27 research outputs found

    M&E-NetPay: A Micropayment System for Mobile and Electronic Commerce

    Full text link
    As an increasing number of people purchase goods and services online, micropayment systems are becoming particularly important for mobile and electronic commerce. We have designed and developed such a system called M&E-NetPay (Mobile and Electronic NetPay). With open interoperability and mobility, M&E-NetPay uses web services to connect brokers and vendors, providing secure, flexible and reliable credit services over the Internet. In particular, M&E-NetPay makes use of a secure, inexpensive and debit-based off-line protocol that allows vendors to interact only with customers, after validating coins. The design of the architecture and protocol of M&E-NetPay are presented, together with the implementation of its prototype in ringtone and wallpaper sites. To validate our system, we have conducted its evaluations on performance, usability and heuristics. Furthermore, we compare our system to the CORBA-based (Common Object Request Broker Architecture) off-line micro-payment systems. The results have demonstrated that M&E-NetPay outperforms the .NET-based M&E-NetPay system in terms of performance and user satisfaction

    QUALITY-OF-SERVICE PROVISIONING FOR SMART CITY APPLICATIONS USING SOFTWARE-DEFINED NETWORKING

    Get PDF
    In the current world, most cities have WiFi Access Points (AP) in every nook and corner. Hence upraising these cities to the status of a smart city is a more easily achievable task than before. Internet-of-Things (IoT) connections primarily use WiFi standards to form the veins of a smart city. Unfortunately, this vast potential of WiFi technology in the genesis of smart cities is somehow compromised due to its failure in meeting unique Quality-of-Service (QoS) demands of smart city applications. Out of the following QoS factors; transmission link bandwidth, packet transmission delay, jitter, and packet loss rate, not all applications call for the all of the factors at the same time. Since smart city is a pool of drastically unrelated services, this variable demand can actually be advantageous to optimize the network performance. This thesis work is an attempt to achieve one of those QoS demands, namely packet delivery latency. Three algorithms are developed to alleviate traffic load imbalance at APs so as to reduce packet forwarding delay. Software-Defined Networking (SDN) is making its way in the network world to be of great use and practicality. The algorithms make use of SDN features to control the connections to APs in order to achieve the delay requirements of smart city services. Real hardware devices are used to imitate a real-life scenario of citywide coverage consisting of WiFi devices and APs that are currently available in the market with neither of those having any additional requirements such as support for specific roaming protocol, running a software agent or sending probe packets. Extensive hardware experimentation proves the efficacy of the proposed algorithms

    Hybrid Blockchain Platforms for the Internet of Things (IoT): A Systematic Literature Review

    Get PDF
    In recent years, research into blockchain technology and the Internet of Things (IoT) has grown rapidly due to an increase in media coverage. Many different blockchain applications and platforms have been developed for different purposes, such as food safety monitoring, cryptocurrency exchange, and secure medical data sharing. However, blockchain platforms cannot store all the generated data. Therefore, they are supported with data warehouses, which in turn is called a hybrid blockchain platform. While several systems have been developed based on this idea, a current state-of-the-art systematic overview on the use of hybrid blockchain platforms is lacking. Therefore, a systematic literature review (SLR) study has been carried out by us to investigate the motivations for adopting them, the domains at which they were used, the adopted technologies that made this integration effective, and, finally, the challenges and possible solutions. This study shows that security, transparency, and efficiency are the top three motivations for adopting these platforms. The energy, agriculture, health, construction, manufacturing, and supply chain domains are the top domains. The most adopted technologies are cloud computing, fog computing, telecommunications, and edge computing. While there are several benefits of using hybrid blockchains, there are also several challenges reported in this study. 2022 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This research was funded by Molde University College-Specialized Univ. in Logistics, Norway for the support of Open Access fund.Scopus2-s2.0-8512412355

    Performance evaluation of cooperation strategies for m-health services and applications

    Get PDF
    Health telematics are becoming a major improvement for patients’ lives, especially for disabled, elderly, and chronically ill people. Information and communication technologies have rapidly grown along with the mobile Internet concept of anywhere and anytime connection. In this context, Mobile Health (m-Health) proposes healthcare services delivering, overcoming geographical, temporal and even organizational barriers. Pervasive and m-Health services aim to respond several emerging problems in health services, including the increasing number of chronic diseases related to lifestyle, high costs in existing national health services, the need to empower patients and families to self-care and manage their own healthcare, and the need to provide direct access to health services, regardless the time and place. Mobile Health (m- Health) systems include the use of mobile devices and applications that interact with patients and caretakers. However, mobile devices have several constraints (such as, processor, energy, and storage resource limitations), affecting the quality of service and user experience. Architectures based on mobile devices and wireless communications presents several challenged issues and constraints, such as, battery and storage capacity, broadcast constraints, interferences, disconnections, noises, limited bandwidths, and network delays. In this sense, cooperation-based approaches are presented as a solution to solve such limitations, focusing on increasing network connectivity, communication rates, and reliability. Cooperation is an important research topic that has been growing in recent years. With the advent of wireless networks, several recent studies present cooperation mechanisms and algorithms as a solution to improve wireless networks performance. In the absence of a stable network infrastructure, mobile nodes cooperate with each other performing all networking functionalities. For example, it can support intermediate nodes forwarding packets between two distant nodes. This Thesis proposes a novel cooperation strategy for m-Health services and applications. This reputation-based scheme uses a Web-service to handle all the nodes reputation and networking permissions. Its main goal is to provide Internet services to mobile devices without network connectivity through cooperation with neighbor devices. Therefore resolving the above mentioned network problems and resulting in a major improvement for m-Health network architectures performances. A performance evaluation of this proposal through a real network scenario demonstrating and validating this cooperative scheme using a real m-Health application is presented. A cryptography solution for m-Health applications under cooperative environments, called DE4MHA, is also proposed and evaluated using the same real network scenario and the same m-Health application. Finally, this work proposes, a generalized cooperative application framework, called MobiCoop, that extends the incentive-based cooperative scheme for m-Health applications for all mobile applications. Its performance evaluation is also presented through a real network scenario demonstrating and validating MobiCoop using different mobile applications

    Mobile commerce business models and technologies towards success

    Get PDF
    Mobile commerce is any transaction with a monetary value that is conducted via a mobile telecommunications network. This thesis tries to examine the factors leading to the success of mobile commerce as well as factors that may hinder its success. This research is separated into five parts: In the first part of this thesis, an analysis of wired e-commerce businesses is made; followed by advantages of mobile commerce over wired e-commerce. In the second part of this thesis, new wireless business models that are expected to generate substantial revenue flows as well as some successful examples of these business models are discussed. In the third part of this thesis, advances in wireless technologies that will lead to the success of mobile commerce are discussed. In the fourth part of this thesis, competition strategies and revenue structure of mobile commerce are discussed. And finally, in the fifth part of this thesis, drawbacks of wireless technologies towards the success of mobile commerce as well as how they can be overcome are discussed. The research and the conclusion suggest that although wireless technologies and their related business models are fairly new, they are growing at rapid speed. These are incredible sources of revenue. Once the factors hindering their usability, reliability, development and deployment are overcome, mobile technologies show great potential as revenue generators for both existing and newly developing businesse

    Location reliability and gamification mechanisms for mobile crowd sensing

    Get PDF
    People-centric sensing with smart phones can be used for large scale sensing of the physical world by leveraging the sensors on the phones. This new type of sensing can be a scalable and cost-effective alternative to deploying static wireless sensor networks for dense sensing coverage across large areas. However, mobile people-centric sensing has two main issues: 1) Data reliability in sensed data and 2) Incentives for participants. To study these issues, this dissertation designs and develops McSense, a mobile crowd sensing system which provides monetary and social incentives to users. This dissertation proposes and evaluates two protocols for location reliability as a step toward achieving data reliability in sensed data, namely, ILR (Improving Location Reliability) and LINK (Location authentication through Immediate Neighbors Knowledge). ILR is a scheme which improves the location reliability of mobile crowd sensed data with minimal human efforts based on location validation using photo tasks and expanding the trust to nearby data points using periodic Bluetooth scanning. LINK is a location authentication protocol working independent of wireless carriers, in which nearby users help authenticate each other’s location claims using Bluetooth communication. The results of experiments done on Android phones show that the proposed protocols are capable of detecting a significant percentage of the malicious users claiming false location. Furthermore, simulations with the LINK protocol demonstrate that LINK can effectively thwart a number of colluding user attacks. This dissertation also proposes a mobile sensing game which helps collect crowd sensing data by incentivizing smart phone users to play sensing games on their phones. We design and implement a first person shooter sensing game, “Alien vs. Mobile User”, which employs techniques to attract users to unpopular regions. The user study results show that mobile gaming can be a successful alternative to micro-payments for fast and efficient area coverage in crowd sensing. It is observed that the proposed game design succeeds in achieving good player engagement

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities
    corecore