4,482 research outputs found

    FPGA-Based CNN Inference Accelerator Synthesized from Multi-Threaded C Software

    Full text link
    A deep-learning inference accelerator is synthesized from a C-language software program parallelized with Pthreads. The software implementation uses the well-known producer/consumer model with parallel threads interconnected by FIFO queues. The LegUp high-level synthesis (HLS) tool synthesizes threads into parallel FPGA hardware, translating software parallelism into spatial parallelism. A complete system is generated where convolution, pooling and padding are realized in the synthesized accelerator, with remaining tasks executing on an embedded ARM processor. The accelerator incorporates reduced precision, and a novel approach for zero-weight-skipping in convolution. On a mid-sized Intel Arria 10 SoC FPGA, peak performance on VGG-16 is 138 effective GOPS

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Bit Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Networks

    Full text link
    Fully realizing the potential of acceleration for Deep Neural Networks (DNNs) requires understanding and leveraging algorithmic properties. This paper builds upon the algorithmic insight that bitwidth of operations in DNNs can be reduced without compromising their classification accuracy. However, to prevent accuracy loss, the bitwidth varies significantly across DNNs and it may even be adjusted for each layer. Thus, a fixed-bitwidth accelerator would either offer limited benefits to accommodate the worst-case bitwidth requirements, or lead to a degradation in final accuracy. To alleviate these deficiencies, this work introduces dynamic bit-level fusion/decomposition as a new dimension in the design of DNN accelerators. We explore this dimension by designing Bit Fusion, a bit-flexible accelerator, that constitutes an array of bit-level processing elements that dynamically fuse to match the bitwidth of individual DNN layers. This flexibility in the architecture enables minimizing the computation and the communication at the finest granularity possible with no loss in accuracy. We evaluate the benefits of BitFusion using eight real-world feed-forward and recurrent DNNs. The proposed microarchitecture is implemented in Verilog and synthesized in 45 nm technology. Using the synthesis results and cycle accurate simulation, we compare the benefits of Bit Fusion to two state-of-the-art DNN accelerators, Eyeriss and Stripes. In the same area, frequency, and process technology, BitFusion offers 3.9x speedup and 5.1x energy savings over Eyeriss. Compared to Stripes, BitFusion provides 2.6x speedup and 3.9x energy reduction at 45 nm node when BitFusion area and frequency are set to those of Stripes. Scaling to GPU technology node of 16 nm, BitFusion almost matches the performance of a 250-Watt Titan Xp, which uses 8-bit vector instructions, while BitFusion merely consumes 895 milliwatts of power

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Characterization and Acceleration of High Performance Compute Workloads

    Get PDF

    Characterization and Acceleration of High Performance Compute Workloads

    Get PDF

    Domain-Specific Computing Architectures and Paradigms

    Full text link
    We live in an exciting era where artificial intelligence (AI) is fundamentally shifting the dynamics of industries and businesses around the world. AI algorithms such as deep learning (DL) have drastically advanced the state-of-the-art cognition and learning capabilities. However, the power of modern AI algorithms can only be enabled if the underlying domain-specific computing hardware can deliver orders of magnitude more performance and energy efficiency. This work focuses on this goal and explores three parts of the domain-specific computing acceleration problem; encapsulating specialized hardware and software architectures and paradigms that support the ever-growing processing demand of modern AI applications from the edge to the cloud. This first part of this work investigates the optimizations of a sparse spatio-temporal (ST) cognitive system-on-a-chip (SoC). This design extracts ST features from videos and leverages sparse inference and kernel compression to efficiently perform action classification and motion tracking. The second part of this work explores the significance of dataflows and reduction mechanisms for sparse deep neural network (DNN) acceleration. This design features a dynamic, look-ahead index matching unit in hardware to efficiently discover fine-grained parallelism, achieving high energy efficiency and low control complexity for a wide variety of DNN layers. Lastly, this work expands the scope to real-time machine learning (RTML) acceleration. A new high-level architecture modeling framework is proposed. Specifically, this framework consists of a set of high-performance RTML-specific architecture design templates, and a Python-based high-level modeling and compiler tool chain for efficient cross-stack architecture design and exploration.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162870/1/lchingen_1.pd
    • …
    corecore