28,415 research outputs found

    Every Smile is Unique: Landmark-Guided Diverse Smile Generation

    Full text link
    Each smile is unique: one person surely smiles in different ways (e.g., closing/opening the eyes or mouth). Given one input image of a neutral face, can we generate multiple smile videos with distinctive characteristics? To tackle this one-to-many video generation problem, we propose a novel deep learning architecture named Conditional Multi-Mode Network (CMM-Net). To better encode the dynamics of facial expressions, CMM-Net explicitly exploits facial landmarks for generating smile sequences. Specifically, a variational auto-encoder is used to learn a facial landmark embedding. This single embedding is then exploited by a conditional recurrent network which generates a landmark embedding sequence conditioned on a specific expression (e.g., spontaneous smile). Next, the generated landmark embeddings are fed into a multi-mode recurrent landmark generator, producing a set of landmark sequences still associated to the given smile class but clearly distinct from each other. Finally, these landmark sequences are translated into face videos. Our experimental results demonstrate the effectiveness of our CMM-Net in generating realistic videos of multiple smile expressions.Comment: Accepted as a poster in Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Automated drowsiness detection for improved driving safety

    Get PDF
    Several approaches were proposed for the detection and prediction of drowsiness. The approaches can be categorized as estimating the fitness of duty, modeling the sleep-wake rhythms, measuring the vehicle based performance and online operator monitoring. Computer vision based online operator monitoring approach has become prominent due to its predictive ability of detecting drowsiness. Previous studies with this approach detect driver drowsiness primarily by making preassumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to datamine actual human behavior during drowsiness episodes. Automatic classifiers for 30 facial actions from the Facial Action Coding system were developed using machine learning on a separate database of spontaneous expressions. These facial actions include blinking and yawn motions, as well as a number of other facial movements. In addition, head motion was collected through automatic eye tracking and an accelerometer. These measures were passed to learning-based classifiers such as Adaboost and multinomial ridge regression. The system was able to predict sleep and crash episodes during a driving computer game with 96% accuracy within subjects and above 90% accuracy across subjects. This is the highest prediction rate reported to date for detecting real drowsiness. Moreover, the analysis revealed new information about human behavior during drowsy drivin

    Reproducibility of the dynamics of facial expressions in unilateral facial palsy

    Get PDF
    The aim of this study was to assess the reproducibility of non-verbal facial expressions in unilateral facial paralysis using dynamic four-dimensional (4D) imaging. The Di4D system was used to record five facial expressions of 20 adult patients. The system captured 60 three-dimensional (3D) images per second; each facial expression took 3–4 seconds which was recorded in real time. Thus a set of 180 3D facial images was generated for each expression. The procedure was repeated after 30 min to assess the reproducibility of the expressions. A mathematical facial mesh consisting of thousands of quasi-point ‘vertices’ was conformed to the face in order to determine the morphological characteristics in a comprehensive manner. The vertices were tracked throughout the sequence of the 180 images. Five key 3D facial frames from each sequence of images were analyzed. Comparisons were made between the first and second capture of each facial expression to assess the reproducibility of facial movements. Corresponding images were aligned using partial Procrustes analysis, and the root mean square distance between them was calculated and analyzed statistically (paired Student ttest, P < 0.05). Facial expressions of lip purse, cheek puff, and raising of eyebrows were reproducible. Facial expressions of maximum smile and forceful eye closure were not reproducible. The limited coordination of various groups of facial muscles contributed to the lack of reproducibility of these facial expressions. 4D imaging is a useful clinical tool for the assessment of facial expressions

    Controllable Image-to-Video Translation: A Case Study on Facial Expression Generation

    Full text link
    The recent advances in deep learning have made it possible to generate photo-realistic images by using neural networks and even to extrapolate video frames from an input video clip. In this paper, for the sake of both furthering this exploration and our own interest in a realistic application, we study image-to-video translation and particularly focus on the videos of facial expressions. This problem challenges the deep neural networks by another temporal dimension comparing to the image-to-image translation. Moreover, its single input image fails most existing video generation methods that rely on recurrent models. We propose a user-controllable approach so as to generate video clips of various lengths from a single face image. The lengths and types of the expressions are controlled by users. To this end, we design a novel neural network architecture that can incorporate the user input into its skip connections and propose several improvements to the adversarial training method for the neural network. Experiments and user studies verify the effectiveness of our approach. Especially, we would like to highlight that even for the face images in the wild (downloaded from the Web and the authors' own photos), our model can generate high-quality facial expression videos of which about 50\% are labeled as real by Amazon Mechanical Turk workers.Comment: 10 page

    Affective Facial Expression Processing via Simulation: A Probabilistic Model

    Full text link
    Understanding the mental state of other people is an important skill for intelligent agents and robots to operate within social environments. However, the mental processes involved in `mind-reading' are complex. One explanation of such processes is Simulation Theory - it is supported by a large body of neuropsychological research. Yet, determining the best computational model or theory to use in simulation-style emotion detection, is far from being understood. In this work, we use Simulation Theory and neuroscience findings on Mirror-Neuron Systems as the basis for a novel computational model, as a way to handle affective facial expressions. The model is based on a probabilistic mapping of observations from multiple identities onto a single fixed identity (`internal transcoding of external stimuli'), and then onto a latent space (`phenomenological response'). Together with the proposed architecture we present some promising preliminary resultsComment: Annual International Conference on Biologically Inspired Cognitive Architectures - BICA 201

    LOMo: Latent Ordinal Model for Facial Analysis in Videos

    Full text link
    We study the problem of facial analysis in videos. We propose a novel weakly supervised learning method that models the video event (expression, pain etc.) as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for smile, brow lower and cheek raise for pain). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF- it extends such frameworks to model the ordinal or temporal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations. In combination with complimentary features, we report state-of-the-art results on these datasets.Comment: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR
    corecore