanned aerial vehicles (UAVs) emerges as a potent solution to enhance network coverage and connectivity among disparate groups. Sending of information all over the MANETs is dependent mostly on methodologies of routing, where the on-request unitary paths procedures to route like AODV and AOMDV (which stands for routing via multiple roads) play crucial roles. Leveraging authentic topographic data becomes imperative to ascertain precise connectivity metrics among nodes, while devising an efficient resource allocation strategy for reliable communication via UAVs warrants attention. Given the predominance of line-of-sight links between UAVs and ground nodes, substantial traffic is anticipated despite less amount of information sectional resources. Furthermore, diverse quality-of-service requirements of network traffic necessitate prioritization based on tactical imperatives. In these studies, formulations have been done for Unmanned Flying Vehicle localizing problems geared towards maximal connectivity inside groups along with information section allocating problems aimed at increasing utilities of GC to maximum levels, demonstrating superiority over conventional methodologies through numerical analysis validating the efficacy of our proposed scheme. Wireless connections implemented rapid growths in recent times essentially network of MANET, showcasing significant developments of science and technology

    Energy aware task allocation algorithms for wireless sensor networks

    Get PDF
    Complex wireless sensor network (WSN) applications, such as those in Internet of things or in-network processing, are pushing the requirements of energy efficiency and long-term operation of the network drastically. Energy aware task allocation becomes crucial to extend the network lifetime, by efficiently distributing the tasks of applications among sensor nodes. Although task allocation has been deeply studied in wired systems, the resulting approaches are insufficient for WSNs due to limited battery resources and computing capability of WSN nodes, as well as the special wireless communication. This work focuses on designing energy aware task allocation algorithms to extend the network lifetime of WSNs. More precisely, this work firstly proposes a centralized static task allocation algorithm (CSTA) for cluster based WSNs. Since a WSN application can be modeled by a directed acyclic graph (DAG), the task allocation problem is formulated as partitioning the modeled DAG graph into two subgraphs: one for the slave node and the other for the master node. By using a binary vector variable to represent the partition cut, CSTA formulates the problem of maximizing network lifetime as a binary integer linear programming (BILP) problem. It provides one fixed time invariant partition cut (task allocation solution) for each slave node to balance the workload distribution of tasks. Moreover, motivated by the fact that using multiple partition cuts can achieve more balanced workload distribution, this work extends CSTA to a centralized dynamic task allocation algorithm, CDTA. By using a probability vector variable to stand for partition cuts with different weights, CDTA formulates the dynamic task allocation problem as a linear programing (LP) problem. Due to the high complexity of centralized algorithms, this work further proposes a very lightweight distributed optimal on-line task allocation algorithm (DOOTA). Through an indepth analysis, it proves that the optimal task allocation solution consists of at most two partition cuts for each slave nodes. Based on this analysis, DOOTA enables each slave node to calculate its own optimal task allocation solution by negotiating with the master node with a very short time. These contributions significantly improve the application performance for WSNs, but also for other domains, e.g, mobile edge/fog computing. Furthermore, the proposed task allocation algorithms are extended for different task scenarios and network structures, i.e., applications with conditional tasks, joint local and global applications and multi-hop mesh network. Given a condition triggered application, it is modeled by a DAG graph with conditional branches. This conditional DAG is further decomposed into multiple stationary DAG graphs without conditional branches according to the satisfaction probability of each condition. Based on this modeling, a static and a dynamic condition triggered task allocation algorithms (SCTTA and DCTTA) are proposed by considering the multiple stationary DAG simultaneously. Targeting the joint local and global applications, this work designs a static and a dynamic joint task allocation algorithms, SJTA and DJTA, based on BILP and LP, respectively. The modeling of local task allocation problem does not change, while the global task allocation problem is modeled by dividing the global DAG graph into different subgraphs mapping to the slave and master nodes. Besides the extensions for different task scenarios, this work presents a dynamic task allocation algorithm for multi-hop mesh networks (DTA-mhop) as well. The corresponding task allocation problem is modeled by dividing the DAG graph of each sensor node into multiple subgraphs mapping to itself, the routing and sink nodes. By using the summation of assigned tasks for each node, DTA-mhop formulates the lifetime maximization as a LP problem. The proposed task allocation algorithms are firstly evaluated using simulations and real WSN applications, in terms of network lifetime increase and algorithm runtime. In order to investigate the algorithm's performance in realistic scenarios, the CSTA, CDTA and DOOTA algorithms are implemented in a real WSN based on the OpenMote platform. Both the simulation and implementation results show that the network lifetime can be dramatically extended. Remarkably, the network lifetime improvements are more significant for addressing complex applications. The proposed task allocation algorithms are therefore suitable for WSNs, and they can also be easily adapted to other wireless domains

    Review of Path Selection Algorithms with Link Quality and Critical Switch Aware for Heterogeneous Traffic in SDN

    Get PDF
    Software Defined Networking (SDN) introduced network management flexibility that eludes traditional network architecture. Nevertheless, the pervasive demand for various cloud computing services with different levels of Quality of Service requirements in our contemporary world made network service provisioning challenging. One of these challenges is path selection (PS) for routing heterogeneous traffic with end-to-end quality of service support specific to each traffic class. The challenge had gotten the research community\u27s attention to the extent that many PSAs were proposed. However, a gap still exists that calls for further study. This paper reviews the existing PSA and the Baseline Shortest Path Algorithms (BSPA) upon which many relevant PSA(s) are built to help identify these gaps. The paper categorizes the PSAs into four, based on their path selection criteria, (1) PSAs that use static or dynamic link quality to guide PSD, (2) PSAs that consider the criticality of switch in terms of an update operation, FlowTable limitation or port capacity to guide PSD, (3) PSAs that consider flow variabilities to guide PSD and (4) The PSAs that use ML optimization in their PSD. We then reviewed and compared the techniques\u27 design in each category against the identified SDN PSA design objectives, solution approach, BSPA, and validation approaches. Finally, the paper recommends directions for further research

    Optimal sensor placement for sewer capacity risk management

    Get PDF
    2019 Spring.Includes bibliographical references.Complex linear assets, such as those found in transportation and utilities, are vital to economies, and in some cases, to public health. Wastewater collection systems in the United States are vital to both. Yet effective approaches to remediating failures in these systems remains an unresolved shortfall for system operators. This shortfall is evident in the estimated 850 billion gallons of untreated sewage that escapes combined sewer pipes each year (US EPA 2004a) and the estimated 40,000 sanitary sewer overflows and 400,000 backups of untreated sewage into basements (US EPA 2001). Failures in wastewater collection systems can be prevented if they can be detected in time to apply intervention strategies such as pipe maintenance, repair, or rehabilitation. This is the essence of a risk management process. The International Council on Systems Engineering recommends that risks be prioritized as a function of severity and occurrence and that criteria be established for acceptable and unacceptable risks (INCOSE 2007). A significant impediment to applying generally accepted risk models to wastewater collection systems is the difficulty of quantifying risk likelihoods. These difficulties stem from the size and complexity of the systems, the lack of data and statistics characterizing the distribution of risk, the high cost of evaluating even a small number of components, and the lack of methods to quantify risk. This research investigates new methods to assess risk likelihood of failure through a novel approach to placement of sensors in wastewater collection systems. The hypothesis is that iterative movement of water level sensors, directed by a specialized metaheuristic search technique, can improve the efficiency of discovering locations of unacceptable risk. An agent-based simulation is constructed to validate the performance of this technique along with testing its sensitivity to varying environments. The results demonstrated that a multi-phase search strategy, with a varying number of sensors deployed in each phase, could efficiently discover locations of unacceptable risk that could be managed via a perpetual monitoring, analysis, and remediation process. A number of promising well-defined future research opportunities also emerged from the performance of this research

    Distributed Model-based Control for Gas Turbine Engines

    Get PDF
    Controlling a gas turbine engine is a fascinating problem. As one of the most complex systems developed, it relies on thermodynamics, fluid mechanics, materials science as well as electrical, control and systems engineering. The evolution of gas turbine engines is marked with an increase in the number of actuators. Naturally, this increase in actuation capability has also been followed by the improvement of other technologies such as advanced high-temperature and lighter materials, improving the efficiency of the aero engines by extending their physical limits. An improvement in the way to control the engine has to be undertaken in order for these technological improvements to be fully harnessed. This starts with the selection of a novel control system architecture and is followed by the design of new control techniques. Model-based control methods relying on distributed architectures have been studied in the past for their ability to handle constraints and to provide optimal control strategies. Applying them to gas turbine engines is interesting for three main reasons. First of all, distributed control architectures provide greater modularity during the design than centralized control architectures. Secondly, they can reduce the life cycle costs linked to both the fuel burnt and the maintenance by bringing optimal control decisions. Finally, distributing the control actions can increase flight safety through improved robustness as well as fault tolerance. This thesis is concerned with the optimal selection of a distributed control system architecture that minimizes the number of subsystem to subsystem interactions. The control system architecture problem is formulated as a binary integer linear programming problem where cuts are added to remove the uncontrollable partitions obtained. Then a supervised-distributed control technique is presented whereby a supervisory agent optimizes the joint communication and system performance metrics periodically. This online optimal technique is cast as a semi-definite programming problem including a bilinear matrix equality and solved using an alternate convex search. Finally, an extension of this online optimal control technique is presented for non-linear systems modelled by linear parameter-varying models

    Finding and Mitigating Geographic Vulnerabilities in Mission Critical Multi-Layer Networks

    Get PDF
    Title from PDF of title page, viewed on June 20, 2016Dissertation advisor: Cory BeardVitaIncludes bibliographical references (pages 232-257)Thesis(Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2016In Air Traffic Control (ATC), communications outages may lead to immediate loss of communications or radar contact with aircraft. In the short term, there may be safety related issues as important services including power systems, ATC, or communications for first responders during a disaster may be out of service. Significant financial damage from airline delays and cancellations may occur in the long term. This highlights the different types of impact that may occur after a disaster or other geographic event. The question is How do we evaluate and improve the ability of a mission-critical network to perform its mission during geographically correlated failures? To answer this question, we consider several large and small networks, including a multi-layer ATC Service Oriented Architecture (SOA) network known as SWIM. This research presents a number of tools to analyze and mitigate both long and short term geographic vulnerabilities in mission critical networks. To provide context for the tools, a disaster planning approach is presented that focuses on Resiliency Evaluation, Provisioning Demands, Topology Design, and Mitigation of Vulnerabilities. In the Resilience Evaluation, we propose a novel metric known as the Network Impact Resilience (NIR) metric and a reduced state based algorithm to compute the NIR known as the Self-Pruning Network State Generation (SP-NSG) algorithm. These tools not only evaluate the resiliency of a network with a variety of possible network tests, but they also identify geographic vulnerabilities. Related to the Demand Provisioning and Mitigation of Vulnerabilities, we present methods that focus on provisioning in preparation for rerouting of demands immediately following an event based on Service Level Agreements (SLA) and fast rerouting of demands around geographic vulnerabilities using Multi-Topology Routing (MTR). The Topology Design area focuses on adding nodes to improve topologies to be more resistant to geographic vulnerabilities. Additionally, a set of network performance tools are proposed for use with mission critical networks that can model at least up to 2nd order network delay statistics. The first is an extension of the Queueing Network Analyzer (QNA) to model multi-layer networks (and specifically SOA networks). The second is a network decomposition tool based on Linear Algebraic Queueing Theory (LAQT). This is one of the first extensive uses of LAQT for network modeling. Benefits, results, and limitations of both methods are described.Introduction -- SWIM Network - Air traffic Control example -- Performance analysis of mission critical multi-layer networks -- Evaluation of geographically correlated failures in multi-layer networks -- Provisioning and restoral of mission critical services for disaster resilience -- Topology improvements to avoid high impact geographic events -- Routing of mission critical services during disasters -- Conclusions and future research -- Appendix A. Pub/Sub simulation model description -- Appendix B. ME Random Number Generatio

    2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Full text link
    corecore