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Abstract

Modern big-data workloads have demanding performance requirements. This
leads to compute and memory bottlenecks. These applications comprise, among
others, radio-astronomical imaging, machine learning and bioinformatics algo-
rithms. For instance, the future generation of radio-telescopes, such as the Square
Kilometre Array (SKA), will have to process a massive quantity of data (in the
order of Terabytes per second per antenna) using high-performance computing
systems (in the order of Exaflop per second) with high energy efficiency.
With the demise of Dennard scaling and slowing down of Moore’s law, computing
performance is hitting a plateau. Furthermore, the improvements in memory
and processor technology have grown at different speeds, infamously termed the
memory wall. These challenges make it difficult to meet the requirements of such
demanding applications.
A promising solution to bridge this gap is represented by High-Performance Com-
puting (HPC), which uses modern architectures such as multi-core CPUs, GPUs,
and FPGAs to accelerate workloads by optimizing the code to exploit performance
close to their limits. Furthermore, among today’s emerging computing paradigms,
Near-Memory Computing (NMC) rises. NMC is a data-centric computation
approach that performs the computation near the memory, avoids data movements
that characterize classical compute-centric systems, and potentially is a candidate
for high-performance computing.
With the advent of numerous emerging computing systems, it has become cru-
cial to characterize applications for highlighting performance bottlenecks and
optimization opportunities. Moreover, algorithm optimization and acceleration
are key factors for providing high performance on modern computing systems.
However, contemporary workloads do not perform equally on different systems,
e.g., GPUs and FPGAs. This leads to a careful selection of application-domain
architectures and optimizations. To overcome the abovementioned issue, we need
to investigate application characterization techniques aided with machine learning
for efficient offloading decisions and optimize the performance bottlenecks in radio-
astronomical imaging applications on heterogeneous architectures.
The thesis focuses on providing key contributions toward application profiling and
optimization for high-performance computing systems. It extends the state-of-
the-art Platform-Independent Software Analysis (PISA) with metrics concerning
memory and parallelism relevant to NMC. The metrics include memory entropy,
spatial locality, data-level, and basic-block-level parallelism. By profiling a set
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of representative applications and correlating the metrics with the application’s
performance on a simulated NMC system, it demonstrates these additional met-
rics improve state-of-the-art tools in identifying applications suitable for NMC
architectures.
Since hardware-independent analysis is expensive in terms of computation time
and resources, the thesis suggests employing an ensemble machine learning model
together with hardware-dependent application analysis, which reduces the pre-
diction time up to 3 orders of magnitude compared with the state-of-the-art.
While the previous contributions employ the benchmark methodology, the thesis
also focuses on the real-world use case of radio-astronomical imaging, where CPI
(Clock Per Instruction) breakdown analysis on modern CPUs identifies large
2D FFTs and Gridder to be a performance bottleneck. It presents an NMC
accelerator for 2D FFT computation and shows its implementation on FPGA
outperforms the CPU counterpart and performs comparably to a high-end GPU.
To improve the performance of Gridder, it exploits reduced precision acceleration
contrary to the usual practice of employing high-precision computations in radio
astronomy imaging. Reduced-precision analysis shows that precision must be
selected carefully. It presents the first reduced precision accelerator for Gridder,
employing custom floating-point data types on FPGA. The prototype outperforms
a CPU and keeps up with a GPU with similar peak performance and lithography
technology.
To summarize, the thesis’s contributions are: 1) PISA-NMC, a hardware-agnostic
tool to characterize applications with metrics directed towards near-memory com-
puting; 2) NMPO, an ensemble machine learning framework for offloading predic-
tion on NMC systems; 3) an evaluation of modern HPC architectures, including
NMC, for accelerating radio-astronomical large 2D FFTs; and 4) an in-depth
reduced precision analysis and the first custom floating-point accelerator for radio-
astronomical imaging. Together, these contributions push the state-of-the-art of
application characterization and architectural optimization forwards, focusing on
real-world applications such as radio-astronomical imaging.
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1
Introduction

Modern scientific applications have high-performance requirements. Workloads
are from disparate field such as machine learning [1], genomics [2], hydrodynamics
[3], radio-astronomy [4], etc. Radio-astronomy algorithms represent a noteworthy
example. Indeed, the Square Kilometre Array (SKA) [5], which is in the first
construction phase during this decade, will be the biggest radio-telescope in the
world, with thousands of antennas and hosted in South Africa and Australia.
A subset of tasks of the SKA is focused on extracting real-time information of
transients, in other words detecting interesting objects in the sky like pulsar,
and imaging the digitized signal of the sky in images. A radio-telescope of such
dimension will produce a large amount of data traffic in the order of TeraBytes/s,
and each computing facility will have to provide computing capabilities in the
order of ExaFLOP/s [6].
To accommodate such high-performance requirements, innovative approaches need
to be researched. Moreover, hardware limitations raise in the past years. In partic-
ular, memory technology could not keep up with processing elements technology
in terms of speed and energy consumption; this problem is typically called the
Memory Wall [7]. In addition, chip manufacturers have difficulties in following
Moore’s [8] and Dennard’s [9] Laws. Indeed, it is not anymore possible to shrink
the size of transistors like in the past. To overcome these issues, new technologies
and computational paradigms have been proposed. For instance, new 3D stacked
memories such as High Bandwidth Memory (HBM) [10] and Hybrid Memory
Cube (HMC) [11] are employed in current GPUs, and FPGAs generation [12,13].
These innovations are slowly affecting also the CPU architectures; for example
the new AMD’s 3D-V cache (see Figure 1.1). Indeed, 3D memory technology
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CHAPTER 1. INTRODUCTION

allows to have large caches with faster interconnect to the cores. Thanks to these
new technologies, computational paradigms such as Near-Memory Computing
(NMC) [14] have re-gained interest.

Figure 1.1: AMD 3D-V Cache technology [15,16]. The CPU shown is equipped
with 3D stacked L3 cache providing higher memory density and lower latency
compared to traditional 2D-cache-equipped CPUs.

The trend of modern computing systems is directed towards heterogeneity. This
simply means that supercomputers will consist of different nodes with different
resource inter- and intra- nodes. Indeed, certain applications are better suited
for certain architecture, such as CPUs [17] and GPUs [18]. Most of the future
machines will host domain-specific accelerators, which are basically optimized
for specific algorithms. The acquisitions of Altera and Xilinx by respectively
Intel [19], and AMD [20] make FPGAs break into the HPC world, delivering
promising competitive platforms for scientific computation with respect to GPUs.
From one side, heterogeneity allows optimal hardware for the considered appli-
cation. On the other, it complicates and creates challenges in characterizing
workloads, optimizing them for the specific architectures, on which architecture
they should be offloaded to, etc. In particular, the challenges regarding application
characterization, offloading and optimization on the domain-specif accelerator will
be treated in Section 1.1. Then we present the thesis’ problem statement in
Section 1.2, contributions in Section 1.3 and the thesis structure in Section 1.4.

1.1 Challenges
The complexity of modern algorithms and computing systems will present difficult
challenges to researchers and developers. In particular, here we present the chal-
lenges related to application characterization and offloading and the optimization
on domain-specific accelerators.
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Application characterization and offloading
One of the most difficult challenges is characterizing applications and deciding
if and where to offload them to maximize performance. Heterogeneity makes
this even more complex. Indeed, profiling and characterizing applications is not
standardized, and many tools and characterization metrics have been proposed
in the past decades. Furthermore, this becomes even more complex if the target
is a future architecture, which can only be simulated [21].
A fair amount of research has been spent on abstracting application characteri-
zation from hardware details and focusing only on application properties [22,23].
However, when targeting novel computation paradigms, new metrics needs to be
researched to detect application hotspots that can take advantage of new hardware
features. Indeed, this is still an open challenge for paradigms such as near-memory
computing [14].

Application characterization should provide enough information to select the most
profitable hardware for a specific application. While automatic methodologies
such as compilers, which determine application hotspot and provide code opti-
mization, have been introduced [24], they effectively work on simple and standard
micro-kernels such as linear algebra (BLAS). Nonetheless, modern workloads
contain non-standard computations, which are difficult to detect automatically.
Therefore, possible solutions to determine offloading decisions are analyzing pro-
filing results to determine the most relevant characterization metrics or machine-
learning prediction model to determine offloading choices [21].

Domain-specific optimization
To accomodate the above mentioned high-performance requirements, powerful
machines need to be developed and alternative computing approaches must be
researched. Undoubtedly, modern supercomputers can achieve ExaFLOP/s per-
formance but consume a large amount of energy.
Table 1.1 shows the first 5 positions of the TOP500 list [25]. The execution of
HPCG [26] on the most powerful top500 supercomputers achieve less than 5%
of their peak performance. The waste of power consumption of these machines
could be used to sustain the energy demand of a small city [27].
With new architectures entering the domain, such as FPGAs, it becomes even
more critical to understand how different platforms behave and can be employed
to obtain the best performance in terms of time to solution, but more importantly,
energy efficiency.
To achieve this goal, a good knowledge of how the computing architectures are
designed is needed. Moreover, to achieve even higher performance and lower
energy, a trade-off on the result quality may also be taken into account, e.g., by
exploiting approximate computing [28]. However, as we will discuss in Chapter
6 it strictly depends on applications and datasets. Indeed, radio-astronomical
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Table 1.1: Latest (November 2022) results of the 5 faster supercomputers
from top500 list [25]. Frontier is the first machine that surpasses the ExaFlop
in raw performance. The table also reports the fraction of peak performance
achieved by running HPCG [26], a standard benchmark to assess performance
on supercomputers: most of the supercomputers are below 5%.

Rank System Rpeak (PFLOP/s) Power (MW) HPCG %
1 Frontier 1685.65 21.10 1.00
2 Fugaku 537.21 29.90 3.62
3 LUMI 428.70 2.94 1.10
4 Leonardo 255.75 7.44 1.47
5 Summit 200.79 10.10 1.97

imaging applications typically need high precision, which may vary slightly based
on the datasets.

1.2 Problem Statement
With the rising of modern real-world applications in various domains such as
radio astronomy, genomics, artificial intelligence, and hydrodynamics that have
demanding computational and memory requirements, it is crucial to understand
which architecture can better support them and how to optimize them for specific
hardware.
Indeed, it is challenging to determine which application sections, typically named
kernels, should be offloaded to accelerators. This can be done in very different
ways, and it is usually challenging for emerging technologies. More precisely, with
the advent of new technologies such as High Bandwidth Memory (HBM) and
Hybrid Memory Cube (HMC), new architectures and computational paradigms
have been proposed. An example is near-memory computing which shifts the
computation near the memory, avoiding the movement through the cache hier-
archy. Additionally, competing architectures such as GPU and FPGA recently
support this particular technology. This makes it difficult to understand when an
architecture is beneficial and when to offload particular kernels.
Even though modern compilers can optimize particularly well applications code
for multiple platforms, they are often limited to a few well-known kernels such as
linear algebra (BLAS) [29]. However, modern applications in radio astronomical
imaging and hydrodynamics include linear-algebra kernels and uncommon compu-
tations such as sine/cosine and floating-point operations with particular patterns.
It is challenging to map and optimize these computational tasks to new accelerator
architectures. Indeed, typically for every architecture, it is usually necessary to
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employ specific code grammar to obtain high-performance code, e.g., CUDA for
NVIDIA GPUs, Xilinx High-Level Synthesis Pragmas for Xilinx FPGAs.

More precisely, we need to understand which application characterization method-
ology would provide sufficient information to make offloading decisions on hetero-
geneous high-performance computing systems. Furthermore, can machine learning
improve the above-mentioned offloading decisions? After determining bottlenecks
and taking offloading decisions, which accelerators and optimization can maximize
the computing and energy efficiency of real-world applications such as radio-
astronomical imaging?

1.3 Thesis contributions
This thesis provides techniques and demonstrations of application characteri-
zation and optimization by targeting both emerging and state-of-the-art high-
performance systems and real-world workloads such as radio-astronomical imag-
ing. We show how application profiling techniques can be used efficiently to
detect possible application bottlenecks and individuate appealing optimization
for improving performance.
This thesis makes the following four contributions:

1. Platform-Independent Software Analysis for Near-Memory Computing, is a
hardware-independent tool capable of detecting application features related
to data and memory parallelism. With this tool, we extend the application
characterization possibilities for emerging computational paradigms such as
near-memory computing, and we show its relationship with near-memory
computing performance (Chapter 3) [30,31].

2. Emerging high-performance computational paradigm typically employs ex-
pensive simulation to understand the suitability for offloading. While ma-
chine learning can reduce the amount of hardware simulation to the training
set, the current state-of-the-art uses costly hardware-independent character-
ization to predict NMC offloading suitability. The Near Memory computing
Profiling and Offloading framework demonstrates that the offloading suit-
ability prediction can drastically benefit from using hardware-dependent
characterization (Chapter 4) [32].

3. Modern radio-telescope will need to deal with large datasets for detailed
sky images. This introduces a bottleneck in the radio-astronomical imag-
ing pipeline: the two-dimensional Fast Fourier Transform. We propose
a detailed application characterization and evaluation on state-of-the-art
systems including near-memory computing (Chapter 5) [33].

4. Radio-astronomical imaging requires high-performance and energy-efficient
computing. Reduced precision is a technique that employs reduced precision
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data types to improve application performance and saving energy. In this
context, we propose for the first time an in-depth reduced-precision analysis
and custom accelerator for this application domain. We also provide guide-
lines for optimizing applications on In Xilinx Vitis targeting Xilinx Alveo
FPGAs and important lessons learned (Chapter 6) [34].

To summarize, this thesis provides mechanisms and methodologies to ease appli-
cation profiling to detect application hotspots. Moreover, we evaluate different
state-of-the-art architectures showing advantages and disadvantages in modern
scientific computing, with a particular focus on radio-astronomical imaging work-
loads.

1.4 Thesis structure
As depicted from Figure 1.2, the thesis is built on top of a skeleton (yellow area)
containing Introduction, Background, and Conclusions. The main contributions
are categorized in two macro-area (gray boxes): Application Characterization and
Application Optimization.
In the following paragraphs, we detail the thesis structure per chapter:

Chapter 2: discusses the background information required to understand the
thesis’ contributions. We start by highlighting the main computing paradigm
employed in this thesis. Then, we introduce the primary methodologies for
application characterization. The chapter concludes with a thorough background
of Radio-Astronomical Imaging algorithms, a real-world application with high-
performance requirements we employ in the thesis.

Chapter 3: introduces the platform-independent software analysis tool for char-
acterizing near-memory computing features. It discusses the novel memory and
data parallelism metrics that we add to the original tool to enrich the application
characterization. Then, we demonstrate the correlation of using these metrics
with near-memory computing performance by employing the principal component
analysis and near-memory computing simulation.

Chapter 4: introduces the Near-Memory computing Profiling and Offloading
(NMPO) framework. NMPO is an ensemble machine learning model trained
with near-memory computing simulation and hardware-dependent characteriza-
tion data to predict near-memory computing suitability of unseen applications.
NMPO promises to be faster than the state-of-the-art, especially in the prediction
phase by employing hardware-dependent characterization, which typically has
reduced overhead compared to hardware-independent techniques.

Chapter 5: presents a specific Radio-Astronomical Imaging use case. Indeed,
radio-astronomers will need to process high-resolution images to detect smaller
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and hidden space objects in the coming years. Two-dimensional Fast Fourier
Transform becomes a critical bottleneck with increased image size. In this chapter,
we characterize the 2D FFT by employing hardware-dependent methodologies.

1. Introduction 
 2. Background

7. Conclusions

3. Platform Independent Software Analysis

4. Near Memory Profiling and Offloading

5. Near-Memory Computing Large 2D FFTs

6. Reduced Precision Radio-Astronomical
Imaging on FPGAs

Application Characterization

Application Optimization

Figure 1.2: Graphical representation of the thesis structure. The thesis develops
on two macro-topics: application characterization and application optimization.
Each topic has its own contributions and they are linked across the body of the
thesis.

Then, we evaluate its performance on high-performance architectures, including
a Near-Memory Computing system based on the Access Processor concept and
realized on an FPGA.

Chapter 6: shows an in-depth analysis by using hardware-dependent tools
of one state-of-the-art radio-astronomical imager. More precisely, we focus on
determining the main application bottleneck. To the best of our knowledge, this
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is the first time that the application tolerance to reduced-precision data types is
evaluated. Then, we propose the first reduced-precision Image-Domain Gridding
accelerator on FPGA. The chapter concludes with an evaluation of the prototypes
presented with state-of-the-art architectures such as CPUs and GPUs.

Chapter 7: summarizes the thesis contributions and gives an overview on po-
tential future works.
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2
Background

In order to understand this thesis some background information can help the
reader. This chapter starts by describing the main computing systems studied
and employed for this work (2.1). Application characterization techniques are
reported in 2.2 and this chapter concludes with describing the most significant
use case of this thesis: radio-astronomical imaging (2.3).

2.1 High Performance Computing Systems
Modern scientific applications need High-Performance Computing in order to
execute efficiently with sufficient performance. In the past decades, we have
witnessed a rapid evolution in computer architecture. Especially, the CPU (Cen-
tral Processing Unit), usually considered as the “heart” of a computing systems
(HPC servers, laptops, smartphones, domestic devices, etc.) has deeply changed
in the past years. Indeed, as shown in Figure 2.1, from 1970s there has been
an exponential improvement in terms of frequency, number of transistors and
single-thread performance. This behaviour was driven by the so-called Moore’s
Law [8] and Dennard’s scaling Law [9]. The first one claims that the number of
transistors doubles approximately every two years, while the second one states
that the performance per watt double every 18 months.
However, at the beginning of the 21th century these two laws started to slow down
and not be completely valid anymore [36]. Indeed, Figure 2.1 shows that in the
past two decades the number of transistor is still doubling at a lower speed, about
every 18-24 months. A similar trend affects Dennard’s scaling. In fact, starting
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Figure 2.1: 50 years processors trend [35]: number of transistors, single-thread
performance, frequency, power consumption and number of logical cores. The
figure show how the number of transistor is increasing over time. This is true for
the number of logical cores starting from the early 2000s. Contrariwise, the other
trends are reaching a plateau.

from the early 2000s frequency and single-thread improvement started to reach a
plateau. Typical high frequency values for today’s CPU are in the range of 4 to 5
GHz. However, these values can typically be achieved by a single core at a time.
Nevertheless, new solutions started to be introduced. As can be depicted from
Figure 2.1 around 2005, CPUs with multiple core started appearing on the market
increasing the complexity of modern CPUs but providing higher performance for
modern applications.
To accommodate the requirements of modern and performance demanding work-
loads, in the past two decades alternative architectures such as Graphical Pro-
cessing Units (GPU) and Field-Programmable Gates Arrays (FPGAs) have been
produced. In particular, these new architectures have usually higher peak per-
formance in terms of operations per second and bytes per second at the cost of
being less general purpose [37]. Indeed, these architectures work perfectly with
embarrassingly parallel algorithms and typically provide better energy efficiency.
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Figure 2.2: The top figure shows the theoretical peak performance expressed
in TFLOP/s for different computing architectures in the past decade. NVIDIA
GPUs are reported in green and AMD GPUs in red; they show the higher values of
TFLOP/s. Other architectures such as CPU and FPGAs show lower performance;
they are reported in blue (Intel CPUs), orange (AMD CPUs) and yellow (FPGAs).
The bottom figure presents the theoretical energy efficiency (GFLOP/s/W) of the
same architectures. Usually GPUs and FPGAs are far more energy efficient than
CPUs.
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For completeness, we show in Figure 2.2 the trend over the years of the most com-
mon computing architectures (CPUs, GPUs and FPGAs) in terms of performance
(TFLOP/s) and energy efficiency (GFLOP/s/W). Overall, the improvement is ex-
ponential. GPUs usually can provide the highest throughput and energy efficiency
compared to the other systems.

2.1.1 Central Processing Units
A Central Processing Unit (CPU) is a key element in today’s computing systems.
A CPU typically consists of a small number of high-performance cores, often are
in the range of 2-64 and can reach frequencies around 4-5 GHz. Usually a cache
hierarchy is integrated in the CPU package. Cache memory is faster but smaller
than the main memory where the application and operating system data usually
resides. Cache memory temporarily stores frequently used instructions and data
enabling quicker processing on the CPU cores. In most cases, the main memory
uses Dynamic Random Access Memory (DRAM), which is commonly located
outside the CPU package. However, this is not true for the recently released
Apple M1 and M2 chips [38], where the CPU and main memory are placed in
the same chip. CPU’s cores usually consist of an instruction pipeline including
Arithmetic Logic Units (ALU) and Registers for processing operations. Modern
CPU’s cores support vector operations and multi-threaded execution, therefore
increasing the level of parallelism and complexity.

Figure 2.3: AMD zen2 architecture. On the left, the upper figure is the layout of
an 8 cores CPU, the bottom figure is a zoomed representation of a CCX section of
the 8 core CPU. On the right side, the pipelined representation of a zen2 core [39].

A layout of a relatively recent CPU is showed in Figure 2.3. On the left, the upper
image shows the layout of 8 cores AMD CPU with zen2 architecture. Modern CPU
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architectures pack a number of resources such as caches and cores in a modular
fashion. The bottom image on the left side shows the layout of an AMD CCX
(CPU Core Complex). It contains 4 large cores with each a L2 private cache,
a shared L3 cache. Note that this may differ across vendors and architecture
generations.
The right side of Figure 2.3 depicts the structure of a modern CPU core: L1
and L2 private caches, ALUs for integer and floating-point (red and orange),
pipeline queues. To maximize performance, CPUs implement pipelined designs
[40] in order to increase the computation througput. The pipeline stages can be
recognized in in the upper part of the core scheme: instruction decode from the
instruction cache, micro-op queue, ALU execution, etc.

2.1.2 Graphical Processing Units
Graphical Processing Units (GPUs) were designed mainly for graphic tasks such
as gaming and video rendering. Twenty years ago, GPUs were complicated to
program for scientific computation and were mainly employed for applications
with operations on image-like data structures [41]. Only with the advent of
high-level programming models supporting common programming languages, such
as C/C++, GPUs became popular for scientific workloads. In 2007 NVIDIA
released a C-like language for GPUs, the so-called CUDA (Computed-Unified-
Device-Architecture) [42]. A few years later, competitors such as AMD and Intel
proposed OpenCL [41], which, compared to CUDA, is not vendor-specific.
GPU architectures have specific features that make them profitable for certain
workloads compared to CPUs. GPUs usually come with fast memory soldered
on the same board and are significantly faster than the CPU’s main memory
(called global memory). Modern GPUs are equipped with GDDR6X, or HBM2.
While GDDR memory is placed on the PCB and spread around the processor,
the HBM memory is located on the GPU itself and the different stacked dies
communicate via microbumps and through-silicone vias (TSV). They can achieve
a peak bandwidth in the order of TB/s [13]. Another key difference with CPUs
is that GPU have more cores at lower frequencies: current high-end GPUs, such
as the NVIDIA A100, have more than ten thousand processing elements. Each
processing element has a private memory. It also includes units for floating-
point (single and double precision) computations (FPU) and other units based
on the model. For instance, modern NVIDIA GPUs have Special Functional
Units (SFU) for transcendental operations such as sine and cosine [44]. They
may also include tensor cores [45], for AI workloads, which are incredibly efficient
in computing matrix multiply and accumulate. Most modern GPUs also support
mixed-precision computation, including data types not commonly supported by
CPUs, such as Brain Floating Point and Half Precision.
As shown in Figure 2.4, GPU processing elements are organized in clusters, so
called Streaming Multiprocessor (SM) or Shader Engines depending on the vendor
terminology. Inside an SM, the cores share an L1 memory, also called shared
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Figure 2.4: Schematic of an NVIDIA Tesla V100 GPU [43]. On the left, the
overall architecture with global memory, L2 caches and GPCs (Graphic Processing
Clusters). On the right, a zoomed view of a Streaming Multiprocessor (SM). We
can distinguish cores, SFUs (Special Function Units), Load/Store units, etc.

memory. SMs are grouped in GPCs (Graphic Processing Clusters) and access a
common L2 cache.
Although modern GPUs are programmable in a high-level language, their pro-
gramming model is different from the ones (like C/C++) used for CPUs. GPU
computation exploits many threads for parallel operations. The operations are
typically defined as a Grid consisting of Thread blocks. Each thread block hosts
a group of threads (warps or wavefronts) [42].

1 v o i d vecAdd ( double ∗a , double ∗b ,
double ∗c , i n t SIZE )

2 #pragma omp p a r a l l e l f o r
3 f o r ( i n t i = 0 ; i < SIZE ; i ++){
4 c [ i ] = a [ i ] + b [ i ] ;
5 }
6 }

Listing 2.1: Vector addition in
C++.

1 __global__ v o i d vecAdd ( double ∗a ,
double ∗b , double ∗c , i n t SIZE )

2 {
3 i n t i d = b l o c k I d x . x∗ blockDim . x+

t h r e a d I d x . x ;
4
5 i f ( i d < n )
6 c [ i d ] = a [ i d ] + b [ i d ] ;
7 }

Listing 2.2: Vector addition in
CUDA.

These features are explicit in the programming model. For instance, in Listing
2.1 we show an example of vector addition on CPU, where the parallelism is
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inferred with an OpenMP pragma. To exploit GPUs parallelism, the code is
written differently (see Listing 2.2). The first difference that can be noticed
is that there is no for loop. The computation is split into different Thread
Blocks, which a single Streaming Multiprocessor executes. Each Thread Block
consists of different Threads that are offloaded to the SM’s processing elements.
These two dimensions (Thread Blocks and Threads) are specified by the kernel
call in the host (CPU) code by using angular brackets: vecAdd<ThreadBlocks,
Threads>(a, b, c, SIZE).

2.1.3 Field Programmable Gate Arrays
Field-Programmable Gate Arrays (FPGAs) are integrated circuits (IC) that con-
sist of multiple programmable block and interconnect (Tile in Figure 2.5) that
can be programmed to execute specific computations.

Figure 2.5: FPGA architecture. Modern FPGAs are composed by multiple
Super Logic Regions (SRL) to compete with GPUs. They also support high-speed
connections such as GTY and SFP-DD.

In the case of Xilinx FPGAs, each block contains Configurable Logic Blocks (CLB)
with LUTs (lookup tables) and FFs (flip flops) to generate logic circuits and
small memories. Modern FPGAs also have DSP (digital signal processing) units,
specially optimized for multiply and accumulate operations, and on-chip memories
(BRAM, URAM, etc.) for storing high-re-used data or buffering inputs/outputs.
The blocks mentioned above are programmed and connected to form digital
functions. With the recent advancement in FPGA technology, they can easily per-
form numeric computations in floating-point and customizable/arbitrary precision
arithmetic. This makes FPGAs appealing over architectures like CPUs and GPUs
that support a set of pre-defined data types. FPGAs were programmed in the past
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with relatively low-level Hardware Description Languages (HDLs), such as Verilog
and VHDL. To avoid this time-expensive and tedious work, FPGAs vendors such
as Xilinx and Intel support High-Level Synthesis Tools allowing programming
FPGAs with High-Level Languages such as C++ and python. Moreover, vendors
make available high-level APIs (Application Program Interface), which usually
are usually based on OpenCL, to easily program and offload computation on the
FPGAs.
However, the hardware generation (implementation), which provides the config-
uration, called bitstream, still requires several hours. Another important feature
of FPGA devices is re-configurability. More precisely, it is possible to re-configure
the programmable logic on at the run-time to support different computations
or adapt the hardware to dynamic requirements. These features make FPGAs
attractive candidates for High-Performance Computing and possible competitors
with GPUs.

2.1.4 Near Memory Computing
Differently from traditional computing architectures such as CPUs, near-memory
computing (NMC) processes data near the main memory, in certain cases near
storage memory, thereby avoiding the classical data movement throughout the
cache hierarchy, which usually causes memory bottlenecks and increase the power
consumption. First NMC ideas date back to 1970 [46]. However, given the hard-
ware limitations at that time, the first prototypes started appearing not before
early 1990s [47–49]. Vector IRAM (VIRAM) [50] is an example. Researchers
developed a vector processor with an on-chip embedded DRAM (eDRAM) to
exploit data parallelism in multimedia applications. This solution did not reach
the market, although the results were quite promising.
Recently, two key factors make NMC regain attention: the rising number of data-
intensive applications and the memory technology improvement (see Figure 2.6).
More precisely, we are continuously witnessing an unstoppable increase of data
requirements for applications in diverse fields such as health, social media, radio
astronomy, etc. [51].
Three-dimensional stacked memory is one of the most important reasons of the
NMC regained visibility. This technology can be used in 2.5D and 3D stacking
configuration with the logic layer. In Figure 2.7 we show an example of 3D
stacking where memory layers and logic layers communicate with through-silicon
via’s (TSVs) reducing memory access latency, power consumption and enable
high memory bandwidth [52]. In the case of 2.5D, mostly used in commercial
solution (GPUs, FPGAs), the 3D-stacked memory communicate with the logic
layer with an interposer, thus not being stacked. Example of 3D-stacked memory
technologies are HBM (High Bandwidth Memory) [11] and HMC (Hybrid Memory
Cube) [10].
Near-memory computing approaches have been studied and categorized by Singh
et al. [14]. Briefly, NMC systems can be very different. The main parameter
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Figure 2.6: Memory bandwidth trend of the most employed memory technology
in HPC. In green SDRAM, typically used for CPUs; in blue GDDR, which is
employed in GPUs. HBM is in red; it is used in high-end GPUs and FPGAs, but
also in novel architectures such as NMC.

that varies in NMC systems is the main memory: HBM [53, 54], HMC [21]
storage. Furthermore, there is an heterogeneous landscape in the state-of-the-
art of processing approaches: simple cores [21], fixed functions [55], etc.
Moreover, since producing near-memory computing systems is costly, most of the
research validation experiments are carried out with simulators [21,56–58].

2.2 Application characterization
Application characterization typically refers to the methodologies employed to
collect performance-critical metrics in current and emerging applications. This
is a challenging and crucial task, especially with continuously evolving hardware
and software. Indeed, application characterization tools are fundamental when
co-designing the hardware and software for modern workloads.

2.2.1 Goals
Based on the characterization methodology, the achievable goals could be differ-
ent. We summarize the most relevant ones as follows:
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Figure 2.7: On the left an example of Near-Memory Computing (NMC)
architecture with a 3D-stacked chip. The 3D-stacked memory is connected to
the compute units or cores, placed on the logic layer, with through-silicon via’s
(TSVs). On the right, an example of 2.5D NMC architecture: the logica layer is
connected to the memory layer with through-silicon via’s (TSVs) through a layer
called interposer.

Application hot spots: according to Amdahl’s Law [8], reported in Equation
2.1, the speedup strictly depends on the critical hot spot that can be parallelized
or accelerated. Therefore, finding application hot spots guarantee to optimize
those application portions that will return a performance improvement:

Slatency(s) = 1
(1− p) + p

s

(2.1)

where p is the application portion that can be parallelized and s is the section
that must run sequentially.
This is usually achieved by individuating workload’s critical sections that are
frequently repeated over time, and that can be parallelized. First attempts
date back late 1960’s when IBM developed a monitoring device to profile CPU
execution [59]. In the past 60 years, a large number of tools have been developed
and proposed for this purpose, such as callgraph analysis tools [60,61] or hardware
proprietary tools [62–64].

Hardware bottleneck: it is crucial to understand where the application stalls on
specific hardware architecture. Indeed, new hardware generation may introduce
a difference in their design that may impact the performance of pre-existing
software. This is crucial to understand the current hardware’s limitations and
decide to either change architecture or, if possible, adapt the software to match
it. Many tools capable of extracting hardware counters, such as Intel VTune [64],
NVIDIA Nsight Compute [62], are available nowadays. Often these tools integrate
the roofline model or can output the necessary metric to draw it. The roofline
model is a widely employed performance model to assess achieved performance
and hardware bottleneck [65].
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The roofline model (see Figure 2.8) can be drawn for almost all the computing
architectures such as CPUs, GPUs, and FPGAs. The key information that
is needed for a basic roofline model are the peak compute and memory roofs.
These are typically computed theoretically or empirically [66]. In the example, in
Figure 2.8, the horizontal line represents the peak performance of the considered
architecture, and it is usually expressed in floating-point operations per second
(FLOP/s). The diagonal line represents the peak memory bandwidth.
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Figure 2.8: Example of roofline model. The blue lines represent the architecture
limits in terms of peak performance and memory bandwidth. The roofline model
is helpful in distinguishing memory and compute-bound applications (see the green
and red dots).

The roofline model shows on the y-axis the application achieved performance
and on the x-axis the arithmetic intensity (FLOP/Byte). Arithmetic intensity is
usually the factor that makes an application memory or compute bound. Indeed,
if the application is underneath the compute roofs, it is compute bound, otherwise
it is memory bound.
Application intrinsic analysis: the design-space exploration of emerging and
future systems necessitates application characterization in terms of intrinsic ap-
plication features. Indeed, it is crucial to understand application-related charac-
teristics such as Instruction-Level Parallelism, Memory Entropy, and Task-Level
Parallelism to efficiently design the system mentioned above. The information ex-
tracted is usually employed to build an architectural model or performance model
to predict application performance on unavailable or to be designed computing
systems [67].

Adaptiveness: Modern compiler such as LLVM Clang [68] embed a large variety
of analysis tools in their toolchain to be able to identify bottlenecks such as race
conditions [69] or detecting particular code patterns [24,70] that can be optimized
by the compiler itself. Run-time managers represent another example. They are
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typically software routines that run parallel with applications on a system and
employ application profiling to determine stalls or offloading opportunities. This
is usually done by analyzing the application performance, and hardware utilization
to adapt on-the-fly the application offloading, e.g., by dynamically adapting the
task scheduling [71,72].

2.2.2 Taxonomy
The numerous profiling and characterization tools that have been proposed over
the years can be distinguished by their features.

• Hardware dependency: the profiling may only include the code analysis
(hardware independent) or can in addition take into consideration hardware
features (hardware dependent).

• Metrics: collected metrics can be really different among characterization
tools. Common metrics are execution time, floating-point operation per sec-
ond (FLOP/s), arithmetic intensity (FLOP/Byte), energy efficiency, Instruction-
Level-Parallelism (ILP), etc.

• Application stage: analysis can be done at different application stages:
source code, compilation time, and run-time.

• Granularity: profiling tools can work at different granularity starting from
coarse grain such as event-based profilers to fine-grained such as profiling
at instruction level.

Applications can be analyzed with different approaches. Often a mixture of
methodologies can be applied:

• Event-based: this technique triggers the analysis based on software events
such as function calls, class load or unload, etc [64].

• Statistical: the profiler collects information by sampling data. Perf, a
profiler utility available in the Linux kernel, [73] or PAPI (Performance
Application Profiling Interface) are able to collect hardware counter mea-
surements at a certain sampling frequency.

• Instrumentation: the aim of this method is to inject additional instruc-
tions to collect application information. This technique usually reduces the
applications performance. Instrumentation can be done in different ways:
1) the user can manually add instructions to the application code, e.g.,
PAPI [74]; 2) a tool can automatically instrument the source code [75] or
the compiler intermediate representation; 3) other approaches perform the
instrumentation at binary level [76] or at run-time.
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• Simulation: the application dynamically runs under an instruction set
simulator (ISS), a simulation model capable of reproducing an architecture
behavior. This is typically coded in high-level languages such as C++.
Simulators can model entire systems or specific components. For instance,
Ramulator [77] and DRAMSim3 [78] are cycle-accurate memory simulators.
Gem5 [79] and Zsim [80] are employed to emulate the behaviour of CPUs,
while GPGPUsim [81] models GPUs execution.

• Analytical models: are typically quantitative and less precise, compared
to, e.g., simulator, estimation based on a set of mathematical equations.
They quickly estimate the application performance based on collected ap-
plication properties and hardware features. In this context, e.g., Gysi et
al. [82] propose a fast analytical model of fully associative caches, based on
static analysis using the LLVM compiler framework, that outperforms cache
simulators by several order of magnitude with an error below 0.6%.

2.2.3 State of the art
In this thesis, we mainly focus on the difference between hardware-independent
and hardware-dependent analysis tools. Moreover, while the first ones can be
more accurate and helpful for unavailable hardware, the second ones are easier
to use and quicker. We summarize the most relevant state-of-the-art approaches
and tools in the following paragraphs.

Hardware independent analysis A hardware-independent analysis can be
done both statically and dynamically. For instance, Jordans et al. [83] analyzed
the processor parallelism using a static analysis of the LLVM’s IR, which is the
Intermediate Representation employed by the LLVM compiler. This work aimed
to estimate the level of parallelism in a workload and propose optimization strate-
gies focused on VLIW architectures. Another static approach was proposed by
Eusse et al. [84]. They used the LLVM framework to perform a pre-architectural
performance estimation coupling high-level synthesis (HLS) to shorten design
times.
On the other hand, dynamic analysis can collect the difference when changing the
workload’s problem size. Cabezas [85] proposed a tool that can extract different
features from workloads but has many limitations: the compiler community no
longer supports the used LLVM interpreter, and the target applications should
be single threaded. Another tool has been developed by Shao et al. [22]. It
can extract interesting metrics such as memory entropy and branch entropy.
However, this tool has some limitations: it is based on the IDJIT IR (just-in-
time compilation) that has compatibility problems with OpenMP and MPI, thus
being limited to sequential applications. Vector Fabrics [86] developed several
commercial LLVM-based tools. For instance, based on dynamic analysis, Vector
Fabrics’ Pareon Profile tool was used to explore opportunities and bottlenecks for
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parallel execution of C/C + + code; Vector Fabrics’ Pareon Verify, which uses
dynamic analysis to find bugs in C/C + + application code.
One of the most recent hardware agnostic tools is PISA (Platform-Independent
Software Analysis) for workload characterization was presented by Anghel et al.
[23]. PISA can analyze multi-threaded applications supporting the OpenMP and
the MPI standards.

Hardware dependent analysis As mentioned above, hardware-dependent
analysis dates back to the late 1960s [59]. Over the years, additional tools
have been researched. For instance Tjaden et al. [87] propose instruction-level
parallelism (ILP) estimation. They took into account: memory accesses, data
registers, operand availability, and procedural dependency. Later, Theobald et
al. [88] improved the ILP estimation by analyzing instruction traces and including
the effects of various memory reuse policies and long-latency operations.
Then, in 1982 Graham et al. [89] introduced gprof, an improvement of the existing
Unix-prof tool. Its novelty was the utilization of a call graph to analyze both the
time spent on methods and their impact. Gprof generated an overhead of about
30% compared to the normal execution.
Hoste et al. [90,91] developed a tool based on ATOM/Pin [92]. This tool performs
code instrumentation based on which it can extract ISA-dependent metrics.
Caparros et al. [93] proposed a tool that profiles the binary execution dynamically.
They estimated: instruction-level parallelism, thread-level parallelism, potential
data-level parallelism, and inter-task data movement. However, this tool was
limited by the influence of the architecture characteristics, and they could analyze
only single-thread code.
Another work was done by Ferdman et al. [94], using x86 architectures, they tried
to analyze a benchmark suite for the cloud. They showed, for certain applications,
an over-provisioning of the memory bandwidth and low memory-level parallelism.
However, they used hardware performance counters, and this limits the analysis
to the employed hardware, especially for micro-architecture features such as cache
size, issue width, etc.
Nowadays, a large number of commercial target-dependent tools are available.
One of the most common ones [95] is included in Linux OS, and it is called perf.
Using the available performance counters perf can extract interesting information,
e.g., cache miss, rate and CPU utilization. The nvprof (NVIDIA) profiling
tool [62] is specialized on GPU workload analysis. It can extract a timeline
of CUDA-related activities on both CPU and GPU, including kernel execution,
memory transfers, CUDA API calls, and events, or metrics for CUDA kernels.
Also, Intel has developed some interesting analysis tools; such as 1) Intel VTune
Amplifier [64] that can extract a wide range of analysis metrics about CPU,
Memory, and GPU; this is based on the work of Yasin et al. [96]. It is easy
to use, and the overhead added to the application is very low; 2) Intel Advisor
Roofline [97] that can plot a roofline model of the analyzed application allowing
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memory and compute boundedness analysis.

2.3 Radio-astronomical imaging
An important use case is represented by radio-astronomical imaging. Indeed,
applications of this field are fundamental to answer important questions such as:
how do galaxies and planets form? are we alone in the universe?

These problems have high-performance requirements. For instance, the Square
Kilometre Array (SKA) radio-telescope will be the largest radio-telescope in the
world hosted in Australia and South Africa. The first construction phase of SKA
will finish before the 2030. The processing facilities that the SKA consortium is
planning to build for the low and mid frequencies consist of large Science Data
Processors. Each of them has a peak performance in the order of 6.50 PFLOP/s,
and a thermal design power in the order of 125 MW [4].
We introduce interferometry and imaging in Section 2.3.1. Then we highlight
some details about the Image Domain Gridding (see Section 2.3.2 and Deconvo-
lution algorithms (see Section 2.3.3.

2.3.1 Interferometry and Imaging
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Figure 2.9: Radio astronomy image acquisition: the incoming radio signals are
digitized and then correlated and calibrated before the imaging step is executed.
We focus on the imaging step, which is highlighted in red.

A radio telescope detects electromagnetic waves that originate from radio sources
in the universe. The signals are used, among other things, to construct a map
of the sky containing the positions, intensity, and polarization of the sources.
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Radio telescopes such as LOFAR (Low Frequency ARray) [98] and SKA1-Low
[5] are comprised of many (small) dipole antennas that measure two orthogonal
polarizations of the radio sources, while other radio telescopes, such as the VLA
[99], MeerKAT [100] and SKA1-Mid [101], are based on an array of dishes. As
shown in Figure 2.9, a station consists of multiple antennas, for which the signals
for every distinct frequency channel are combined. The signals of a pair of stations
(called a baseline) are multiplied and integrated (correlation ) for a short period
of time (in the order of seconds), thus producing a single visibility (a 2x2 matrix).
The data that the telescope produces (the visibilities) is, therefore, a three-
dimensional matrix (with indices number of baselines, frequency channels and
correlations). The relation between visibilities and sky brightness is given by a
measurement equation; see [102] for complete details.
The visibilities are first calibrated (®) and next used to reconstruct the sky
brightness in the observation direction using an imaging step (¯) [103].
This thesis mainly focuses on ¯. The imaging step (see Figure 2.10) starts with
an empty sky model and it consists of an iterative process: 1) the inversion step
is used to produce a dirty image; 2) one or more bright sources are detected in
this image by a deconvolution algorithm such as CLEAN (see also Section 2.3.3);
3) a model image is created, which contains all of the sources in the sky model;
4) visibilities corresponding to this model image are predicted; 5) subtracting
the predicted visibilities from the measured (and calibrated) visibilities yields
residual visibilities. This process subtracts strong sources from the mea-
surements, which mask the more interesting weak sources. This step is repeated
until the sky model converges. Finally, the sky model is used to create the sky
image.
The inversion and prediction steps comprise of 2D FFT and a gridding or
degridding step. The gridding and degridding steps are typically the most
compute-intensive image processing steps. To attain high-quality sky images,
they need to correct for Direction-Independent Effects (the curvature of the earth,
W-Term correction) and Direction-Dependent Effects (such as ionospheric effects,
A-Term correction). The W-Term can be corrected by applying a convolution ker-
nel to every visibility. The required convolution kernel could be huge, depending
on parameters such as the field-of-view and distance between receivers. A-Term
correction requires these convolution kernels to be different for every receiver and
change over time according to changes in the Direction-Independent effects. These
properties make imaging with correction for W-Terms and A-Terms particularly
challenging.

2.3.2 Image-Domain Gridding
Image-Domaing Gridding (IDG) is a state-of-the-art algorithm for both gridding
and degridding [105]. IDG performs both W-correction and A-correction in the
image domain, avoiding large convolutions functions. The algorithm performs
gridding and degridding using subgrids, which represent low-resolution sky im-
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Figure 2.10: High-level schematic of the radio-astronomical imaging step. The
three main phases inversion, prediction and deconvolution (or CLEAN), are
highlighted in red. The critical computations are typically the inversion and
the prediction steps, which include Gridding/Degridding and 2D Fast Fourier
Transforms. We included the point-spread-function (PSF) computation, which
is an inversion step with an all-ones matrix of visibilities and it is used during
the CLEAN.

ages for a subset of visibilities. This approach exposes a lot of parallelism (subgrids
can be processed in parallel), which makes it highly efficient on parallel hardware
such as GPUs [4]. In IDG, gridding comprises three steps: 1) visibilities are
gridded onto subgrids; 2) subgrids are Fourier transformed; 3) subgrids are added
to the larger final grid. IDG degridding comprises these steps in reverse order.
Refer to [4, 105] for all the details on this algorithm and a formal derivation.
Image-Domain Gridding performs much better [106] than classical gridding/de-
gridding algorithms, such as W-projection [107] or AW-projection [108]. It also
employs W-terms to solve artifacts around sources away from the phase center
in wide-field imaging. Moreover, IDG image quality is higher than W-projection
because IDG, like AW-projection, corrects for DDEs (direction-dependent effects,
also called the A-terms), but the computational costs for such DDE corrections are
much lower for IDG than for AW-projection [4]. IDG also has higher per-visibility
accuracy compared to the other algorithms [105].

2.3.3 Deconvolution
The objective of a CLEAN (or deconvolution) algorithm is to detect sky sources
by iteratively finding the brightest peaks in a dirty image and fitting a sky model.
In Figure 2.12 we show an example of a dirty image and the corresponding image
after a deconvolution algorithm has been applied. The CLEAN image shows lower
noise compared to the dirty image.
Many CLEAN algorithms have been proposed in the literature. We briefly de-
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Figure 2.11: Gridding high-level representation. It consists of multiple gridder
computations (subgrid computation and tapering) and FFTs that process the input
visibilities into subgrids. Then the subgrids are processed by the adder to obtain
a grid. The gridder and FFT, red boxes, are the focus of this and the related
work [104].

scribe the commonly used CLEAN algorithms in radio-astronomical imaging:

Högbom: it is the simplest CLEAN algorithm. After the dirty image is generated
from the imaging step (gridding and IFFT), the Högbom CLEAN tries to remove
the noise in the image. This is done iteratively, looking for the maximum value
in the image. Then, the algorithm subtracts the Point Spread Function (PSF),
which is a function dependent on the telescope used. It is computed like the dirty
image using as input a Visibility array with values equal to 1, multiplied by a gain
factor. After a certain number of iterations or when a certain threshold (e.g., 3σ
of the standard deviation) is reached the algorithm stops. This algorithm does
not include the prediction step.

Clark [109]: it is an improvement of the previously described algorithm, adds a
feedback loop and tries to remove alias errors. It is possible to distinguish between
major and minor iterations in this case. The minor iterations are represented
by the peak search, similar to Högbom (the CLEAN box in Figure 2.10). Then,
the model image is Fourier transformed and subtracted from the dirty image.
This is the so-called major iteration.

Cotton-Schwab [110] and Multiscale [111, 112]: are the most employed
and modern CLEAN algorithms, they have in common the prediction phase, thus
including the degridding algorithm. Here the subtraction is done at the visibilities
level reducing the pixelation error. More precisely, for these algorithms, a major
iteration consists of an entire iteration to transform the data from the visibility
domain to the image domain (inversion). The major iterations are executed until a
threshold is reached, e.g., until 80% of the flux (which is a power density measure)
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Figure 2.12: Comparison between dirty image (left) and CLEAN image (right)
applying Cotton-Schwab algorithm. The CLEAN image has reduced noise, e.g.
rotation lines around the image(visible especially at the corners).

is removed from the dirty image during the minor iterations. The Multiscale
algorithm operates on a set of residual images obtained by convolving the dirty
image with different scale sizes. The peak subtraction step is performed on all
the scaled imaged, and only the subtracted components are stored in the CLEAN
component table. After being scaled, positioned, and convolved, the final image
is obtained by adding the components. It decreases the effects of the pedestal of
uncleaned flux and strong sidelobes present in the dirty beam (or Point-Spread
Function), which are referred to as “clean bow”, around bright resolved structures
and has better convergence properties [113].
We employ in our analysis work, presented in Chapter 6, the Cotton-Schwab
algorithm, which is available in the state-of-the-art imager WSClean [114].
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3
Platform-Independent Software Analysis

Application characterization is typically employed to determinate application
bottlenecks and understand application features to select which kernel must be
optimized and the most suitable optimization or hardware. Thus, profiling appli-
cations is a critical task to reach the goal of high performance and high energy
efficiency. Emerging computing architectures such as near-memory computing
(NMC) promise high performance for specific applications by reducing the data
movement between CPU and memory. However, detecting such applications is
not a trivial task.
This chapter presents an extension of the Platform-Independent Software Analysis
(PISA) tool based on the LLVM framwork (see Section 3.1) with NMC related
metrics such as memory entropy, spatial locality, data-level, and basic-block-level
parallelism that are described in Section 3.2. By profiling a set of representative
applications and correlating the metrics with the application’s performance on a
simulated NMC system, we verify the importance of those metrics. We demon-
strate which metrics help identify applications suitable for NMC architectures (see
Section 3.3). Finally, we present in Section 3.4 the related work and in Section
3.5 the conclusions.

This chapter is based on: S. Corda et al., "Memory and Parallelism Analysis Using a
Platform-Independent Approach", SCOPES 2019 and S.Corda et al., "Platform Independent
Software Analysis for Near Memory Computing", DSD 2019
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3.1 Platform-Independent Software Analysis
Especially for emerging technologies like near-memory computing it is crucial to
understand the intrisic behavior of applications. This can be done with hardware-
agnostic profiling tools. Therefore, we here we present the LLVM framework in
Section 3.1.1 and based on top of it PISA, the Platform-Independent Software
Analysis tool (Section 3.1.2).

3.1.1 LLVM framework
The LLVM (Low Level Virtual machine) compiler framework is a collection of
tools, libraries, and header files to perform transparent, lifelong program analysis
and transformations for arbitrary software. LLVM mainly consists into two parts:
a code representation with helfpul features for analysis and transformation; and
a compiler design that makes use of the mentioned above representation [68].
LLVM Intermediate Representation The LLVM core uses an intermediate
representation (IR) to represent the application code in a generic way. LLVM’s
IR is generated through a front-end from the application source code. Then, it
can be used to perform analyses or optimizations using the opt tool. LLVM’s
IR can be executed through an interpreter or can be translated into a target-
specific executable binary. Fundamental properties of LLVM’s IR are: 1) it is
independent of the source language and the target architecture; 2) it is a low-level
and RISC-like instruction set allowing to have an unlimited number of virtual
registers in static single assignment (SSA) form. These features are essential
to simulate an ideal machine [40] that consists of a Von-Neumann system with
unlimited resources, such as cores, registers, or in other words when the goal is
a perfect machine without the traditional hardware limitations. LLVM’s IR has
a hierarchical structure: a module that represents the application and contains
functions and global variables; a function that is a set of basic-blocks; a basic-block
that consists of instructions and represents a single entry and single exit section
of code.
Compiler framework LLVM also includes a compiler framework, which provides
its own compiler called clang and some utilities. More precisely, this compiler
allows sophisticated optimization at different stages, e.g., runtime or idle, because
it preserves the application’s LLVM representation during its lifetime. Moreover,
among other things, the compiler can generate efficient binaries offline and support
custom user-based profiling optimization at different stages [68].

3.1.2 PISA Tool
PISA’s architecture is shown in Figure 3.1. Initially, application’s source code,
e.g. C/C++ code, is translated into the LLVM’s IR. Then, mem2reg optimization
is used to obtain the SSA format. This is done by removing alloca (instruction
that allocates memory on the stack frame of the currently executing function),
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instructions for non-aliased scalar variables. In this way, these variables are put in
virtual registers. PISA exploits the opt tool to perform LLVM’s IR optimizations
and to perform the instrumentation process using an LLVM pass. This process is
done by inserting calls to the external analysis library throughout the application’s
IR. The last step consists of a linking process that generates a native executable.
On running this executable, we can obtain analysis results for specified metrics
in JSON format. PISA can extract metrics such as instruction-level parallelism,
data reuse distance, and instruction mix.
The analysis reconstructs and analyzes the program’s instruction flow. This
is possible because the analysis library is aware of the single entry and exit
point for each basic-block. All the instructions contained in the basic-block are
analyzed using the external library methods. Only when a load/store or a call is
encountered the execution is interrupted in order to allow a dynamic analysis. In
case of load/store, the analysis is restarted by an instrumentation function after
the load/store instruction. In case of a call, the current state of the basic-block
is saved and then PISA continues analyzing the basic-blocks pointed by the call.

analysis 
library

LLVM IR 
SSA format

LLVM
instrumented

int main () { 
int i, n;

hw-agnostic 
propertiesbinary code

clang 
mem2reg

opt 
instrum.

LLVM libs

linking process

PISA

Figure 3.1: Overview of the Platform-Independent Software Analysis Tool
(gray box). The application code is converted into LLVM IR format and then
instrumented with the opt tool. Then, it is linked with the custom PISA and the
LLVM libraries into a hardware-agnostic binary code. This binary code can be
run to obtain hardware-independent application properties. The thesis contributes
in extending the analysis library (green box) to extract parallelism and memory
metrics (yellow box).

A useful feature of PISA is the support of the MPI and OpenMP standards
allowing the analysis of multi-threaded and multi-process applications. In multi-
threaded applications, PISA analyzes each thread individually, allocating separate
data structures for each of them and distinguishing them by the thread ID because
the address space is shared. For multi-process applications, this is not needed be-
cause each process has its private space for data. The overhead of this tool depends
on the analysis performed. On average the execution-time of the instrumented
code is increased by two to three orders of magnitude in comparison to the non-
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instrumented code. On the other hand, since the analysis is target-independent,
this has to be performed only once per application and dataset.

Table 3.1: Main PISA’s characterization metrics with description.

Metric Description
Instruction Mix Instruction count for each instruction category
Instruction-level parallelism Average number of instructions that be can run in parallel
Branch entropy The measure of randomness of branch outcomes
Data temporal reuse Number of unique memory accesses between two

accesses to the same location
MPI communications Data volume exchanged by MPI pairs

3.2 Metrics
Memory and parallelism metrics are essential to characterize applications for near-
memory computing systems. In this section we present the metrics we integrated
into PISA. We focus on the memory behaviour, which is essential to decide if an
application should be accelerated with a NMC architecture, and on the parallelism
behaviour, which is crucial to decide if a specific parallel architecture should be
integrated into an NMC system.

3.2.1 Memory entropy
The first metric related to memory access behavior that we added is the memory
entropy. The memory entropy measures the randomness of the memory addresses
accessed. If the memory entropy is high, which typically lead to a higher cache
miss ratio, the application may benefit from 3D-stacked memory because of the
volume of data moved from the main memory to the caches. In information
theory, Shannon’s formula [115] is used to capture entropy. We embed in PISA,
the formula defined by Yen et al. [116] that applies Shannon’s definition to memory
addresses:

Memory_entropy = −
2n∑
i=1

p̂(xi)log2p̂(xi) (3.1)

where xi is a n-bit random variable, p̂(xi) is the occurrence probability for the
value xi and 2n is the number of values that xi can take. p̂(xi) is defined by:

p̂(xi) = 1
d

d∑
j=1

I(aj = xi) (3.2)
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where:

I(aj = xi) = 1 if (aj = xi), 0 otherwise, and 0log0 = 0 (3.3)

In the last formula the addresses are represented as {aj}dj=1, where d is the number
of different addresses accessed during the execution. Each address is in the range
[0, 2n−1], where n is the length of the address in bits. If every possible address has
the same occurrence probability the entropy is n; if only one address is accessed
the entropy is 0. Otherwise the entropy is within 0 and n. The memory entropy
metric does not distinguish whether the accesses contain sequential patterns or
random accesses. Therefore we need additional metrics, like spatial locality.

3.2.2 Data reuse distance for multiple cache-line size and
spatial locality

Data reuse distance or data temporal reuse (DTR) is a helpful metric to detect
cache inefficiencies. The DTR of an address is the number of unique addresses
accessed since the last reference of the requested data. This metric is present in the
default framework. However, the tool could compute it only for a fixed cache line
size, which represents the address granularity. We extend the DTR computation
and compute it starting from the word size, such as 32 bit for single-precision
floating point, to the value selected by the user. This extends the available analysis
opportunities e.g. we use it to compute the spatial locality metric.
Spatial locality, which measures the probability of accessing nearby memory
locations, can be derived from DTR. We extend PISA with the spatial locality
score inspired by Gu et al. [117]. The key idea behind this spatial locality score
is to detect a reduction in DTR when doubling the cache line size. To estimate
the spatial locality in a program two elements are fundamental: 1) histograms
of data reuse distance for different cache line sizes, 2) distribution maps to keep
track of changes in DTR for each access doubling the cache line size.

∞ ∞ ∞ 0 1 2 1 1 0
Memory Accesses
Data Reuse Distance

A B C C B AA B A <R,P>
<[0,1), [1,2), [2,4), ...>

<0.2,    0.3,    0.1, ...>
p0

[d0, d1)

Figure 3.2: Data Reuse Distance histogram illustration: on the left part, we
show memory accesses (A, B, and C are addresses), and on top of them, we
highlight the Data Reuse Distance values. In the beginning, we have cold misses
represented by an infinity symbol. On the right, we have the Data Reuse Distance
histogram definition with the pair <R, P>, where R is a set of bin ranges, and P
is a set of probabilities.
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Histograms are used to compute the DTR distribution probability for different
cache-line sizes. In [117] the reuse signature has been defined as a pair < R,P >
(see Figure 3.2), where R is a series of consecutive DTR ranges of bins, represented
as: ri = [di, di+1). These bins are a logarithmic progression defined as: di+1 =
2di(i ≥ 0). P is the distribution probabilities pi of the bin ri. This reuse signature
is used later to normalize the results.
The next step consists of building a distribution map. This map keeps track
of each change in the DTR for every access. The distribution map has i rows
representing the bins using a cache line size b and j columns representing the bins
using a doubled cache line size 2b. Each cell is the probability pij of the bin i
using a cache line size b to change in a bin j using a cache line size 2b. Differently
from [117] we compute the sum of the cells in a row where i < j. as shown in
Equation 3.4. We do that because we want to express all the changes in data
reuse distance.

SLQ(i) =
∑

j=0, ..., j<i
pij (3.4)

To compute the spatial locality score related to a pair of cache line sizes <
b, 2b > we first compute the absolute values of the weighted sum that uses the
probabilities pi included in the reuse signature and then use the formula proposed
by [117] to calculate the total score, which is the logarithmic weighted sum of
absolute values:

SLQ =
∑

all b |
∑

all i SLQ
b(i)pbi |2−b∑

all b 2−b (3.5)

The weighted score gives more importance to lower cache line sizes pairs. This can
be interpreted as higher relevance of these lower pairs because bigger cache line
sizes bring massive data transfers. Usually, application with low spatial locality
perform very bad on traditional systems with cache hierarchies because a small
portion of data is utilized compared to the data loaded from the main memory to
the caches.

3.2.3 Data level parallelism
Data-level parallelism (DLP) measures the average length of vector instructions
that is used to optimize a program. DLP could be interesting for NMC when
employing specific SIMD processing units in the logic layer of the 3D-stacked
memory.
PISA can extract the amount of instruction-level parallelism for all the instruc-
tions (see Figure 3.3, CFG on the left) and additionally per instruction category
such as control, memory, etc. (see Figure 3.3, CFG in the center). As shown in
the CFG on the right in Figure 3.3, we extract the ILP score per opcode and
call it as ILPspecialized,opcode where opcode can be load, store, add, etc. This
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metric represents the number of instructions with the same opcode that could
run in parallel. Next, we compute the weighted average value for DLP using
the weighted sum over all opcodes of ILPspecialized,opcode. The weights are the
frequency of the opcodes calculated by dividing the number of instructions per
code with the number of instructions.

DLPavg =
∑

opcode
ILPspecialized,opcode

#instructionsopcode

#instructions (3.6)

As the register allocation step is not performed at the level of intermediate rep-
resentation, it is not possible to take into account the register consecutiveness in
this score. However, we want to show the optimization opportunities for compilers
distinguishing between consecutiveness of load/store instruction addresses. We
represent this with two scores: DLP1 without address consecutiveness; DLP2 with
addresses consecutiveness into account. To compute them we use the previous
formula changing the ILPspecialized,opcode value for loads and stores.
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Figure 3.3: Usually to compute ILP the control flow graph (CFG) is used,
left side. The CFG in the center is used to compute the ILP per type of
instruction. On the right our per opcode specialized CFG, which we label with
ILPspecialized,opcode. The latter is used to compute the DLPavg with Equation 3.6.

3.2.4 Basic-block level parallelism
A basic-block is the smallest component in the LLVM’s IR that can be considered
as a potential parallelizable task. Basic-block level parallelism (BBLP) is a
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potential metric for NMC because it can estimate the maximum amount of task
level parallelism in the application. The parallel tasks can be offloaded to multiple
compute units located on the logic layer of a 3D-stacked memory.
To estimate BBLP in a workload, we develop a metric similar to ILP and DLP.
It is based on the assumption that a basic-block, which is a set of instructions,
can only be executed sequentially. Since loop index count could put an artificially
tight constraint on the parallelism, we assume two different basic-block scheduling
approaches (see Figure 3.4): 1) all the dependencies between basic-block are con-
sidered; 2) we consider a smart scheduling, assuming a compiler that can optimize
loop index update dependencies. The difference between the two approaches can
give an idea, as in the DLP case, of the optimization opportunities for compilers.
We compute the two scores derived from the two scheduling options using the
following formula:

BBLPavg = #instructions
MaxIssueCycleBBLP

, (3.7)

where MaxIssueCycleBBLP represents the cycle of the last executed instruc-
tion using the proposed scheduling approaches (red numbers in Figure 3.4.b,.c).
#instructions represent the total number of instructions (see Figure 3.4.a).
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Figure 3.4: BBLP/PBBLP methodology: a) example of a LLVM dynamic trace;
b) real scheduling for BBLP computation taking in account all dependencies; c)
simplified scheduling for BBLP computation not taking in account dependencies
such as loop index update (in a) dependency between instruction 15 and 17); d)
PBBLP values for each basic block (second and third block are a repeated basic
block, since there is only a loop index dependecy, the PBBLP is equal to 2).
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We also aim to estimate the presence of data parallel loops. Data parallel loops
consist of basic-blocks that are iterated without any dependencies among their
instances. A fast and straightforward estimation can be done by assigning a value
to each basic-block between 1 and the number of instances. When a basic-block
has only one instance or all its instances have dependencies among them the score
is 1. Instead, when all its instances don’t have dependencies among them the value
is maximal and equal to the number of instances. In practice, the score is within
the range described above. Other assumptions we made are: skip index update
dependencies and omit basic-blocks that are used only for index update.
After assigning a score to each basic-block (PBBLPBB), we compute the weighted
average value for PBBLP using the weighted sum over all scores (PBBLPBB).
The weights are the frequency of the basic-block instances calculated by dividing
the number of instances per basic-block with the number of total instances.

PBBLPavg =
∑
BB

PBBLPBB
#instancesBB
#instancestotal

(3.8)

Since this metric is an estimation we call it as potential basic-block level paral-
lelism (PBBLP).

3.3 Results
We start by describing the system employed to evaluate the analysis result in in
Section 3.3.1, and the target applications, see Section 3.3.2. The tool described in
the previous Section 3.1 is used to extract intrinsic application metrics in Section
3.3.3. Then, our next goal is to correlate the gathered metrics with performance
on a real system. Therefore, we show in Section 3.9 the correlation between the
extracted application metrics and the performance on a NMC system.

3.3.1 System in use
To validate the relevance of our NMC specific metrics, we characterize the rep-
resentative benchmarks using PISA-NMC and extract the numbers for memory
entropy, spatial locality, data level parallelism, and basic-block level parallelism.
We apply principal component analysis (PCA) [118], on the collected metrics to
make it more understandable by reducing its dimensionality [91]. Next, we run
the same benchmarks on an NMC system using a simulator and measure the
improvement in energy-delay product and correlate this data with the output of
PCA.
Figure 3.5 depicts the reference computing platform that we consider in this work.
We run the applications both on a traditional Von-Neumann Architecture using
the latest IBM Power 9 [119] and on an NMC system based on hybrid memory
cube (HMC). HMC memory is divided into several vertical DRAM partitions,
called vaults, each with its own DRAM controller in the logic layer. In this work,
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Figure 3.5: High-level overview of the evaluation system. We directly execute
the application kernels (dark blue boxes) on the IBM Power 9 and we evaluate the
NMC performance on a NMC System Simulator (Ramulator).

we model NMC PEs as in-order, single-issue cores with a private cache as proposed
in previous work [120,121]. Table 3.2 lists the details of the host and NMC system
used in our experiments. We extract the power consumption with AMESTER1

tool on Power 9. We simulate the NMC system on an extended version of the
memory simulator Ramulator [77] including the processing units. Each processing
unit is assigned to a vault and operates on the data assigned to that vault. We
collect dynamic execution traces of the instrumented code with a Pin tool. We
feed the acquired traces to Ramulator.

Table 3.2: Host and NMC System Characteristics.

Architecture CPU Used Cache per core Memory
IBM
Power9
(Host)

4 cores
(SMT4)
@ 2.3 GHz

L1 32 KB
L2 256 KB
L3 10 MB

DDR4, 32 GB
RDIMM @
2.7 GHz

NMC

32 single-
issue in-order
cores @
1.25 GHz

L1-I/D 2-way
2 cache lines
64B per cache
line

HMC, 4GB
8 stacked-layers,
32 vaults, 16-bit
full duplex and
SerDes I/O link
@ 15 Gbps

1https://github.com/open-power/amester
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3.3.2 Applications evaluation on NMC system
We compare our metrics to the performance achieved by running the applications
on an NMC system. We perform a single-thread analysis to estimate our metrics
and then evaluate the execution time on the considered architectures. Table 3.3
lists the parameter levels for the evaluated applications on the Power 9 and NMC
system. We consider only single-thread analysis here to avoid the side effects of
a multi-threaded analysis in metrics such as memory entropy and spatial locality,
e.g., averaging the numbers from multiple threads tend to mask the true behavior
of applications. Since the analysis trend is similar for different dataset sizes
and the memory analysis is highly time-consuming we use smaller dataset than
the one simulated for the NMC system in line with similar work on application
characterization [117, 122]. Figure 3.7 shows the energy-delay product (EDP)
ratio between the IBM Power 9 and the NMC system we simulated. We use
EDP as our major metric of reference in this analysis because both energy and
performance are critical criteria for evaluating NMC suitability. Applications with
EDP reduction less than 1 are not suitable for NMC.

Table 3.3: Selected applications and parameters from the Polybench and Rodinia
benchmark suites for the evaluation on the NMC system.

Applications Parameters
Benchmarks Kernels Param. Values

Polybench atax, gemver, gesummv dimensions 8000
cholesky, gramschmidt,
lu, mvt, syrk, trmm dimensions 2000

Rodinia
bfs nodes 1.0m
bp layer size 1.1m
kmeans data size 819k

3.3.3 Hardware agnostic characterization
We present the the characterization results of selected applications from Poly-
Bench [123] and Rodinia [124] benchmarks (see Figure 3.6) employing the
proposed metrics.

Memory entropy: in Figure 3.6.a, is strictly related to the dimension of the
address space accessed by a workload. Indeed, applications with larger address
space have higher entropy because they are accessing many different addresses.
We also plot memory entropy changes at different granularity cutting the least-
significant bits (LSBs) of the address to represent larger data access granularity.
Furthermore, we highlight in Rodinia’s applications the cut of 2 LSBs because they
are accessing integer (4Byte locations). We notice that applications like bp and
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gramschmidt have higher values of entropy and they should benefit from NMC
architectures. Contrariwise, the other applications have similar values except for
cholesky, bfs and kmeans.
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Figure 3.6: Application characterization results:(a) Memory Entropy; (b)
Spatial Locality; (c) Parallelism.

Spatial Locality: we compute this metric related to memory behavior, we show
it in Figure 3.6.b. As expected, we can distinguish different behaviors among
the benchmarks. bp and gramschmidth show an interesting behavior with high
entropy and low spatial locality. For instance, in gramschmidt accesses to the
matrix are done by column and diagonally. However, the matrix allocation is
done in a row-major order. These applications should be good candidates for
NMC because they use a large address space with low locality. An opposite trend
is detected for cholesky, where the entropy is one of the lowest value and the
spatial locality is the highest value.
A considerable amount of applications show a spatial locality lower than 0.25 and
they may benefit from NMC systems. However, applications with high spatial
locality like cholesky could potentially also benefit from NMC mostly when
increasing the data-set and consequently moving more data off-chip and exploiting
SIMD architectures.
Parallelism: Figure 3.6.c shows the different parallelism characterization of
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workloads. As expected in the Berkeley dwarfs for the data-level parallelism
analysis [125], matrix multiplication based algorithms show the highest values.
Moreover, the difference between the two proposed DLP scores seems to be very
limited. Only small variations can be noticed, for instance in trmm and syrk.
Here, the difference is due to loads/stores with non-sequential accesses and could
be improved by a compiler exploiting data mapping techniques. Instead the BBLP
scores show a significant difference for cholesky and limited differences for bfs
and syrk. These results highlight possible parallelism optimizations that can be
performed by compilers.
Finally, the PBBLP score tries to highlight the presence of data parallel loops and
gives an estimation of how much parallelism can be achieved using vectorization or
loop unrolling strategies. Applications with high level of parallelism could benefit
from NMC systems that provided multicores or SIMD architectures in the logic
layer on top of the 3D-stacked memory.

3.3.4 Correlation between NMC Metrics and NMC Perfor-
mance

Spatial locality in Figure 3.6.b provides insights on which application could be
better for the NMC system we considered. Applications that show the lowest
spatial locality such as gramschmidt, bp, bfs show a considerable EDP improve-
ment (see Figure 3.7) using the NMC system. Contrariwise also cholesky, that
has the highest spatial locality among the chosen applications, benefits from the
NMC architecture.
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Figure 3.7: Energy-delay product improvement on the NMC system in a red-
to-green scale: red applications do not benefit from NMC acceleration, while the
green ones perform better with this technology.

Memory entropy in Figure 3.6.a gives similar insights. For instance, applications
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with the highest entropy such as gramschmidth and bp shows benefit executing on
an NMC system. However, also applications with low entropy seem to benefit from
NMC. Parallelism analysis in Figure 3.6.c highlights that most of the applications
that benefit from NMC have the lowest values for BBLP1 and a good level of
DLP. However, there are some exceptions such as lu, that has the lowest BBLP
values, and bfs that has the lowest DLP values. The above shows that a single
metric can not explain NMC appropriateness. To get more insights into what
combinations of metrics can predict NMC applicability, we apply PCA to our
metric results.
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Figure 3.8: The mean of the memory entropy differences: this additional metric
shows high values for those applications that do not benefit from NMC acceleration.

For this, we derive another metric from the memory entropy exploiting the gran-
ularity. For each application, we first compute the difference between each pair of
consecutive memory entropy values with different granularities (see Figure 3.6.a,
larger granularity represents larger cache line size). Then, we compute the average
of these values that represents a spatial locality variation when increasing the
cache line size. Figure 3.8 shows this metric. This metric compared to the EDP
values shows that the major part of the applications not suitable for NMC has
the highest values.

Figure 3.9 shows the Principal Component Analysis (PCA) applied to the most
promising subset of presented metrics. The PCA is used to detect the importance
(arrow lenght) and the influence (arrow direction) over the new axes, the so-
called principal components. We use 4 input features for the PCA: BBLP1,
PBBLP , entropy_diff_mem (the value proposed above) and spat_8B_16B
(spatial locality doubling the cache line size from 8B to 16B). We highlight that
all the applications that benefit from Power9 are in the II quadrant (top-left)
except for lu that is in the III quadrant. In its code diagonal matrix accesses
are present and they should be critical for traditional CPUs. It could be an
NMC application candidate employing a larger dataset size. The applications
that benefits from NMC are in the other quadrants. In particular bfs and bp
seem having similar characteristic and are located in the I quadrant. Similarly

42



CHAPTER 3. PLATFORM-INDEPENDENT SOFTWARE ANALYSIS

gramschmidt and kmeans located in the IV quadrant. These metrics show good
potential in discriminating NMC applications.
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Figure 3.9: Principal Component Analysis using the added metrics. Blue arrows
quantify the contribution and direction to the PCs. Most of the applications that
do not benefit from NMC are constrained in the IV quadrant.

3.4 Related Work
Considerable effort has been already spent in realizing platform independent
characterization tools. Cabezas [85] proposed a tool that can extract different
features from workloads but has many limitations: the compiler community no
longer supports the LLVM interpreter, and the target applications should be single
threaded. Another tool has been developed by Shao et al. [22]. It can extract
interesting metrics such as memory entropy and branch entropy. However, this
tool has some limitations: it is based on the IDJIT IR (just-in-time compilation)
that has compatibility problems with OpenMP and MPI, thus being limited
to sequential applications. The state-of-the-art tool (called PISA) in workload
characterization was presented by Anghel et al. [23]. PISA can analyze multi-
threaded applications supporting the OpenMP and the MPI standards. PISA can
extract the metrics such as instruction mix, branch entropy, data reuse distance,
etc. We extended PISA with metrics directed towards NMC such as memory
entropy and spatial locality, data-level and basic-block-level parallelism.
Existing studies primarily rely on hardware performance counters available in the
modern processors to understand the memory access behavior of the applications
and identify the kernels suitable for offload to NMC architectures [53,71,126–128].
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Others have used a dynamic binary instrumentation framework like Pin [120] or
estimation at the compile time [129,130] for the same purpose. PISA-NMC showed
a different approach to workload characterization applied to NMC. We used a
target-agnostic workload characterization technique to extract metrics directed
towards NMC. Then, we used PCA and NMC simulation to show the relevance
of the metrics proposed.

NAPEL: Assessing performance on NMC systems is complex due to the lack of
available systems. Therefore, simulators are employed to determine the perfor-
mance and energy consumption of NMC designs. However, simulation is often
slow. In [21], we embed PISA in NAPEL, a high-level performance, and energy
framework for NMC architectures. NAPEL (see Figure 3.10) mainly consists of
3 a random forest model trained with 2 microarchitectural features (extracted
from an NMC simulator) and 1 hardware-agnostic application features (PISA).
Performance of unseen applications are predicted by using B the trained model
fed with A hardware-independent analysis metrics.

Figure 3.10: NAPEL consists of two main phases: model training and model
prediction. In the first phase (top), the application code is instrumented.
Then hardware-agnostic features (1) and NMC simulation characteristics (2) are
collected. A machine learning model is finally trained with the extracted data.
An unseen application (bottom) is instrumented and analyzed with PISA in the
model prediction. The model employs the independent hardware analysis to predict
application performance [21].

NAPEL can provide early design space exploration (DSE) much faster than a
state-of-the-art NMC simulator. It can also accurately predict performance and
energy estimation with an average error of 8.5% and 11.6%.
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3.5 Summary and conclusions
Emerging computing architectures in their first stages of development, such as
near-memory computing (NMC) lack proper tools for specialized workload pro-
filing. In this scope, we present and extended version of PISA, a state-of-the-art
application characterization tool, with NMC related metrics. Particularly, we
focus on analyzing the memory accesses and parallelism behaviors: data-level
parallelism, basic-block level parallelism, memory entropy, and spatial locality.
By correlating the principal components of metrics as mentioned above with the
energy-delay product of benchmark kernels on an NMC system, we show that
PISA-NMC can help identify the kernels that can benefit from NMC in a platform-
agnostic manner.

Limitations: Platform independent software analysis can be an appealing method
to extract application features and accurately predict performance for emerging
computing systems, e.g., near-memory computing [21]. However, this analysis
methodology is typically time-consuming: based on the dataset size, 2 to 3
orders of magnitude slower than the plain application execution time. This
heavily limits the design space exploration. Indeed, as shown in Figure 3.10
in the prediction model, NAPEL employs PISA, which, as already mentioned,
can be enormously time-consuming, although very precise in predicting energy
delay product. A solution to improve this time consuming procedure is to employ
hardware-dependent analysis in the ensemble machine learning model. In Chapter
4, we present NMPO, a high-level framework capable of predicting NMC offload-
ing suitability by relying on hardware-dependent feature demonstrating how this
approach is faster than the one shown in NAPEL. Indeed, NMPO has a similar
structure to NAPEL, but it uses hardware-dependent analysis in the prediction
loop. The latter analysis has a limited overhead compared to PISA, making the
prediction step much faster. In other words, removing PISA from the prediction
loop drastically improve the prediction model performance.
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Ensemble machine learning for NMC

offloading

Real-world applications have high performance and energy efficiency require-
ments. It is crucial to understand how these can be optimized by e.g., exploiting
accelerators and new computational paradigms. Often workloads are bottlenecked
by the data movement between the compute units and the main memory. Near-
memory computing (NMC), a modern data-centric computational paradigm, can
alleviate these bottlenecks, thereby improving the performance of applications.
The lack of NMC system availability makes simulators the primary evaluation tool
for performance estimation. This chapter proposes Near-Memory computing Pro-
filing and Offloading (NMPO), a high-level framework capable of predicting NMC
offloading suitability employing an ensemble machine learning model. NMPO
predicts NMC suitability with an accuracy of 85.6% and, compared to prior
works, can reduce the prediction time by using hardware-dependent applications
features by up to 3 order of magnitude. This can be achieved by removing from
the prediction loop the expensive hardware-independent application analysis.
The chapter starts by introducing additional notions on application characteriza-
tion and NMC simulation in Section 4.1. Then, the NMPO framework and the
hardware experimental setup are presented in Section 4.2. Therefore, we show
the results and we evaluate them in Section 4.3. Finally, we present in Section
4.4 the related work and in Section 4.5 the conclusions.

This chapter is based on: S. Corda et al., "NMPO: Near-Memory computing Profiling and
Offloading", DSD 2021
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4.1 Background
This section reports the necessary background about performance monitoring
counters (Section 4.1.1), NMC simulation (Section 4.1.2) and ensemble machine
learning models (Section 4.1.3).

4.1.1 Application characterization
Key application features that are used later for taking offloading decisions can be
collected in different ways. The quicker and easier way of evaluating an application
on a traditional CPU is using hardware performance monitoring units (PMUs).
Modern CPUs have specific programmable components programmed to gather
information from different locations of the chip. Currently, a wide range of tools
and libraries can be employed for this task, such as PAPI [74], LIKWID [131],
and perf [73]. Perf is a ready-to-use utility available in most current Linux
distributions. This utility collects an enormous amount of information from the
analyzed application, such as cache misses, Clock cycles per Instructions (CPI),
and floating-point operations. We summarize the main features that are collected
in Table 4.1 and used in the machine learning model.

Table 4.1: Performance counters extracted with the perf tool on the Intel i9
9900K.

Event name Units Event name Units
power/energy-pkg/ Joules L1-dcache-loads countof
power/energy-psys/ Joules L1-dcache-stores countof
power/energy-ram/ Joules L1-icache-load-misses countof
uncore_imc/data_reads/ MiB LLC-load-misses countof
uncore_imc/data_writes/ MiB context switch countof
fp_arith_inst_retired Gflops App execution time seconds
branch-instruction/branches countof LLC-loads countof
branch-misses countof LLC-store-misses countof
cache-misses countof LLC-stores countof
cpu-cycles OR cycles countof branch-load-misses countof
instructions countof branch-loads countof
L1-dcache-load-misses countof Instructions/cycle IPC

4.1.2 NMC simulation
Since NMC systems adoption is still not widespread, simulators are necessarily
employed to determine their performance. Extended versions of Ramulator [21,
57, 132, 133] are utilized because of its easy extendibility, speed and accuracy.
Ramulator is a cycle-accurate and portable memory simulator that simulates

48



CHAPTER 4. ENSEMBLE MACHINE LEARNING FOR NMC OFFLOADING

a wide range of modern DRAM technologies such as HBM (High Bandwidth
Memory), HMC (Hyper Memory Cube), and WideIO. Figure 4.1 shows a high-
level representation of Ramulator.

Execution-
driven engineDRAM Traces

DRAM Controller

DRAM

...

...HMC

...

Performance stats

Power measurements

DRAMPower

Ramulator

HMC

stack
0

stack
1

bank
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Tree of HMC state machine
(memory hierarchy)

Figure 4.1: High-level overview of Ramulator. It consists of a memory controller
that takes as input the application simulation traces that can be in the format
of DRAM traces or execution-drive engine (e.g. Gem5) generated traces. The
DRAM is represented as a state machine. Ramulator outputs performance stats
that can be integrated with DRAMPower to obtain power measurements.

It consists of a memory controller that takes the simulation’s input. This input can
be a set of memory traces generated by a CPU simulator such as Zsim [80], which
is called standalone mode, or it can be generated by an execution-driven engine
such as Gem5 [79], which is named integrated mode. Ramulator’s core consists
of a tree of DRAM state-machines (left side of Figure 4.1), where each node is a
class instance, such as HMC, that derives its properties from its parents’ nodes.
Each DRAM class has a hierarchy of banks, channels, ranks, etc., representing
different nodes having a specific label as property. Ramulator-PIM (Processing-
In-Memory), an extended version of Ramulator, can simulate computing units
such as Out of Order (Ooo) cores on the logic layer of 3D-stacked memory.
For the evaluation of power consumption metrics Ramulator is integrated with
DRAM power models such as DRAMPower [134]. In Table 4.2 we summarize the
main performance metrics that can be extracted using Ramulator-PIM.
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Table 4.2: NMC performance metrics available in Ramulator.

Statistic Units Category
ramulator.cpu_cycles cycle Ramulator-PIM
ramulator.ipc Instructions/cycle Ramulator-PIM
ramulator.cpu_instructions countof Ramulator-PIM
ramulator.total_time ns Ramulator-PIM
Average Power mW DRAM Power
Total Trace Energy pJ DRAM Power

4.1.3 Ensemble machine learning

Complex decisions such as application offloading to suitable accelerators may
require sophisticated tools such as machine learning (ML) prediction models.
These models are usually trained on a section of the available features dataset
and tested on the remaining part. Then, they are employed to predict, make
decisions or classify an unknown dataset. While simple models such as a Decision
Tree can be effective, in the case of many features, ensemble ML models are more
accurate [135]. Ensemble ML models consist of several simple models trained
on a different and random subset of the training dataset. The final decision,
classification, or prediction is then made by evaluating all the simple models’
results and selecting the most common outcome.
Random Forest (RF) [136] is an ensemble ML model that consists of a set of
decision trees. RF uses either a categorical response variable, referred to in [137]
as “classification”, or a continuous response referred to as “regression”. Similarly,
the predictor variables can be either categorical or continuous. The decision trees
are partitioned based on binary recursion. The predictor space uses a sequence
of binary splits to partition. The root node contains the whole list of predictors.
The splitting criterion gives a measure of “goodness of fit” (regression) or “purity”
(classification) for a node, with large values representing poor fit (regression) or
an impure node (classification).
RF model performance is boosted by tuning the hyper-parameters, which are
characteristics of the model that can impact model accuracy and computational
efficiency. These values are set before fitting the model and optimized through
trial and error methods like grid search and random search. Multiple models are
fitted with several hyper-parameter value sets, their performances are compared,
and the best performing one is chosen. The popular hyper-parameters tuned for
Random Forest models are; the number of decision trees (N_estimators), the
number of features to resample (Max_features), the depth of each tree in the
forest (Max_depth), the minimum number of samples required to split each node
(Min_samples_split) and the minimum number of samples required for each leaf
(Min_samples_leaf).
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We are going to use ensemble machine learning to predict near-memory computing
offloading suitability of unseen applications.

4.2 Framework
NMPO, a high-level framework based on ensemble machine learning developed
to predict near-memory computing offloading suitability, is described in Section
4.2.1. Section 4.2.2 presents the experimental setup employed for this work, in
particular showing details on the architecture and benchmarks used.

4.2.1 NMPO
NMPO (see Figure 4.2) consists mainly of two separate parts: the first one
for characterizing the application and training the machine learning model and
the second one where the offloading decision is taken by employing the ML
model’s prediction result. More precisely, in the first phase, the applications
are characterized on the host system ( 1 ) employing PMUs and collecting in-
formation as reported in Table 4.1. Then, the applications are simulated on the
NMC system ( 2 ), using Ramulator and DRAMPower to obtain the performance
measurements (see Table 4.2). The performance metrics gathered from these steps
are applied to evaluate the NMC offloading suitability. Thus, we label the data
for the machine learning model by our criteria of offloading based on Energy-
Delay-Product speedup, which is computed as follows:

EDP_improvement = Host_EDP/ NMC_EDP (4.1)

Accordingly, for the collected training data, we label the offloading decision as
“yes" if EDP_improvement > 2, “maybe" if 1 < EDP_speedup > 2 and “no"
if EDP_improvement < 1. Finally, the machine learning model is trained ( 3 )
using the previous analysis metrics. We employ k-fold validation to evaluate the
ML model. For each of the K folds, the model is trained on the remaining (K - 1)
folds, which are considered training data and tested on the remaining data or the
left-out fold, which serves as the testing data. The performance of the machine
learning model is evaluated as the average performance over K-iterations of cross-
validation.
The hyper-parameters, which are the ML algorithm variables, are tuned to op-
timize the prediction model’s accuracy. The application offloading of the unseen
application is performed by first profiling the application A , similarly to 1 , on
the host system with PMUs (see Table 4.1). Then, the trained ML model uses
the extracted features to predict the offloading decision on an NMC system B .
More precisely, since the key feature is the Ramulator IPC (see Figure 4.7), the
ML model predicts this key feature for unseen application by employing an RF
regression model by using only the host system characterization and later predicts
the NMC suitability by classifying the results.
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Figure 4.2: Near-Memory Computing Profiling and Offloading (NMPO)
overview. In the first phase (top) the framework performs an application profiling
on the host by employing perf, a hardware-dependent tool, and an NMC simulation
with Ramulator. Then (bottom), an ensemble machine learning model is trained
with the previously collected data. In the second phase unseen applications are
characterized used the same hardware-dependent tool to extract metrics that are
feed to the machine learning model, which finally predict the applications’ NMC
suitability. Note: this is very similar to NAPEL [21]. The key improvement
is removing the Platform-Independent Software Analysis from the prediction loop,
which can takes up to hours or days based on the application and dataset employed.

The performance of the machine learning model evaluates as the average perfor-
mance over K-iterations of cross-validation. For example, let the RF ensemble
model compute the regression error in predicting the kth part using RMSE and
cross-validation score (CV) as:

RMSEk =

√∑
i∈kth part (Predictedi −Actuali)2

N
(4.2)
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CV = 1
K

K∑
k=1

RMSEk (4.3)

We shaped the NMC offloading decision as a classification problem, where the
key error metric is accuracy that corresponds to the ratio of correct prediction
and the total number of predictions:

Accuracy = Number of correct predictions
Total number of predictions (4.4)

We also applied the confusion matrix as an alternative tool to better visualize the
same information. In the confusion matrix, each row of the matrix represents the
instances in a predicted class, each column represents the instances in an actual
class. The confusion matrix is named since it makes it easy to see if the system
confuses one class for another.

4.2.2 Experimental Setup
Our experimental setups consist of a host processor (see Figure 4.3), an Intel i9
9900K, and an NMC system with out-of-order (OoO) cores placed on the logic
layer of the HMC memory. The latter is simulated by Ramulator. The details of
the host and NMC system are presented in Table 4.3.
The applications are profiled on the host system five times, extracting mean values
with the perf package available with Ubuntu 18.04. The NMC system is simulated
with Ramulator-PIM [56] once, since the results do not vary in different runs.
Power and time parameters for HMC are derived from [134, 138] and fed to the
NMC simulator. As benchmark, we selected a set of application from Polybench
since it consists of simple mathematical operations extensively used in modern
applications, and are also commonly used in NMC related work [129]. We selected
implementation of the benchmark using OpenMP [123, 139], in order to exploit
parallelism on the CPU.

Table 4.3: Architectural parameters of the Host and NMC system.

Host system
Intel i9 8 cores, 2 threads per core, 1 socket, 4.7 GHz,
9900K 16 MB L3 cache, 64 GB DDR4 2666 MHz,

NMC system
Ramulator 8 single issue OoO cores 1.25 GHz

2-way, 2 cache-lines, 64 B per cache-line
32 vaults, 8 stacked-layers, 256 B row buffer, 4 GB HMC
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Figure 4.3: System overview: application’s kernels are evaluated on a host
system, which consists of a traditional CPU and a simulated NMC system. The
latter consists of a 3D-stacked memory (HMC) with small cores on the logic layers,
which communicates with through-silicon vias

Aside from the synthetic Polybench benchmarks, we use the current state-of-
the-art gridding, and degridding algorithm for radio-astronomical imaging Image
Domain Gridding (IDG) release 0.7 [4,140]. As shown in Figure 4.3, we analyzed
only the kernel of interest. While Polybench applications have just one kernel,
IDG contains different kernels such as gridder and degridder. The benchmarks,
their parameters, and the value associated with the different dataset sizes are
listed in Tables 4.4 and 4.5. The datasets are carefully chosen to be large enough
to generate DRAM accesses and evaluate whether the application is really suitable
for NMC. We also reported the time spent by the machine learning (ML) for the
training, hyper-tuning and prediction, and the Ramulator simulation time for
collecting training data (RT).

4.3 Experimental Results and evaluation
We discuss the results of application profiling and offloading. Further, empirical
evidence in terms of validation and error metrics of the prediction models is pre-
sented. Finally, the prediction models are applied to the test cases for identifying
the NMC suitability for a target application, thus aiding the users in early design
stage explorations.

4.3.1 Application profiling
This stage provides the training data required to build and test our machine
learning model described in Section 4.2.1.
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Table 4.4: Selected applications and their description from Polybench. The last
two applications are real-world radio-astronomical imaging kernels.

Application
Name Task

atax Computes AT̂ times Ax
chol Decomposes a matrix to triangular matrices
doit Multiresolution ADaptive NumErical Scientific
gemv Multiple matrix-vector multiplication
gesu Summed matrix-vector multiplications
mvt Matrix Vector Product
syrk Symmetric rank k update
syr2k Symmetric rank 2k update
trmm Triangular matrix multiplication

grid Radio-astronomical visibilities gridder
degrid Radio-astronomical visibilities degridder

Table 4.5: Parameters of the applications presented in Table 4.4 and timing of
the machine learning model (ML is the time needed to train the model and RT is
Ramulator simulation time). The applications are run with 8 and 16 threads to
increase the available dataset points for the machine learning model. Ramulator
was not able to simulate real-world motifs (gridder and degridder) with meaningful
dataset sizes. Therefore, we report N.A. (not available).

Application Datasets sizes Time (min)
1 2 3 4 5 6 7 Test ML RT

atax 4000 6000 8000 10000 12000 14000 16000 17000 3.25 180
chol 1024 1500 2000 2200 2600 3000 3400 4000 6 720
doit 75 100 128 150 200 256 300 350 6.25 5760
gemv 4000 6000 8000 10000 12000 14000 16000 18000 7.15 186
gesu 4000 6000 8000 10000 12000 14000 16000 18000 8.35 202
mvt 4000 6000 8000 10000 12000 14000 16000 18000 7.56 173
syrk 1024 1500 2000 2500 2750 3000 3500 4000 9.32 4568
syr2k 1024 1500 2000 2500 2750 3000 3500 4000 8.4 4898
trmm 1024 1500 2000 2500 2750 3000 3500 4000 7.35 5280

grid 128 256 512 2048 2560 3072 3584 4096 8.15 N.A.
degrid 128 256 512 2048 2560 3072 3584 4096 8.32 N.A.

Applications with chosen datasets sizes in Table 4.5, are profiled to collect various
statistics from perf, Ramulator-PIM and DRAMPower as discussed in Section
4.1.1. The roofline model [65, 141] is a method for capturing the compute-
memory ratio of computation and determines if the application is compute-bound
or memory bound. The roofline model shows the application’s achieved perfor-

55



CHAPTER 4. ENSEMBLE MACHINE LEARNING FOR NMC OFFLOADING

mance (GFLOP/s) and arithmetic intensity (FLOP/Byte) against the machine’s
maximum achievable performance.
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Figure 4.4: Roofline plot of test cases using 16 threads. Most of the applications
are bounded by the memory performance, in particular the last-level cache (L3).
The considered radio-astronomical imaging kernels (gridder and degridder) and
doit are compute bound. We use hardware performance counters to collect FLOPs
and Bytes from DRAM. Especially DRAM counters are not precise as the one
employed for FLOPs and may be influcende by different factors such as prefetching
and system kernel operations.
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Figure 4.5: Execution time and total energy of test cases on Intel i9 using
16 threads. We can also notice, as expectedm a very sharp correlation between
execution time and enegy.

In Figure 4.4 the roofline model of 16 threads test datasets is plotted as an
example. Application such as gridder, degridder and doitgen are compute-bound;
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Symmetric rank update algorithms (syrk and syr2k) are in the DRAM-bound
region, whereas the rest of the applications are L3-cache bounded. This tool
helps to demonstrate the heterogeneity of the benchmark employed.
In Figure 4.5 Total energy (J) vs Execution time (s) is depicted for all test cases
for 16 threads showing the above-mentioned applications heterogeneity. The
proposed work uses the energy-delay product (EDP) of host and NMC, where
energy is the total energy consumption by the cores and delay is the amount of
time for executing applications. Then, we compute the EDP improvement (Figure
4.6 shows only the EDP improvement for the test cases using 16 threads) for each
training dataset. Application with lower arithmetic intensity (highly memory
bound) such as mvt benefit more from NMC offloading.
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Figure 4.6: EDP Speedup of Polybench test cases using 16 threads. Compared to
Figure 4.4 only the L3-bounded applications benefit from near-memory computing.
Gridder and Degridder values are not available because Ramulator was not capable
to simulate these real-world application with meaningful datasets.

4.3.2 Application offloading
We present further details on how we selected the features of our machine learning
model. Then, we proceed by evaluating the accuracy of the model in predicting
NMC offloading suitability. We conclude this section by showing how time-
consuming PISA is compared to hardware-dependent tool such as perf.

Feature selection

Feature selection methods are intended to reduce the number of input variables
to ones that are the most beneficial for a model to predict the target variable.
This technique is employed to improve estimators’ accuracy scores or boost their
performance on very high-dimensional data sets. In our analysis, we selected the
essential features using Pearson correlation [142]. It is represented by a number
between -1 and 1 that indicates the extent to which two variables are linearly
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correlated. A value closer to 1 implies a stronger positive correlation, and a value
closer to -1 indicates a negative correlation.
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Figure 4.7: Correlation plot of input features (see legend in Table 4.6). The
Speedup (K) is stricly related to Ramulator IPC (G).

Table 4.6: Legend for Figure 4.7.

Feature Symbol
Host Total energy (J) A
Host EDP B
Host Total DRAM access (GB) C
Host FLOPs D
Host GFLOP/s E
Host FLOP/B F
Ramulator IPC G
Ramulator Total Time (ns) H
Ramulator/DRAMPower Total trace energy (pJ) I
Ramulator EDP J
Speedup K

In Figure 4.7, we show the correlation of the main features we used in this work.
It may be easily visible that the correlation is equal to 1 for the same metric, while
in the other cases it is lower. Ramulator IPC is a key factor for making offloading
decisions, and indeed it has the highest correlation with the EDP speedup. Since
it is time-consuming to run Ramulator each time for a new unseen application or
application with a different data set, we deploy an RF regression model to predict
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the Ramulator IPC and consequently predict the NMC suitability classification.
This step is quicker than NMC simulation and enables early design exploration
of unseen applications.

NMC suitability prediction

After the model is trained, validated and tuned, the final step is to test it on
an unseen application. Similarly to [21], we trained the model using the data of
all the application excluding the one the model will predict. In this manner, the
prediction will be more realistic, and the application can be considered unseen.
Since Ramulator is time-consuming and, in particular, it takes several days to
simulate the radio-astronomical imaging algorithms, even with a small image such
as 128x128 pixels, we used only Polybench applications for the training (excluding
the predicted application if necessary). In particular, for this small dataset, more
than 144 hours are necessary and large disk space is required, tipically a few
terabytes.
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Figure 4.8: Model probability of predictions: (a) 8 threads, and (b) 16 threads.
The offloading suitability are labelled using three categories: offload (yes), not
offload (no), not sure (maybe).
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Figure 4.9: Accuracy of offloading using NMPO, in average 85.6%.

Furthermore, we simulate the above-mentioned small dataset for Gridder and
Degridder, which are well-known compute-bound application [4] and will not
benefit from NMC in any case to prove the unsuitability of these kernel for NMC
offloading. Indeed, their EDP speedup is small (close to 0).
The machine learning model classification probability for the test cases is reported
in Figure 4.8 for both 8 and 16 threads test cases. For instance, we observe that
applications with the lowest arithmetic intensity such as gemver, gesumm and
mvt are the predicted with 100% accuracy. These are also the ones that benefit
more from NMC offloading. The overall model accuracy is reported in Figure 4.9
per applications. While some applications have a 100% accuracy, some of them
are below 80%. In average, the accuracy is 85.6%.

Improved estimation for training time

Similar to [21] the main bottleneck in these design space explorations is usually
located in the training phase, where the NMC system must be simulated. This
procedure usually can take days for a single application for real-world datasets.
Furthermore, in [21] the prediction phases consist in characterizing the application
employing PISA [23]. However, PISA is much slower than PMUs and for specific
applications needs more than 64 GB of DDR4, making this step really challenging.
We report in Figure 4.10 the execution time speedup of perf compared to PISA.
We employed the datasets reported in Table 4.7, which are smaller compared
to the ones in Table 4.5. Nonetheless, perf is already much faster than PISA for
small datasets. This performance difference becomes even larger by increasing the
datasets size. We can notice 2 to 3 order of magnitude improvement comparing
perf to PISA, thus making the use of perf for the prediction phase more convenient.

4.4 Related Work
Near-memory computing past works focused mainly on selecting specific memory-
bound applications and optimize them with custom architectures on the logic-layer
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Table 4.7: Application’s datasets employed to compared PISA and perf. We also
report the execution time of the two characterization tools. PISA is definitely time
consuming.

Application Dataset perf time [s] PISA time [s] Speedup
atax 2000 0.23 503.85 2190x
chol 512 0.16 28.01 175x
doit 64 0.27 20.78 77x
gemv 2000 0.26 55.62 214x
gesu 2000 0.32 69.27 216x
mvt 2000 0.24 356.16 1484x
syrk 512 0.54 201.25 373x
syr2k 512 0.86 416.44 484x
trmm 512 0.36 140.6 391x
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Figure 4.10: Perf vs PISA execution time comparison. PISA is slower from 2
to 3 order of magnitude compared to perf.

of 3d-stacked memory [14]. A few of them focused on offloading mechanisms or
performance prediction to decide if the NMC system’s scheduling is beneficial.
We summarize the main related work on application offloading on NMC systems
in Table 4.8.
Zhang et al. [71] employ a performance prediction model to decide how to schedule
applications on their GPU-based NMC architecture. Ahn et al. [130] propose
an offloading ad data mapping mechanism hidden to the programmer. This
compiler-based mechanism can efficiently schedule workloads on their NMC-GPU
system employing metrics such as memory bandwidth cost-benefit and memory
mapping benefits. Hsieh et al. [143] propose an ISA extension to support NMC
execution on an NMC system consisting of OoO cores and HMC. The programmer
must use the proposed ISA extension to offload specific instruction to the NMC
architecture. Hadidi et al. [144] extend GraphPIM [146] propose a compiler-
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Table 4.8: NMC offloading related work.

Name Year Offloading Accelerator Memory
Zhang et al. [71] 2014 estimation model GPU HMC
Ahn et al [130] 2015 compiler and run-time GPU HMC
Hsieh et al. [143] 2016 run-time Ooo cores HMC
Hadidi et al. [144] 2017 compiler Fixed function units HMC
Ahmed et al. [145] 2019 compiler Fixed function units HMC
Corda et al. [31] 2019 PCA in-order cores HMC
Singh et al. [21] 2019 ML model in-order cores HMC

based mechanism for instruction offloading on CPU/GPU-NMC systems. Ahmed
et al. [145] propose a compiler-based mechanism able to detect code sections that
reduce the off-chip data movement when accelerated on a CPU connected to
HMC. Ad detailed in Chapter 3 employ PISA-NMC [30,31], an extended version
of PISA capable of extracting metrics related to memory and task parallelism, to
evaluate the correlation of these metrics and the NMC offloading suitability using
the Principal Component Analysis (PCA). Singh et al. [21] design a high-level
framework for predicting unseen application performance on an NMC system.
This framework consists of a tuned random-forest model trained with hardware-
independent feature and performance on an NMC system with HMC and in-order
cores. While the model is capable of predicting the energy-delay-product accu-
rately, prediction is slow. Indeed, this prediction needs to gather the hardware-
independent feature of the unseen application using PISA [23], which may take
from 2 to 3 orders of magnitude compared to the application’s execution time in
the host system as we show in Section 4.3.2. We use the hardware-dependent
application features collected with a small execution time overhead to predict the
NMC offloading suitability to overcome this critical issue. Furthermore, while
in [21] specific datasets are so small that they cannot be sampled by perf the
PMUs (execution time lower than 0.001s), we selected large datasets that can
generate DRAM traffic. This makes it possible to evaluate which applications are
suitable for NMC offloading when accessing external DRAM.

Table 4.9: Performance prediction related work.

Name Year ML model Architecture
Joseph et al. [147] 2006 Linear Regression CPU
Calotoiu et al [148] 2013 Empirical model CPU
Bailey et al. [149] 2014 Linear Regression CPU/GPU
Wu et al. [150] 2015 ANN GPU
Mariani et al. [151] 2017 Random Forest Cloud HPC
Singh et al. [21] 2019 Random Forest NMC
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Performance prediction of unseen applications on specific architectures is a widely
researched topic. However, just some of them focus on NMC. Indeed, as shown in
Table 4.9, most of them focus on CPU and GPU as target offloading architecture.
Concerning the machine learning model employed, in past work, linear regres-
sion, ANN and random forest have been employed with different tuning options.
Similar to Singh et al. [21] and Mariani et al. [151] we employ the random forest
algorithm because it can achieve higher prediction accuracy.

4.5 Summary and conclusions
We present NMPO, a high-level framework based on ensemble learning models
and hardware-dependent profiling that facilitate quick and precise predictions
to offload suitable applications to NMC kernels. This framework aids in the
early design stage exploration of unseen applications on modern DRAMs like
HMC. Unlike slow simulators, NMPO employs an ensemble learning technique
called Random Forest with hyper tuning to speculate the offloading of an ap-
plication. Furthermore, NMPO is much faster than the current state-of-the-art
NMC simulator, and other machine learning-based frameworks with platform-
independent profiling since hardware-dependent characterization used in NMPO
has far less execution time overhead than hardware-independent ones. Thus,
NMPO with 85.6% accuracy, quicker analysis and user-friendliness is the go-to
ML-based framework for early design stage exploration.

Limitations:. Although NMPO can predict the NMC suitability of unseen
applications quicker than the state-of-the-art, it is not able to accurately predict
performance. Indeed, NMPO shapes the prediction into a classification problem,
and it labels applications by their suitability or unsuitability for NMC offloading.
Hardware-independent characterization can produce more accurate analysis if
targeting an unavailable architecture because it analyzes the intrinsic behavior of
the application. Moreover, it is not affected by the system overhead compared to
hardware-dependent characterization. However, hardware-dependent techniques
have minimal overhead and, in most cases, are precise for individuating optimiza-
tion and system bottleneck on specific architecture, and possibly help in making
offloading decisions. The next chapters show the importance of application char-
acterization and different optimization techniques to make scientific computing,
such as radio-astronomical imaging, highly performing and energy-efficient.
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5
Large 2D FFT radio-astronomy

Scientific computing applications have high performance and energy efficiency
requirements. In particular, radio-astronomical imaging needs to process Ter-
aByte per second of radio-astronomical data and execute ExaFlop per second to
construct a high-resolution map of the sky in realtime. Such large images make
memory bottlenecks arise in modern radio telescopes like the Square Kilometre
Array (SKA) processing. Indeed, we characterize the prediction and inversion
steps (see Section 2.3.3, which consist of a gridding/degridding operations followed
by a large 2D inverse/direct FFT. We identify that a sub-module performing a
two-dimensiona fast Fourier transform (2D FFT) become a critical bottleneck
by analyzing the Image-Domain Gridding, a state-of-the art gridder/degridder
algorithm. We evaluate the application properties on an IBM Power 9 by applying
the CPI (Cycles per instruction) and the roofline model. Then we present an NMC
approach on FPGA for 2D FFT that can outperform a CPU by up to a factor
of 120x and performs comparably to a high-end GPU while using less bandwidth
and memory.
As shown in Figure 5.1, while some kernels, Gridder and Degridder, perform
quite well, even when increasing the image size, we observe that the large 2D
FFTs become the application bottleneck since it is memory bandwidth bound,
and it does not reach peak performance. Figure 5.1 shows the contribution of
FFT in the execution time of IDG for different image sizes (also called grid sizes).

This chapter is based on: S. Corda et al., "Near memory acceleration on high resolution
radio astronomy imaging", MECO 2020.
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Figure 5.1: Percentage of the IDG execution time spent on 2D FFT. The
maximum (100%) is the total execution time of IDG. The Hybrid system consists
of running the FFT on the CPU and the Gridder/Degridder on GPU. This
solution has been adopted because for larger image size (e.g. 32k points per
dimension) the GPU does not have sufficient memory.

The chapter starts with a background information of the CPI breakdown analysis
in Section 5.1 and the methodology employed in Section 5.2. Then, we present
the results in Section 5.3 and the related work in Section 5.4. Finally, the chapter
concludes with Section 5.5.

5.1 CPI Breakdown Analysis

CPU architectures, such as Intel, can be studied employing approaches/tools such
as Top-Down [96] or Intel VTune [64]. Instead, IBM Power architecture does not
have great application characterization tool support. Therefore, a fair amount of
effort must be spent on providing these tools and methods to IBM Power CPUs.
Indeed, in this work, we focus on the IBM Power9, which can be analyzed using
the same methodology presented in [152] for IBM Power8.
PMUs are programmable components contained inside each microprocessor core
on the chip. They are used to collect and filter information gathered from various
aspects of the chip and they can attribute the events to the threads within the
core. Power9 supports around 1000 PMU1 events that can be monitored. The CPI
Breakdown consists of creating a breakdown of the total run cycles in different
categories, e.g. stalls in load/store units, to understand where the application
is spending most of the time, thus being able to detect application bottlenecks.
A simplified representation, containing the most interesting PMUs for memory
bottlenecks (see Section 5.2), of the CPI breakdown is reported in Figure 5.2 and
a description of the used PMU is given in Table 5.1.

1https://wiki.raptorcs.com/w/images/6/6b/POWER9_PMU_UG_v12_
28NOV2018_pub.pdf
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Figure 5.2: Power9 CPI Breakdown tree [152]. The total cycles
(PM_RUN_CYC) are breakdowned into different categories such as cycles while
the CPU stalls (PM_CMPLU_STALL), which in turn can be split into cycles
waiting for the load-store units (PM_CMPLU_STALL_LSU) or execution units
(PM_CMPLU_STALL_EXEC_UNIT).

Table 5.1: IBM Power9’s Performance Monitoring Units (PMUs) description.

PMU Description
PM_RUN_CYC Run cycles
PM_CMPLU_STALL Nothing completed and ICT is not empty
PM_CMPLU_STALL_THRD Completion stalled because the thread was blocked
PM_1PLUS_PPC_CMPL One or more PPC instructions finished
PM_NTC_ISSUE_HOLD NTC instruction is held in the issue
PM_ICT_NOSLOT_CYC Number of cycles the ICT has no itags assigned to

this thread
PM_CMPLU_STALL_LSU Completion stalled by an LSU instruction
PM_CMPLU_STALL_EXEC_UNIT Completion stall due to execution units

(FXU/VSU/CRU)

5.2 Methodology
To evaluate the performance and characterize the applications we use the method-
ology described in this section. More precisely, we show the system (5.2.1) and
the tools/software (5.2.2) we use for our work.

5.2.1 System in use
Figure 5.3 presents the system employed for this work. It is an IBM Power9 AC992
with 22-cores SMT4; more details are in Table 5.2. We include as a competitor to
NMC an NVIDIA V100, one of the latest GPU with 32GB of HBM2 memory at
900 GB/s. Indeed, this GPU, similarly to literature NMC works, employs HBM2
memory.
As NMC systems we use a custom hardware design called Access Processor (AP)
[153], which can be mapped on different FPGAs (DDR4 and HBM2). The Access
Processor is a custom FPGA design, owned by IBM, that embed NMC concepts
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that promises high performance compared to state-of-the art architectures such
as CPUs and GPUs.

Table 5.2: Specifications of the systems employed for the acceleration compari-
son.

Architecture Configuration
IBM® Power9 AC922 @3.8 GHz, 22 cores (4-way SMT), 2 sockets, 32 KB L1

cache per core, 256 KB L2 cache per core, 120 MB L3
cache per chip, 512 GB DDR4 2666 MHz

NVIDIA V100-SXM2-32G @1.53 GHz, 640 Tensor Cores, 5120 NVIDIA CUDA®
Cores, NVlink interconnect 300 GB/s 32 GB HBM2 at
900 GB/s

AlphaData 9V3 FPGA 788 FFs, 394k LUTs, 2280 DSPs, 25.3 Mb BRAM,
90.0 Mb URAM, 8 GB DDR4 2400 MHz

AlphaData 9H7 FPGA 2607 k FFs, 1304 k LUTs, 9024 DSPs, 70.9 Mb BRAM,
270 Mb URAM, 8 GB HBM2 at 460 GB/s

Differently from a classical general-purpose computer, where the access band-
width and latency depend on a complex mixture of workload characteristics
and the memory hierarchy, the Access Processor (AP) design comprises the so-
called memory controller, which has the feature of enabling more control over
the memory system and programming all the concurrently running data streams
from/to the attached NMC accelerators (see Fig 5.3). The Access Processor
may be advantageous compared to state-of-the-art architectures, such as CPUs
and GPUs, for specific memory-bound workloads because it optimizes memory
transfers avoiding cache hierarchies by directly accessing the main memory.

Cache Hierarchy

IBM Power 9

NMC
 Accelerators Access

Processor

DDR4/HBM2

FPGA

DDR4

NVlink

NMC
 Accelerators Processors

HBM2

CAPI
OCAPI

NVIDIA V100
SM SM...

Caches

Figure 5.3: System employed [153]. The figure highlights the host processor, an
IBM Power9 with DDR4 memory, that is connected to an NVIDIA V100 with
NVLink and to an FPGA with CAPI/OpenCAPI. The near-memory computing
(NMC) accelerator prototypes are deployed on the FPGA.

The key features of the AP (see Figure 5.4) are: 1) the B-FSM, a programmable
state machine technology, applied successfully to a wide range of co-processor
devices [154]; 2) programmable address mapping scheme that can highly opti-
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mize the bandwidth utilization reducing bank conflicts and managing the data
organization.

Figure 5.4: Detailed schematic of the Access Processor design. It mainly consists
in the B-FSM, a state machine. The AP provides several units for different
tasks. Indeed, many of them are employed to efficiently manage data (address
generator and mapping, access intercept and redirect) and to schedule accelerators
(arbiter/scheduler).

2D FFT acceleration on AP is performed as a combination of multiple 1D FFTs
and transpose (see Figure 5.5). It consists of performing a 1D FFT over all the
rows of the image and an on-the-fly partial matrix transpose. Then, a 1D FFT
is performed on the transposed columns of the images and they are transposed
again on-the-fly. In this work we employed performance estimation, which is
conservative, for the AP based on experiments, e.g running 1D FFTs and matrix
transpose.

Input Image

1D FFT

1D FFT

1D FFT

Output Image

Transpose Transpose1D FFTs 1D FFTs

1D FFT

1D FFT

1D FFT

Figure 5.5: The 2D FFT is decomposed in 1D FFTs: we first apply 1D FFTs
over the image’s rows and then we transpose it. Finally we repeat the same
operation, which results into applying the 1D FFTs over the columns.

5.2.2 Tools and Software
As a small experiment, testing our tools and analysis methodology, we show
in Figure 5.6 the CPI breakdown analysis (y-axis shows the PMU percentage
over the total run cycles) applied to three simple benchmarks: mac, which is a
compute-bound kernel written using IBM Power9 intrinsics that perform fused
multiplication and accumulate over the same array of data; sgemm, which is
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a single-precision general matrix to matrix multiplication; and stream-add, a
common memory-bound benchmark used to compute the peak bandwidth of a
system. We make the following two observations. First, the PMUs not included
in the bar chart are nearly 0%, thus showing the relevance of the selected counters.
Second, we can distinguish clearly a separation between a kernel completely
memory bound (stream-add), which spends most of the time stalling on LSU
(load-store units), and another one compute-bound (mac), which spends most of
the time stalling on the computing units.

mac sgemm stream-add
20
40
60
80

100

PM_1PLUS_PPC_CMPL PM_CMPLU_STALL
PM_CMPLU_STALL_LSU PM_CMPLU_STALL_EXEC_UNIT

Figure 5.6: CPI Breakdown applied to micro-benchmarks. Compute bound appli-
cations such as a kernel with only multiply and accumulate (mac) instructions and
sgemm spent most of the time completing power-pc (PM_1PLUS_PPC_CMPL)
instructions. Contrariwise, a stream-add kernel spends most of its time stalling
on the load-store units (PM_CMPLU_STALL_LSU).

FFT was run on CPU using FFTW3 version 3.3.8 and on GPU using cuFFT
of the CUDA library version 10.1. Furthermore, we improved the Degridder
and Gridder algorithms on Power9 porting the Intel-based code employing IBM
Power9 intrinsics. In particular, the main optimization was to use a sine/cosine
lookup table, which was implemented with AltiVec intrinsics [155]. Especially this
algorithm section of Gridder/Degridder with sine/cosine operations is challenging
on other CPU platforms as well; for instance on Intel high performance is obtained
employing MKL (math kernel library), which is not available on PowerPC. We
use IDG [140] version 5736086c employing the parameters in Table 5.3.

Table 5.3: Image Domain Gridding parameters.

Parameters Values
Stations 120
Channels 16-32
Timesteps 8192
Grid Size 4096-8192-16384

Sub-grid Size 32
Cycles 1

Grid Padding 1.0
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In order to characterize the application we employed perf [73] for extracting the
PMUs values.

5.3 Results

We discuss the application characterization results in Section 5.3.1 and the eval-
uation of large 2D FFTs on IBM Power9 CPU, NVIDIA V100 GPU and Access
Processor prototypes on DDR4- and HBM2-equipped FPGAs Section5.3.2.

5.3.1 Application Characterization

We present the CPI breakdown analysis applied to Image Domain Gridding on
IBM Power9 in Figure 5.7. More precisely, we show the trend of the most
interesting performance counters (y-axis shows the PMU, i.e. number of cycles
measured, percentage over the total run cycles) on increasing the visibilities grid
size. The FFT spends more time on stalling on the load-store units compared
to Gridder and Degridder, which means it is more memory bounded. Moreover,
FFT spends less time on stalling on the execution units. Furthermore, the FFT
becomes increasingly memory bound with larger grid sizes (see 16k vs 8k in Figure
5.7) reflecting in a larger time spent on executing it (see Figure 5.1).

4k 8k 16k
0

20
40
60
80

100

FFT
4k 8k 16k

Gridder
4k 8k 16k

Degridder

PM_CMPLU_STALL PM_CMPLU_STALL_LSU PM_CMPLU_STALL_EXEC_UNIT
PM_1PLUS_PPC_CMPL

Figure 5.7: Power9 CPI Breakdown analysis of Image Domain Gridding. The
FFT stalls more on Load Store Units (LSU) compared to Gridder and Degridder.
Furthermore, it becomes much more memory bound for larges sizes.

We further analyze the application on IBM Power9 employing the well-known
technique of the roofline model [65], see also Section 2.2.1. Power9’s bandwidth
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is 340 GB/s for 2 sockets and the peak performance is estimated employing the
following formula:

TF lops = freq [GHz] ∗#op. per core ∗#cores ∗#sockets

1000 (5.1)

Each core of the IBM Power9 can perform 16 parallel single precision opera-
tions. Using the other information from Table 5.2 we get a peak performance of
2.675 TFlops.
Figure 5.8 shows the roofline model for the kernels in Image Domain Gridding. In
particular, we notice that FFT is memory bounded as it is underneath the peak
bandwidth ceiling while Gridder and Degridder are compute-bound since they are
underneath the peak performance ceiling. Furthermore, the FFT with a grid-size
of 16k shows lower performance compared to the FFT performed with smaller
grid-sizes. This behavior is due to the larger amount of time spent on stalling
in the LSUs. Furthermore, the performance on Power9 remains low compared to
the other architecture.
We also include the roofline model of Image Domain Gridding on NVIDIA V100
(see Figure 5.8b). Peak performance is reported on the card datasheet (900 GB/s
and 15.7 TFlops). On NVIDIA V100 IDG achieves higher performance compared
to Power9 for similar kernel characteristics. Furthermore, we build the roofline
model for the 2D FFT on Access Processor employing the methodology pro-
posed by Intel [156]. More precisely, using this methodology, which estimates the
peak performance computing the maximum number of adders that can fit on the
FPGA consuming all the DSPs and the logic cells, we compute the peak perfor-
mance for the two FPGA boards respectively of 1.080 TFlops and 3.675 TFlops.
The maximum memory bandwidth is 37.5 GB/s for 2 DDR4 banks at 2400 MHz
and 460 GB/s for the HBM2. We show that using the FPGA with DDR4 the FFT
reaches higher performance compared to Power9 and it is memory bound (see Fig-
ure 5.8c). Contrariwise, the higher bandwidth on the FPGA with HBM2 further
increases the performance and makes the kernel compute-bound (see Figure 5.8d).
The arithmetic intensity shown in the roofline models differs for CPUs and GPUs
because of the cache effects. Indeed, while the FLOPs are the same, the DRAM
traffic can differ. This is not happening for the FPGA prototypes because we
compute how many operations (FLOPs) the FPGA performs, and data (Bytes)
is moved from/to the main memory, which does not change from the DDR4 to
the HBM prototype. Moreover, the FPGA has similar performance compared to
GPU having lower peak bandwidth and peak performance. The more efficient use
of the memory is shown in Figure 5.8, where the arithmetic intensity achieved by
the FPGA is higher.
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(a) Image Domain Gridding on IBM Power9.
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(b) Image Domain Gridding on NVIDIA V100.
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(c) 2D FFT on Access Processor with DDR4.
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(d) 2D FFT on Access Processor with HBM2.
Figure 5.8: Roofline Analysis of Image Domain Gridding on the selected
architectures. On IBM Power 9 the FFTs are memory bound, but do not perform
near the roof. Contrariwise, on the NVIDIA V100 and the NMC prototypes
with DDR4 the performance are close to the memory bound peak. On the NMC
HBM prototype the FFT becomes compute bound because of the FPGA’s HW
characteristics and reaches its performance peak.
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5.3.2 Offloading on NMC Systems
The AP provides fine-grained control to schedule the accesses to the DDR4 and
HBM2 memory (see Figure 5.9), the transfer of the data to and from the FPGAs
internal SRAM (Block RAM and/or UltraRAM), and the processing of the data
[153]. Because the various 1D FFTs (see Figure 5.9) are calculated in parallel
using multiple accelerators (the 1D FFTs design used is taken from [157]), the AP
can schedule the transfer of the input data for each 1D FFT computation from a
DDR4 DIMM or HBM2 memory channel to a given accelerator during the time
that additional 1D FFTs are being computed on the other accelerators. Therefore,
the data communication can be totally hidden.
The same applies to the transfer of the 1D FFT results from an accelerator back to
the DDR4 or HBM2 memory. As a result, the access, transfer, and processing of
the input data and results for the 1D FFT calculations on the rows of the matrix
can be overlapped in an almost seamless fashion, which enables to obtain very
high performance by achieving near-optimal utilization of the available DDR4 or
HBM2 memory bandwidth [158]. In this case, the 2D FFT performance will be
determined almost entirely by the available memory bandwidth, on the condition
that there are enough accelerators available to fully overlap the memory access
and transfer times. Experiments with FPGA cards that include DDR4 [159] and
HBM2 [160] memory have been used to validate this statement.

DDR

AP

1D FFT

DDR

...
BRAM

Repeat until matrix is computed

...

bank 0

bank n

...
bank 0

bank n

1D FFT

1D FFT...
1D FFT

... ...

Figure 5.9: Representation of the design with a focus on the data layout
employed for a 1D FFT over the rows plus a transposition on the fly. This
represented operation is done twice to perform a 2D FFT. The Access Processor
reads the data from the DDR and then schedules the image rows on different
1D FFT accelerators overlapping their executions. The data is then stored into
BRAM, ensuring the row numbers are equal to the data width of the DDR. Thus
making it possible to make an on-the-fly transpose before storing the data back to
DDR. The key feature of the AP is the capability to read from different memory
channels, if available, concurrently and overlap the data distribution and execution
on different accelerator instances, in this case, 1D FFTs.

By temporarily storing the 1D FFT results for k consecutive rows in internal
memory (e.g., Block RAM), with k being equal to the number of samples fitting
within the access width of the DDR4 DIMM or HBM2 memory channel (e.g., k=4
64-bit samples would fit in a 256-bit wide access vector to the HBM2 memory),
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the transpose can be performed on the fly when writing the k row 1D FFT results
back to the DDR4 or HBM2 memory (Figure 5.9 shows this procedure). The
same operation as described above is then repeated for the columns to obtain the
overall 2D FFT results over the matrix. The effective memory access bandwidth
is measured to be equal to 15 GB/s for a single DDR4 DIMM and 10 GB/s for
a single HBM gen2 channel (which are conservative values also including the
estimated impact of refresh operations, FPGA speed limitations, etc.), then the
following execution times can be derived for the computation of the following four
differently sized 2D FFTs using DDR4 and HBM2 memory:

Table 5.4: Estimated execution time of Access Processor for a single 2D FFT.

Size 1 DDR4 DIMM 2 DDR4 DIMM 1 HBM2 channel 32 HBM2 channels
15 GB/s 30 GB/s 10 GB/s 320 GB/s

4 k 0.033 s 0.017 s 0.05 s 0.0016 s
8 k 0.13 s 0.067 s 0.20 s 0.0063 s
16 k 0.53 s 0.27 s 0.80 s 0.025 s
32 k 2.1 s 1.1 s 3.2 s 0.10 s

As shown in Figure 5.1 2D FFT is the main bottleneck in IDG when enlarging
the image size. We evaluate the benefits of applying NMC to FFT and comparing
it to a Von-Neumann architecture. More precisely, we offload the 2D FFTs and
their inverses to the AP design and to the NVIDIA V100.
We show how a NMC approach can be faster than a common CPU (see Figure
5.10) outperforming it up to 120x. The proposed design can reach similar perfor-
mance compared to a high-end GPU using less memory and having a maximum
bandwidth lower than half. Furthermore, the FPGA has a lower thermal design
power (TDP) compared to CPU and GPU, as reported in the data-sheets1,2, which
is 25W for the DDR4 board and 150W for the HBM2 board. Indeed, the used
IBM Power9 consumes around 480 W when performing the FFT and the NVIDIA
V100 around 170 W. We extract the power consumption with AMESTER2 tool
on the Power9 system including the NVIDIA V100. Thus making FPGAs good
candidates for accelerating radio-astronomy applications.

5.4 Related work
In this section we provide the related work on workload characterization (5.4.1)
and on the acceleration of 2D FFT kernels (5.4.2).

5.4.1 Application Characterization
A large amount of research has been focused on how to characterize workloads
to detect bottlenecks. Yasin et al. [96] presented a similar approach to the one

2https://github.com/open-power/amester
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Figure 5.10: NMC-based platform and NVIDIA V100 execution time speedup
compared to IBM Power9. Memory bandwidth is a key factor to get high
performance on FFT-based applications. Indeed, the NVIDIA V100 and the NMC
HBM prototype achieve much higher performance. The NMC system is close to
the GPU performance.

used in this work, but on Intel systems being the foundations of the well-known
Intel VTune [64]. It consists of a top-down approach to identify architectural
bottlenecks using selected PMUs. Awan et al. [126, 161] use that approach
to spot architectural bottlenecks in big data applications. Differently, other
approaches have been studied to characterize the application to be independent
of the hardware. Corda et al. [30, 31] analyzed application at LLVM-IR level to
extract intrinsic application features focusing on NMC (see Chapter 3). However,
PMUs are faster to be used and more accurate. As side-effects PMUs are strictly
dependent on the HW employed.

5.4.2 Large 2D FFT acceleration
Fast Fourier Transform is one of the most widely studied algorithms in the past.
Especially, large 2D FFTs that are expensive on CPU, because of the enormous
amount of data that must be moved from main memory through the cache
hierarchy and vice-versa, have been improved. Dang et al. [162] proposed an
FFT implementation on GPU clusters applied to large electromagnetic problems.
Yu et al. [163] and Akin et al. [164] developed two tiling algorithms to improve
performance on the 2D FFTs on different platforms. Differently from the previous
work, we employed a new computational paradigm called near-memory computing
and we focused on larger 2D FFT sizes applied to radio-astronomy imaging.

5.5 Summary and conclusions
We analyzed the state-of-the-art gridding and degridding imaging algorithm for
radio-astronomy, as used in SKA, the largest radio telescope on Earth. We
employed the CPI breakdown analysis and the roofline model on IBM Power9
identifying the memory bottlenecks. Then, we showed how these bottlenecks
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can be alleviated by applying an NMC approach to FPGA and comparing it to
Power9 CPU and V100 GPU. Thus showing how an NMC approach can highly
outperform a CPU and can achieve similar performance compared to a high-end
GPU, which has higher memory bandwidth and memory size.

Limitations: although NMC seems a promising alternative to common state-
of-the-art solutions, this is not entirely valid for specific real-world applications.
Indeed, NMC prototypes are not widely available, leading to the use of software
simulators or emulation on FPGAs. These solutions require a great effort to be
deployed and, in this case, show limited advantages. Nowadays, as shown in the
Chapter 7, the upcoming generation of state-of-the-art hardware such as CPUs
and GPUs will embed solutions typically employed in NMC such as 2.5D/3D
stacked memory and RISC cores.
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6
Reduced-Precision Acceleration of
Radio-Astronomical Imaging on

Reconfigurable Hardware

Radio telescopes produce large volumes of data that need to be processed to
obtain high-resolution sky images. This is a complex task that requires com-
puting systems that provide both high performance and high energy efficiency.
Hardware accelerators such as GPUs (Graphics Processing Units) and FPGAs
(Field Programmable Gate Arrays) can provide these two features and are thus
an appealing option for this application. Most HPC (High-Performance Com-
puting) systems operate in double precision (64-bit) or in single precision (32-
bit), and radio-astronomical imaging is no exception. With reduced precision
computing, smaller data types (e.g., 16-bit) are used to improve energy efficiency
and throughput performance in noise-tolerant applications. We demonstrate that
reduced precision can also be used to produce high-quality sky images. To
this end, we analyze the gridding component (Image-Domain Gridding) of the
widely-used WSClean imaging application. Gridding is typically the most time-
consuming step in the imaging process, differently from 2D FTT that becomes a
bottleneck with high-resolution images only (see Chapter 5. Therefore Gridding
is an excellent candidate for acceleration. We identify the minimum required

This chapter is based on: S. Corda et al., "Reduced-Precision Acceleration of Radio-
Astronomical Imaging on Reconfigurable Hardware", IEEE Access 2022.
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exponent and mantissa bits for a custom floating-point data type. Then, we
propose the first custom floating-point accelerator on a Xilinx Alveo U50 FPGA
using High-Level Synthesis. Our reduced-precision implementation improves the
throughput and energy efficiency of respectively 1.84x and 2.03x compared to the
single-precision floating-point baseline on the same FPGA. Our solution is also
2.12x faster and 3.46x more energy-efficient than an Intel i9 9900k CPU (Central
Processing Unit) and manages to keep up in throughput with an AMD RX 550
GPU.
The chapter starts with background information on reduced precision in Section
6.1 and the employed methodology in Section 6.2. Then, it proceeds with the
WSClean characterization in Section 6.3. The custom accelerator on FPGA is
shown in Section 6.4 and it is evaluated in Section 6.5. Finally, this chapter
concludes with related work in Section 6.6 and conclusions in Section 6.7.

6.1 Reduced precision
Reduced precision is a software and hardware technique employing smaller data
types to improve performance and energy efficiency. It can be applied at the
software level if the architecture supports reduced data types, e.g. half precision
in modern GPUs. However, a custom architecture should be designed on FPGA
(or ASIC) hardware when a non-supported data type is needed. The main benefits
of this technique are the reduced processing elements (PEs) size, which leads to
higher throughput, reduce energy and memory requirements, which increase the
effective memory bandwidth. Key factors for reduced precision are data types
that are described in Section 6.1.1. In Section 6.1.2 we briefly introduce reduced
precision and the advent of appealing tools for exploring custom data types in
software and hardware.

6.1.1 Data types

Standard architectures, such as CPUs and GPUs, typically support single-precision
and double-precision floating-point applications that perform scientific computa-
tions. Commonly, single precision is the most widespread data type since the
major part of systems supports it. Indeed, even if double precision is supported
on most GPUs, they often do not have dedicated units for double-precision com-
putations except for high-end GPUs like Tesla V100 or Ampere A100 [13], thus
reducing performance [165]. Radio-astronomical imaging runs precisely enough
using single-precision floating-point. For this reason, we focus on data types up to
32 bits. We present in Figure 6.1 the most commonly used data types today. In
particular, we recognize two main categories: standard data types where the bit
length is fixed and custom data types where the data length is defined at design
time, compile time, or runtime.
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Figure 6.1: Data-types overview. Standard arithmetic number formats such as
single-precision and half-precision floating-point are data types usually supported
by modern CPUs and GPUs. Custom arithmetic number formats comprise some
of the main data types employed in research and are often deployed on FPGAs.
The custom formats reported are examples, and the number of bits may differ.

Except for posit and fixed points, the other data types are floating-point repre-
sentations that can be expressed by Equation 6.1. More precisely, the exponent
and the mantissa bits are responsible for respectively the dynamic range and the
precision of the data type. The dynamic range limits the smallest and largest
number representable, while the precision is the represented number’s resolution
(number of digits).

numberfloating−point = (−1)sign ∗mantissa ∗ 2exponent (6.1)

Table 6.1: Number of bits for the mantissa and exponent of standard floating-
point formats.

Name Exponent Mantissa
Single-precision 8 23
Half-precision 5 10
NVIDIA-Tensor 8 10
Brain 8 7
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In Table 6.1 we present the mantissa and exponent sizes of the main standard
data types. Single-Precision [166] (or binary32 [167]) and Double-Precision
(or binary64) Floating Point are commonly supported on GPUs and have been
added to the IEEE 754 standard. With the advent of deep learning applications
and their noise tolerance and need for reduced length data types, half precision
usually offers 2x the performance of single precision in applications that can
tolerate the noise introduced by the lower dynamic range and less precision. For
the same reason, NVIDIA presents the new Tensor Float-32 with the release
of the NVIDIA A100, the new AI and HPC flagship GPU. This format has the
same dynamic range of the binary32 but reduced precision, which is claimed to
be sufficient for most of today’s AI applications. Brain Floating Point [168]
offers a further precision reduction while keeping the same dynamic range offered
by single precision. This is especially employed by Intel [169] and Google [170].
Apart from the standard data types mentioned above, other data types, except for
several integers (4, 8, 16, 32 bits) in specific GPUs, are not available in mainstream
architecture or do not have a pre-defined number of bits. These data types are
described below:
Fixed Point [171]: this format is represented by Eq. 6.2. A real number is
represented by two numbers, one for the integer part and one for the fractional
part. Compared to floating point, it has a smaller dynamic range since there
is no exponent. Still, the hardware implementation is easier since it considers
two numbers (integer and fractional), and it is usually employed on custom
accelerators, and FPGA [172,173].

numberfixed−point = (−1)sign ∗ integer.fractional (6.2)

Custom Floating Point [174]: a custom floating-point is super-set of the
floating-point above mentioned. It consists of all the possible floating-point format
combinations. They are typically used in embedded systems, where the numeric
representation is customized for the specific application by selecting specific bit
lengths for the mantissa and exponent fields.
Posit [175]: is a numeric representation that has been proposed as a substitute
for floating-point data types. Usually, posit has a higher dynamic range than the
floating-point with the same bit length (see Figure 6.2). Moreover, posits have
a tapered decimal accuracy (see Equation 6.3, where x and y are two numbers
with same sign) which means that the decimal accuracy reported in Figure 6.2
is roughly symmetrical, and the highest precision is achieved for numbers near 1
(the horizontal axis is reporting the base-2 logarithm of the numbers).

decimal_accuracy = −log10(|log10(x/y)|) (6.3)

This feature differs from floating points that have an almost constant accuracy
across the dynamic range, except for small numbers (left side), and the accu-
racy suddenly falls off a cliff (right side) to accommodate all the NaN (not a
number values). However, we are not considering posits as a possible datatype
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Figure 6.2: The figure is inspired from [175]. Decimal accuracy for 1) 8-bit
signed integers; 2) a custom floating points format with 4-bit exponent and 3-
bit mantissa; 3) 8-bit posits with 1-bit exponent [176, 177]. Posits have a larger
dynamic range compared to floating points and integers (very small). Integers
have higher decimal accuracy for larger numbers. While posits have a tapered
decimal accuracy, floating points have approximately a constant accuracy across
the dynamic range.

candidate since operations, like multiplication and addition, are more expensive
to implement compared to floating-point [178]. For more details refer to [175].
We employ custom floating point for both analysis and hardware design. This
numeric representation comprises standard format such as single precision, half
precision, NVIDIA Tensor, and brain floating point. Based on the analysis in
Section 6.3 we evaluate the precision requirements of the target application and
discuss the why specific data types are not an acceptable solution for our use case.

6.1.2 Reduced precision tools
Reduced precision is a branch of approximate computing, which usually consists
of either reducing the bit size of standard data types or employing more efficient
custom data types [28]. Recently, there has been the rise of automated/assisted
precision tuning tools and emulation libraries to help and improve the selection
of custom data types inside applications. However, the major part of the above-
mentioned works support only standard data types [179–181] or fixed point [182].
Flegar et al. [174] designed FloatX, a C++ template library capable of emulat-
ing custom floating point, which we employ in our analysis. FloatX also has
a reduced execution time overhead compared to the previous library since it
employs hardware-supported floating-point types as back-end. Recently, High-
Level Synthesis libraries for supporting custom floating-point precision have been
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researched. These libraries are easy to use and portable compared to RTL ap-
proaches [183–185].
DiCecco et al. [183] propose a custom-precision floating-point library (CPFP [186])
for High-Level Synthesis, and they evaluate it on a small convolution neural
network. While the custom floating-point IP, implemented on FPGA, requires
fewer resources than single precision. The FPGA design has a lower through-
put than the CPU. Thomas [184, 185] proposed a more efficient (see Appendix
A) templatized floating-point library for high-level-synthesis (THLS [187]). This
library, which we employ in this work, is also templatized and eventually supports
heterogenous custom floating-point operations. The proposed solution has similar
resource consumption when comparing standard data types and notable resource
reduction when employing reduced-precision data types. The two approaches
mentioned above are easier and portable for FPGA development than employing
custom floating-point IPs similar to FloPoCo [188], which need to be used as
black-boxes.

6.2 Methodology

Application

Application's
parameters

DatasetDatasetDataset

Application Profiling

Precision auto-tuning

Accelerator design

Candidate for
acceleration

Precision
requirements

Kernel 
accelerator

❶ 

❸

❷

EvaluationSOTA 
systems

❹

Figure 6.3: High-level overview of the employed methodology. The application’s
bottleneck is detected by applying application profiling. Then a precision auto-
tuning technique defines the precision requirements for the accelerator, which is
designed and deployed. Finally, the accelerator performance is assessed with state-
of-the-art (SOTA) architectures.

We present the methodology employed in Figure 6.3. We first ¶ profile the
radio-astronomical imager to determine the most time consuming and thus critical
kernels. We perform this analysis on different datasets employing the application’s
parameter described in Section 6.2.1. Then, · we evaluate the required minimum
precision requirements for the selected kernel using an auto-tuning script based on
binary search (see Section 6.2.2). Through emulation, it identifies the minimum
bit sizes for both the exponent and mantissa for custom floating-point data types,
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one at a time for the entire kernel. Afterwards, ¸ we perform an accelerator design
phase to determine the best design optimization for the selected kernel and the
precision requirements (see Section 6.2.3). Finally, ¹ we assess the accelerator
performance for state-of-the-art systems (see Section 6.2.4).

6.2.1 Application Profiling
We profile the most widely used and state-of-the-art radio-astronomical imager,
WSClean [189], which also includes the state-of-the-art gridding and degrid-
ding algorithm (Image-Domain Gridding) [140], by evaluating the execution time
breakdown. We report the software version used in this work in Table 6.2.
We employ the LOFARSCHOOL dataset, which is usually employed as a test case
for practical examples and contains real sky observations [190]. This dataset
contains 16 observations and around 30 subbands per observation, available in
the LOFAR Long Term Archive (LTA) [191]. We select 14 observations with
similar observation parameters such as integration time, observation duration,
frequencies, etc. (see Table 6.3), and we select the 10th subbands from every
dataset; therefore, all the datasets have the same central frequency.

Table 6.2: Software versions employed. We report the checksum of the commit
of the master branch we used for WSClean and IDG. The other packages are
WSClean’s dependencies.

Software Version
boost 1.68
OpenBLAS 3.9
python 3.8
wcslib 6.3
cfitsio 3.450
casacore [192] 3.3.0
dysco [193] 1.2
IDG [140] master 011dfb18
WSClean [189] master 2680c6a

The WSClean parameters that we use are listed in Table 6.4. The sky images are
plotted using Kstars FITS Viewer [194] setting the following parameters: shadows
0.0080, midtones 0.0625, and highlights 0.6009.

6.2.2 Precision auto-tuning
To determine the application precision requirements, we employ binary search
over the number of mantissa bits, similar to [181], and over the number of
exponent bits for custom precision floating-point data, because the execution
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Table 6.3: Datasets observation parameters.

Name Description
Central Frequency 120.1172-125.7812 MHz
Channels per subband 4
Channel width 48 828.125 Hz
Declination 50.9410-54.8590
Duration 7199 s
Integration interval 2.002 78 s
Right Ascension 311.2500-318.7500

Table 6.4: WSClean parameters: the top part of the table shows parameters
that exclusively depend on the observation and on the radio-telescope structure;
the bottom part reports the CLEAN parameters employed for Cotton Schwab run.
These parameters are the most commonly used. However, this CLEAN algorithm
heavily depends on the user parameters, and a even more complex CLEAN can be
used for extracting the sky image such as the Multiscale CLEAN.

Parameter Value Description (unit)
size 6000 6000 output x and y dimensions (pixels)
scale 5 asec scale of a pixel (degrees)
use-idg active -
auto-threshold 3 CLEAN stop condition (sigma)
niter 50000 number of minor CLEAN iterations
mgain 0.85 gain per major CLEAN iteration
weight briggs 0 weighting mode and robustness
taper gaussian 2amin

time overhead (about 5-10x with respect to the optimized single-precision code)
of emulation of custom data types in software makes evaluating the entire search
space unpractical.
As shown in Figure 6.4 we manually instrument the application code to support
the software emulation of custom data types. To emulate custom floating-point we
employ a template header C++ library: FloatX [195] for floating-point [174]. We
do not include fixed-point numbers since they would result in very long fixed-point
representations; based on the analysis results, which shows that a large dynamic
range is required. This binary search algorithm first evaluates the mantissa size
and then the exponent size. Since the application usually runs in single precision,
the starting mantissa size of 23 bits is divided by two and evaluated. The process
consists of first determining the size to evaluate and then updating the headers
containing the mantissa and exponent sizes. Then, the application is compiled
and run. Finally, the algorithm evaluates the output precision employing the

86



CHAPTER 6. REDUCED-PRECISION ACCELERATION OF RADIO-ASTRONOMICAL
IMAGING ON RECONFIGURABLE HARDWARE

Application Manual code
instrumentation

Binary search: 
1) mantissa
2) exponent

Code update 
& 

compilation 

Application run 
& 

precision evaluation 

Custom 
 floating-point 

 <e, m>

Figure 6.4: Binary search algorithm: the application code is manually in-
strumented to support custom floating-point emulation. We apply binary search
first over the mantissa and then over the exponent, because the mantissa mainly
determines the accuracy while the exponent is mostly responsible of the dynamic
range. The code is updated and re-compiled at each iteration. Then, after the
application runs, the algorithm evaluates the output precision based on a threshold.
The algorithm provides the representation that should be used for the analyzed
code.

Structural Similarity Index Measure (SSIM) [196] metric.
We select SSIM [196] as the assessment metric since, differently from Peak Signal
to Noise Ration (PSNR), we can measure the perceived image quality and thus
evaluate how two images are similar. SSIM computation is more complex than
PSNR; however, it is computed as:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2
xµ

2
y + C1)(σ2

xσ
2
y + C2) (6.4)

SSIM evaluates different windows images (x and y) using the window average
(µx and µy), the window variance (σx and σy), the windows covariance (σxy).
The remaining two variables (C1 and C2) are employed to avoid instability when
µ2
x + µ2

y is close to zero. More precisely, these variables are obtained with the
following formula C1/2 = (k12L1/2)2, where L is the pixel-value’s dynamic range,
and k is a constant (usually k1 = 0.01 and k2 = 0.03).
For completeness, we describe the PSNR formula since we report it alongside
SSIM. Like Mean Squared Error (MSE), PSNR is straightforward to compute and
has specific physical meaning. PSNR computation is shown in Equation 6.5, where
MAX_I is the maximum value of the original image and the MSE is calculated
with Equation 6.6, where I is the original image and K is its approximate version.

PSNR = 20 · log10( MAXI√
MSE

) (6.5)

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (6.6)

The auto-tuning algorithm gives as output the mantissa and exponent sizes that
should be used to avoid noticeable precision loss. We use a threshold value of
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0.99 for the SSIM in order to have an approximate image as much similar to the
original one [197]. We employ the precision tuning method with the overhead of
running the application multiple times to detect the target precision. However,
we use binary search because it has lower time complexity (O(log2N)) compared
to brute force algorithms such as linear search, which has time complexity in the
order of O(N), where N is the search space, which in this case is the sum of the
number of mantissa and exponent bits.

6.2.3 Accelerator design
Modern Intel FPGAs such as Intel Arria 10 and Stratix 10 have support for single-
precision floating-point operations [198]. Their DSPs can perform Fused-Multiply-
Accumulate (FMA), which counts as two floating-point operations. However,
when employing fixed-point representation, they usually do not reduce the DSPs
usage [199]. Differently, Xilinx FPGAs have smaller DPSs [200], thus causing a
larger use of DSPs for floating-point operations, e.g., 3 DSPs for a single multipli-
cation. This property makes Xilinx FPGAs a worse candidate for single-precision
application compared to Intel FPGAs, but, at the same time, an interesting
candidate for exploring smaller data types that can be mapped on a smaller
number of DPSs.
Indeed, we target a Xilinx Alveo U50 [201] for deploying our accelerators. The
device mentioned above is a small form factor board with a large number of
resources, PCIE3 connection, HBM2 memory, and a TDP of 75W. The Alveo
U50 is connected to a host system through a PCIE3 X16 connection as shown in
Figure 6.5. Modern large FPGAs such as the Alveo U50 are built with multiple
Super Logic Regions (SLRs). An SRL is a single FPGA die slice contained in an
SSI (Stacked Silicon Interconnect) device [200]. We develop the accelerators into
the Xilinx Vitis 2020.2 [202] tool flow, which is shown in Figure 6.5. Xilinx Vitis
needs a source code with embedded OpenCL API to run on the host processor
to schedule and control the execution of the accelerators. A similar approach
is followed for the accelerator code: the source code containing HLS pragmas
or optimization directives is compiled and linked by the Xilinx Vitis compiler.
Unlike Intel, Xilinx FPGAs expose developers to a deeper level of optimization
details, e.g., array partitioning and IP implementation with resource constraints.
The kernel compilation step consists mainly of transforming the source code into
HDL. At this stage, programmers can detect possible optimization opportunities
and or code inefficiencies. The linking stage maps the accelerator on the FPGA
by employing user configuration directives such as computing units and memory
channel connections.
We use THLS [187] for mapping custom floating-point operations on FPGA [184].
Since a well-known lack in the Xilinx Vitis accelerator development with OpenCL
is the missing support of arbitrary precision [202] libraries, which are fundamental
for fixed-precision computation, small integers, and custom floating-point (THLS
is built on top of that), we employ C++ with HLS pragmas.
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Figure 6.5: Representation of the Xilinx Vitis toolflow (top box) and how it
relates to the deployment system (bottom box). The host code, which runs on the
CPU, uses the OpenCL API to communicate with the accelerator on the FPGA
and it is compiled with g++. The accelerator code, which runs on the FPGA,
includes High-Level Synthesis (HLS) pragmas and is compiled with the Vitis C++
compiler (v++).
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6.2.4 Evaluation with state-of-the-art architectures

Each evaluated architecture needs to be profiled with specific tools. Applications
running on a CPU can be profiled with a large number of profiling methods;
we choose perf [73] since it is available in most Linux distributions and is easy
to extract information such as floating-point operations count, DRAM memory
traffic, and power consumption (it is usually not needed to have root-access). On
the other hand, GPUs typically have proprietary tools. Indeed, we use NVIDIA
nvprof [62] and AMD CodeXL [63] for profiling flops and DRAM accesses on the
GTX 750 and the RX 550. We count the memory requirements and the number
of floating-point operations placed for evaluating the FPGA performance. For
measuring the power consumption on FPGA and GPUs, we extend libpowersensor
[203]. We select CPU and GPU architectures with similar characteristics such
as peak performance and power consumption, which are reported in Table 6.5.
However, as reported in Table 6.6, we have to employ an older NVIDIA GTX 750
instead of an NVIDIA GTX 1050 Ti. This is forced by the missing support of
power measurement hardware counters on the GTX 1050/1050 Ti [204].
According to [205], we would expect, for the same chip size, an improvement
of ~2x in terms of power consumption efficiency. Furthermore, the TDP values
reported for the GPUs are the power-cap limits read in the system out-of-the-box.
Indeed, these values are reduced compared to the limits advertised: 35 W instead
of 50 W for GTX 750 and 38 W instead of 55 W for RX 550.

Table 6.5: Hardware configurations of the employed hardware.

Architecture Configuration
Intel i9 9900k 8 cores, 2 threads per core, 4.0 GHz all cores,

16 MB L3 Cache, 64 GB DDR4 3600 MHz
NVIDIA GTX 750 512 CUDA cores, 1.14 GHz,

2 MB L2 Cache, 2 GB GDDR5
AMD RX 550 8 compute units, 1.09 GHz,

512 KB L2 Cache, 4 GB GDDR5
Xilinx Alveo 872 K LUTs, 1743 K Registers, 5952 DPS,
U50 8 GB HBM2

While the peak bandwidths reported in Table 6.6 are extracted from the device
datasheets, the peak performance is computed by multiplying the device frequency
and the number of operations that can be computed in parallel in a cycle for each
unit. For instance, the Intel i9 9900k has 8 cores that run at maximally 4 GHz;
each core can compute 32 flops (we are considering FMA as two flops) per cycle.
These values are verified by using synthetic benchmarks such as clpeak [206].
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Table 6.6: Peak performances of the compared architectures. The energy
efficiency is the peak estimate derived by the ratio of the peak performance and
the the thermal design power (TDP).

Architecture Peak Bandwidth TDP Energy Process
Performance efficiency
(TFLOP/s) (GB/s) (W) (GFLOP/W) (nm)

Intel i9 9900k 1.024 57.60 95 10.79 14 Intel
NVIDIA GTX 1050 Ti 2.138 112.1 75 28.50 14 Samsung [207]
NVIDIA GTX 750 1.164 80.19 38 30.63 28 TSMC [208]
AMD RX 550 1.097 96.00 35 31.34 14 GF [209]

Xilinx Alveo U50 Peak Bandwidth TDP Energy Process
Performance efficiency

Theoretical (724 MHz) 1.547 316 75 19.77 16 TSMC
Theoretical (300 MHz) 0.641 316 75 8.55 16 TSMC
Empirical (292 MHz) 0.535 316 75 6.84 16 TSMC

We apply a similar computation for evaluating the performance of the Alveo U50.
As shown in [210], we compute the theoretical performance of the Alveo U50
considering the maximum number of FMA operations (one addition and multipli-
cation [211]) that could be theoretically be placed on this FPGA. More precisely,
we count 5 DSPs for each FMA operation, and we consider the available resources
as reported in Table 6.7. Then this number is multiplied by the maximum of the
frequency advertised by Xilinx for the single-precision addition and multiplication
IP, which is 724 MHz [211]. A theoretical peak of 1.547 TFLOP/s is obtained by
multiplying this number by 2 since we consider the FMA as 2 flops. Since it is very
difficult to achieve such frequencies, as reported in [210], we employ the one Xilinx
advertised for this FPGA: 300 MHz. The resulting performance (0.641 TFLOP/s)
is considerably lower with respect to the theoretical one. However, this is still far
from what can be realistically achieved on this FPGA. Indeed, [210] shows that
usually, a better upper bound is represented by employing 70% of the LUTs or
80% of the DSPs. For completeness, we also compute the peak performance using
the FER (FPGA Empirical Roofline model) synthetic benchmark [210], and we
obtain a value of 0.535 TFLOP/s, which is really close to what we achieve in one
of our highly optimized single-precision accelerator prototypes.

6.3 Analysis

To determine the bottleneck in the WSClean imager, we perform a bottleneck
analysis (Section 6.3.1). Then, we carry out a data types precision analysis (Sec-
tion 6.3.2) to understand the precision requirements for the identified bottleneck
to be used for the accelerator design.
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6.3.1 Bottleneck analysis
As shown in Figure 6.6, we first evaluate the execution time breakdown of the over-
all imaging pipeline for different datasets. The trend in the execution time break-
down is comparable for all datasets. More precisely, the most time-consuming
step is inversion. Indeed, inversion needs to be run two times more than the
prediction to compute the PSF and the dirty image. Typically, the deconvolution
algorithm is the less critical phase.
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Figure 6.6: Execution time breakdown of WSClean for different datasets. The
most time-consuming phase is the inversion, followed by the prediction. The
inversion (light blue) is typically dominated by the execution time of the Gridding
kernel. The prediction (yellow) performs the inverse operation compared to the
inversion phase; therefore, similar optimization may be applied in the future to
optimize the imaging pipeline further.

6.3.2 Data types exploration
We evaluate custom precision floating-point data types employing software em-
ulation since common architectures such as CPUs and GPUs usually support
single- and half-precision floating points. We notice a fundamental application
property: since we are reducing the precision of the gridding kernel, it is sufficient
to compare the dirty images instead of the cleaned image to evaluate the accuracy.
The algorithm’s intrinsic nature easily explains this: the dirty image is a sky image
with added noise, and the CLEAN algorithm extracts the brightest sources at
each iteration. Thus, each successive iteration needs an equal or smaller dynamic
range. This feature helps evaluate the application requirements faster since we
need just to run the gridding algorithm once to generate the dirty image, avoiding
running the degridding and any CLEAN iterations, thus drastically reducing the
analysis time. More precisely, we need to perform the gridding kernel once to
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generate the dirty image, once for the PSF, and twice times during the CLEAN
major iterations. Therefore, for this particular case, the analysis is about 4x faster
than running the whole WSClean application.
We show in Figure 6.7 how the reduced precision affects the radio-astronomical
images. Noise effects can be noticed when using a mantissa of only 10 bits.
Another important observation regards the relationship between dirty and clean
images.

(a) Dirty images.

(b) Clean images.

Figure 6.7: Comparison of (a) dirty images and of (b) clean images, both with
different data types precision. The numbers enclosed in the angular brackets
represent the exponent and mantissa bits. FP<8,10> and FP<8,7> correspond
respectively to Nvidia Tensor and Brain floating-point (bfloat) format. While
the dirty image a) is a noisy image when using bfloat, the clean image in b)
is completely dark. We reported SSIM and PSNR values for the whole images;
the blue and red squares are zoomed image sections, which contain respectively the
SSIM and PSNR values. We can observe that the SSIM (and PSNR) does not
vary significantly between dirty and clean images except for poor quality images.
We can notice some visible differences for SSIM lower than 0.99.

In Figure 6.7a the images obtained emulating brain floating point contains a large
quantity of noise, the same image cleaned (see Figure 6.7b) is empty. Therefore
we can conclude that it is sufficient to analyze the dirty image to understand
the precision requirements for the entire imager paying attention to the error
indicators (SSIM).
In Figure 6.8 we evaluate the accuracy of dirty images for different data-types for
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the gridding kernel in terms of SSIM and PSNR compared to the single-precision
floating-point version. The precision requirements depend on the datasets em-
ployed, but the combination with 11 bits for the mantissa and 6 bits for the
exponent can satisfy almost all the selected datasets. Furthermore, data types
such as half-precision and fixed precision are not suitable for this field since their
dynamic range is too small. Other data types with very small mantissa, such
as brain floating point and NVIDIA Tensor Float, are not accurate enough to
correctly represent all the faint features in the image. It is necessary to specify
that the Tensor Float representation on NVIDIA GPU can only be used to
perform warp matrix-to-matrix multiply and accumulate operations. In this work,
we consider this data type representation for the whole kernel considering, e.g.,
sine/cosine.
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Figure 6.8: Precision accuracy for the selected 14 datasets (d0-d13) for different
custom floating-point data types expressed in terms of SSIM and PSNR. The
numbers enclosed in the angular brackets represent the exponent and mantissa bits.
FP<8,10> and FP<8,7> correspond respectively to Nvidia Tensor and Brain
floating point. High-resolution images closely similar to the original usually have
an SSIM equal or higher than 0.99 [197]. Given this threshold, reduced precision
can produce high-quality images. However, it depends on the datasets. Indeed, in
most cases, FP<6,11> or FP<6,12> reach the threshold, while smaller mantissa
sizes do not. Such data types are not available on the standard accelerator platform
such as GPU, which usually support half, single, double precision. Therefore a
custom accelerator is needed. PSNR is just plotted for completeness, and the
selected threshold of 50 dB is the maximum value for lossy images, and it serves
only as a reference.
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6.4 Custom Precision Accelerator Architecture

Optimizing the gridding algorithm on Xilinx FPGAs requires different steps. We
first describe in Section 6.4.1 the high-level structure of the accelerator by explain-
ing the HLS optimizations applied. Then, we explain the employed optimizations
for lookup tables and reduced precision respectively in Section 6.4.2 and in Section
6.4.3. Finally, we discuss in Section 6.4.4 all the different methods we explore for
placing the accelerator on the FPGA through Xilinx Vitis and the design points
of our prototypes.

Algorithm 6.1: Subgrid computation HLS pseudocode. The core
computations are located in line 13 (sine and cosine) and 16 (fused
multiply and accumulate). Moreover, the algorithm consists of nested for-
loops over radio-astronomical observation parameters such as timesteps,
channels and polarizations. The algorithm process the input visibilities
employing information regarding the frequencies (wavenumbers), their
position in the uv-plane (uvw and uvw_offset), and subgrid pixel
parameters (lmn) to compute image’ subgrids.
Input: visibilities, wavenumbers, uvw, uvw_offset, lmn
Result: subgrids

1 subgrids ←− 0;
2 for s in subgrids_per_cu do
3 for t in timesteps do
4 for c in channels do
5 #pragma unroll factor = UNROLL_CHANNELS
6 for p in pixels do
7 #pragma unroll factor = UNROLL_PIXELS
8 complex<float> pixel[pol]
9 float lmn [3] ←− lmn[p]

10 float phase_offset ←− compute_phase_offset(uvw_offsets,
lmn)

11 float phase_index ←− compute_phase_index(uvw, lmn)
12 float phase ←− compute_phase(phase_index,

phase_offset, wavenumbers)
13 float phasor [2] ←− cosisin(phase)
14 for pol in polarizations do
15 #pragma unroll
16 pixel[pol] += visibilities[t][c][pol] * phasor
17 end
18 end
19 end
20 end
21 end
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6.4.1 Gridding accelerator
We report the HLS optimized pseudocode of the subgrid computation in Algorithm
6.1 and its high-level representation in Figure 6.9. We summarize the main
optimizations applied to get our highest performance prototypes:
Memory management: We first optimize the data accesses from the HBM2
memory by using multiple memory channels and widening the AXI (Advanced
eXtensible Interface) width to 512 bits for the bus that transfers most of the
data. More precisely, we use three channels per compute unit: the first one for
the input of the main computation block (subgrid computation), the second one
for the input of the post-processing pipeline (Aterms, tapering, reorder, and FFT),
and the third one for the output subgrid (see Figure 6.9). The data is moved into
local buffers to exploit reuse and improve the memory access latency.

gmem0 Subgrid 
data reader

gmem1 Post-processing  
data reader

gmem2 Subgrid 
writer

Phase computation

Phasor computation

Pixel computation

Aterms

Tapering

Reorder

FFT

visibilities

uvw_offset

wavenumbers

lmn
uvw

Post-processing
Subgrid computation

spheroidal
aterms

subgrid

Figure 6.9: High level scheme of one gridding compute unit: the data are
read and write in parallel from different memory channels (gmem); the main
computation subgrid computation is replicated N times; finally post processing
HW applies the aterms, the tapering and an FFT. Vectorized memory access are
reported in black, while the scalar are ones dashed.

Initiation interval of the subgrid computation: The accelerator described
in HLS is implemented as a hardware pipeline where ideally, the pipeline is stall-
free, and new data is fed into the pipeline every cycle. In this case, the initiation
interval (II) is equal to 1. In the case of stalls, the II could be larger than 1.
Depending on the design, it then takes several cycles for the operations on that
data to complete. To achieve II=1, we exchange the loop order of the timesteps
and pixels (see Algorithm 6.1). The new loop order reduced the Read after Write
(RaW) dependencies relative to the subgrid pixel update.
Parallelism: We increase the parallelism with respect to the code mentioned
above at different levels. We first increase the parallelism of the subgrid computa-
tion by unrolling the channels and the pixels loops. The unrolling is implemented
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Figure 6.10: Resource usage and speedup of the subgrid computation (not
including the post-processing pipeline) for different channels and pixels unrolling
factors. The resource values refer to the kernel only, without considering the
overhead used by Xilinx Vitis, and are normalized by the maximum number of
resources available in the device. The execution time is normalized by the largest
values, which is the subgrid computation without unrolling (<1,1>).

by employing larger local memories (BRAMs) and by unrolling the loops (see
lines 5 and 7 in Algorithm 6.1) to increase the number of parallel floating-point
units. Moreover, Figure 6.10 reports the performance and the resource usage
for different unrolling factors for channels and pixels. While the performance
increases almost linearly, resources occupancy makes larger unrolling even more
efficient in terms of resource savings, e.g. especially for DSPs (see Figure 6.10).
Indeed, unrolling the loops of a factor 2 do not imply the 2x more utilization
of this resource. However, in order to be able to place more units and have a
better area usage and placement, the parallelism should not be excessive, e.g.,
the case 4_8 is using more than 50% of resources, leaving no space for placing
multiple units. Another significant observation concerns the relationship between
unrolling channels over pixels: unrolling over the channels increases the BRAM
usage and reduces the DSPs usage, which is the opposite behavior obtained by
unrolling more over the pixels. This happens because unrolling over the pixels
introduces more cosine and sine computation, which requires a larger amount of
DSPs than other operations such as additions and multiplications. We conclude
that the best trade-off is to have similar unrolling factors for channels and pixels
to achieve balanced use of DSPs and BRAMs.
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Then, we instantiate multiple subgrid computations (see Figure 6.9) that are
run in parallel by using the DATAFLOW pragma [212]. Finally, we increase the
parallelism through increasing the number of instantiated kernel units depending
on the design time closure difficulty.
Post processing trade-offs: The post-processing computation consists of ap-
plying the A-terms, the tapering, and after a pixel reordering an FFT. As men-
tioned above, the subgrid computation is replicated N times, thus making it
possible to have just a single post-processing unit that is capable of processing
the data from each subgrid computation in a pipelined fashion. This will add
a delay given by the execution time of the post-processing computation, but
with the advantage of a constant throughput and reduced resource usage. Since
the subgrid computation is much more time consuming compared to the post-
processing computation, the latter is designed as cheap as possible to have just
sufficient performance to balance the subgrid processing, e.g., initiation interval
greater than 1 and low parallelism, and save as many resources as possible,
making the subgrid computation the only responsible for the resource mapping on
the FPGA board. For completeness, we report that the post-processing section
responsible for applying the Aterms and the tapering has an initiation interval
of 2 cycles (internal computation, the data is read at II=1 from the subgrid
computation), which can be tuned up to II=8 to facilitate the accelerator placing
in some instances by reducing resource utilization. We employ this trade off for
the single-precision lookup table and custom floating-point design. The section
responsible for the FFT has an initiation interval of 3 cycles.

6.4.2 Cosine/sine Lookup Table and reduced precision
Similarly to [104], we employ a lookup table implementation to perform cosine
and sine operations and save resources. Indeed, in Xilinx FPGAs, a cosisin
operation, which computes the cosine and sine of a given angle, requires 11 DSPs
compared with the 3 DSPs needed by the lookup implementation. We further
reduce the DSPs usage to zero by not representing the phase in radians. We
move the multiplication used for the phase conversion in the outer loop and
apply it when reading the lmn input data, which is a common factor when
computing the phase offset and index and consequently the phase. The lookup
table implementation consists in saving into BRAMs for pre-computed values for
sine and cosine in the range of [0; π4 ]. Then these values are used to compute the
sine and cosine by employing the symmetry properties of trigonometric functions.
Finally, we have to tune the performance of the post-processing pipeline to let
the accelerator achieve better frequencies (about 10 MHz higher).

6.4.3 Reduced precision
The reduced-precision accelerators are obtained by employing the Templatized
Floating-Point HLS library [187] for replacing the floating-point operations. Even
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if we selected just one numeric format at the time per the whole kernel (homoge-
nous custom floating-point operations), we decide to employ this library instead
of the CPFP [186] since it is the most resource-efficient (see Appendix A).
In order to have a portable accelerator, we use the same host-kernel interfaces as
for the single-precision floating-point accelerators. Then, we add some conversion
steps to the input (from single precision to custom precision) and to the output
(from custom precision to single precision) of the subgrid computation. This
design choice is supported by the fact that the application is purely compute
bound, and the conversion does not affect the performance significantly. Since
sine and cosine are not available in the library mentioned above, we adapt the
lookup implementation used for single-precision by adding a custom floating-point
round to integer method that is used to determine the index of the lookup table.
As mentioned above, we have to tune the performance of the post-processing
pipeline to achieve the accelerator placement at a reasonable frequency (greater
than 250 MHz), which means getting a significant speedup. Indeed, when using
more resources, the achieved frequency becomes considerably low, e.g., 200 MHz,
thus not being beneficial to place multiple units.

6.4.4 Device-specific considerations
After optimizing the high-level synthesis code, one of the main tasks to get the
best performance from an FPGA device is the accelerator placement. While it
is possible to let the Xilinx Vitis tool flow map the accelerator automatically on
the device, it is more efficient in terms of achieved frequency and, consequently
performance to fully customize the accelerator mapping. We report the most
challenging tasks we face during the FPGA placement:
Super Logic Regions: Figure 6.11 shows an example of two accelerators with
two compute units each placed on the Xilinx Alveo U50. The Xilinx Alveo U50
consists of two Super Logic Regions (SLRs), and it is recommended to map an
accelerator on a single SLR. Crossing two SLRs can cause a critical path even if
the SLRs are connected with special registers that try to mitigate this problem.
During the placement of our accelerators, we find out that each SLR is divided
into two subregions [200], and in the middle of them, there is a region consisting
of units responsible for managing the input clock. Traversing the two regions as
shown in Figure 6.11 can introduce critical paths that will negatively affect the
maximum clock frequency of the accelerator. In our most resource-demanding
design, the single-precision lookup table and the reduced-precision ones, we have
to instantiate multiple units at different levels to meet timing requirements: 1)
one accelerator/compute unit per SLR to avoid SLR crossing, and 2) multiple
subgrid computation in each compute units to avoid clock region crossing.
Static region overhead: When mapping application by using HLS a static
region (blue area in Figure 6.11) is flashed on the FPGA for supporting (acceler-
ated) applications by using HLS (see Table 6.7). This static region has the task
of managing interconnections such as AXI. It also makes the programmers able
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Figure 6.11: Example of an accelerator placement on Xilinx Alveo U50. In
blue is reported the static region for deploying accelerators with Xilinx Vitis. The
dynamic regions, which are the areas where the accelerators (yellow, purple, green,
light blue) are mapped, are highlighted in orange. The FPGA is divided into
multiple Super Logic Regions, FPGA die slices that compose large FPGA boards.
Critical paths can usually occur when crossing multiple SLRs. However, critical
paths can occur in the same SLR when connecting physically distant components
and can be due to traversing the clock region like in the highlighted case.

to only place the accelerator in the dynamic region, which results, as depicted by
Figure 6.11, in two asymmetric SLR sub-regions, thus it is important to place,
for a large design, more compute units on the left side than on the right side.
This observation leads to placing multiple compute elements, whenever possible,
in the same accelerator to help the tool find a better hardware placement.
HBM2 memory channels: HBM2 memory can be employed efficiently for both
memory-bound and compute-bound applications. In the first case, the large mem-
ory bandwidth will improve the application runtime by speeding up the memory
transfers. In the second case, which coincides with our case, the multiple channels
allow instantiating multiple accelerators that access independent memory spaces.
Related to the HBM2 channels, there is another key issue: the Alveo U50 HBM2
memory channels are connected directly to the SLR0 [213], which means that
additional logic is needed to transfer the data to the SLR1. When placing multiple
accelerators and/or large sub-units that access the memory, connecting the AXI
interfaces to distant memory channels is beneficial to avoid a long critical path
between memory and processing. We carefully select the placement of HBM2
memory channels to avoid critical paths caused by area congestion, e.g., between
two employed HBM2 channels, we decide to leave at least three channels unused.
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Table 6.7: Xilinx Alveo U50 resources: total indicates the overall number of
resources of the FPGA, while the dynamic region reports the available resources
for accelerator deployment using Xilinx Vitis HLS, which is also reported in
percentage.

Resources Total Dynamic Available (%)
types region
LUTs 872 K 731 K 83.83%
REGs 1743 K 1462 K 83.88%
DPSs 5952 5340 89.72%
BRAMs 1344 1128 83.93%
URAMs 640 608 95.00%

More precisely, the Alveo U50 has 32 HBM2 channels, of which only 28 are
usable due to power budget limitations (the peak bandwidth of 316 GB/s can
be achieved by employing 24 channels) [214]. As shown in Figure 2.11 we use 3
HBM2 channels per compute unit. Moreover, we employ 6 channels in the lookup
and reduced precision implementation because we instantiate two compute units.
Furthermore, as shown in Figure 6.12, the application is not memory bound for
any of the accelerator designs that we considered. Therefore, the bandwidth of a
single HBM2 channel is sufficient to satisfy the bandwidth requirements for this
application. The choice of using multiple HBM2 channels is determined by the
mentioned above congestion area issues.
Vivado strategies [215]: Xilinx Vitis [202] is built on top of Xilinx Vivado,
which is responsible for placing and routing the design on the FPGA board.
Differently from the CPUs and GPUs programming model, the user can fully
customize placement and routing strategies. The choice is between predefined
implementation strategies or fully customizable strategies that reduce power con-
sumption, area usage, improved performance, re-timing, etc. However, the main
strategies are accessible by the user simply changing the Vitis Compiler optimiza-
tion flags. We notice that both approaches lead to similar HW results. Indeed,
when the frequency of the default Vivado strategy (-O0) is not able to meet the
power constraints, we employ the PowerOpt strategy (-O1), e.g., single-precision
lookup table, or when it is not able to meet the timing constraint, we use the
ExtraTimingOpt (-O3), e.g., to achieve higher frequencies in the reduced-precision
accelerators.
Pblock placement: This is a technique that can be applied after the design is
implemented for guiding Xilinx Vivado towards a better design placement. With
this option, the user can visually select from the GUI where to place certain units
by creating a physical constrained region, the so-called pblock. This usually helps
in cases of a desired higher frequency. However, we did not notice a significant
improvement in our accelerators since they were already close to the highest
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advertised frequency.
Frequency overclock: Although Xilinx advertises 300 MHz as the maximum
frequency for the HLS kernels, in reality, it is possible to achieve higher frequen-
cies. Indeed, in [216] the authors match the same HBM frequency of 450 MHz for
small accelerators. However, this is usually not achievable for larger accelerators
that usually reach frequency in the range of 200-300 MHz [217]. We manage to
increase the frequency of the baseline single-precision floating-point accelerator
since the resource usage is not so close to the maximum, and it is able to reach
the standard frequency (300 MHz) by just employing the Vivado Default imple-
mentation strategy.

6.4.5 Design points

Here we report the main design points of our accelerators:
Single-precision: Our baseline accelerator in single-precision (FP32) is obtained
by simply using 2 subgrid computations with unrolling factor <4,4> and a single
post-processing pipeline. In this case, due to the modest use of LUTs and FFs,
it is not necessary to place the computation over different SLRs or apply any
particular strategy. We are also able to achieve higher frequencies (FP32_OC in
Table 6.8). Unfortunately, it is impossible to use more resources on this FPGA
without violating timings (slow clocks that make the accelerator inefficient) or
power constraints (high power budget).
Single-precision lookup-tables: The cosine/sine lookup table implementation
can significantly reduce the number of DSPs employed. However, we notice
only a small, but still significant reduction of DSPs, since the main computation
consists of FMA operations. We manage to improve the performance by placing
50% more computations. This is achieved by using an unroll factor of <2,4>
and three subgrid computation units. This accelerator is then instantiated in
each SLR, thus having two post-processing pipelines. In this case, to be able to
place the accelerator, we have to reduce the number of DSPs by employing the
config_op option during the HLS compilation to implement all the floating-point
additions and multiplication with LUTs. To achieve better frequency, we employ
the ExtraTiming_Opt strategy and reduced the post-processing computation’s
performance. We notice through analysis, a lookup table of 2048 is sufficient to
keep the SSIM close to 1. The reported accelerator FP32_LT uses a lookup table
with 2048 entries.
Reduced-precision: we manage to place 100% more computation with reduced
precision compared to the single-precision baseline accelerator and 50% more
than the single-precision lookup table implementation. This accelerator consists
of 2 subgrid computations with unroll factors <4,4> placed in each SLR. To
achieve better frequency, we employ the ExtraTiming_Opt strategy. For the
reduced-precision prototypes, we use a lookup table with 2048 entries. In order
to achieve the 300 MHz frequency, we employ the reduced performance post-
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processing computation. Higher frequencies do not meet timing constraints and
the power budget (or TDP).

6.5 Evaluation and discussion
In Section 6.5.1 we report the area usage of the proposed accelerators, and we
assess our accelerators performance in Section 6.5.2 by employing the roofline
model [65] and by measuring the throughput and the energy efficiency. Then, we
highlight significant lessons learned during this work in Section 6.5.3.

6.5.1 Area usage
In Table 6.8 the area usage of the highest performance accelerators here designed
is presented. More precisely, we report as FP32 the baseline single-precision
floating-point accelerator, which can reach the advertised frequency of 300 MHz.
Moreover, we show the same design with higher frequency (346 MHz) as FP32_OC.
Resource usage does not vary significantly. Compared to [104] our DSP usage is
significantly lower due to the mentioned above issues regarding the static region
and timing closure.

Table 6.8: Resource utilization for the highest performance Gridding accelera-
tors.

Version LUTs FFs DSPs BRAMs Frequency
FP32 434 k (49.88%) 604 k (34.72%) 4114 (69.12%) 454 (33.74%) 300 MHz
FP32_OC 435 k (49.99%) 640 k (36.78%) 4114 (69.12%) 454 (33.74%) 346 MHz
FP32_LT 649 k (74.58%) 614 k (35.29%) 3142 (52.71%) 1045 (77.75%) 296 MHz
FPX_6_11 642 k (74.81%) 754 k (43.33%) 1956 (32.81%) 818 (60.86%) 300 MHz
FPX_6_12 656 k (75.39%) 767 k (44.10%) 1956 (32.81%) 818 (60.86%) 300 MHz

The reported single-precision lookup-table (FP32_LT) accelerator has a higher
overall resource usage because we manage to place more units compared to FP32.
DSPs usage is lower since the lookup-table sine and cosine computation uses
fewer DSPs with regards to the baseline design, and we implement addition and
subtraction without DSPs. The achieved frequency of 296 MHz is close to the
advertised one, which is difficult to achieve due to power-budget constraints.
The reduced-precision accelerators (FPX_6_11 and FPX_6_12) consume more re-
sources than the baseline, but we can place twice the number of compute units.
Furthermore, this design uses fewer resources than the baseline and consumes
less power than the design with a single-precision lookup table. As already
mentioned FPX_6_11 consumes slightly fewer resources (LUTs and FFs) than
FPX_6_12 because of the smaller mantissa.

103



CHAPTER 6. REDUCED-PRECISION ACCELERATION OF RADIO-ASTRONOMICAL
IMAGING ON RECONFIGURABLE HARDWARE

6.5.2 Performance

We assess the performance of our accelerators against CPU and GPUs with similar
peak performance and manufacturing technology. We first evaluate the perfor-
mance achieved by each platform with the roofline model [65,141] in Figure 6.12.
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Figure 6.12: Roofline model of the gridding kernel mapped to different
architectures. The pentagon shape represented the TFLOP/s achieved by each
platform measured using performance counters. The diamond shape shows the
TFLOP/s achieved without including sine and cosine, since specific architectures
such as the AMD RX 550, uses multiple floating-point instructions to compute
sine and cosine compared to the NVIDIA GTX 750 that has special function
units for transcendental math operations [44]. We show only one point for the
GTX 750 and the lookup table accelerators (including the custom floating-point
prototypes) since the sine and cosine operations are not executed as floating-point
operations. We report different horizontal roofs for the Xilinx Alveo U50 based on
the discussion regarding peak performance in Section 6.2.4.

104



CHAPTER 6. REDUCED-PRECISION ACCELERATION OF RADIO-ASTRONOMICAL
IMAGING ON RECONFIGURABLE HARDWARE

The roofline model shows the performance obtained (TFLOP/s) and the analyzed
kernel’s arithmetic intensity (FLOP/Byte). The roofline defined in this way is not
a measure of throughput but an indicator of how the application can be optimized
for a certain architecture. Indeed, we report that only the NVIDIA GTX 750 can
reach almost peak performance. This is because cosine and sine operations are
offloaded to special units and indeed do not create bottlenecks.
Differently, the AMD RX 550 does not have these special units, and the cosine
and sine operations run at a quarter of the speed [218] of single-precision floating-
point operations. We further notice that each cosine and sine function requires
three floating-point operations. Indeed, in Figure 6.12 we also show the RX
550 performance numbers taking into account the extra instruction to compute
sine and cosine functions. We similarly reported the performance of the proposed
accelerators showing how they are performing better than CPU. In particular, our
best reduced-precision design is close to the AMD GPU in terms of TFLOP/s.
Compared to [104] our baseline design has lower performance due to not having
single-precision floating-point DSP support.
Moreover, Figure 6.12 shows that the application is compute-bound on all the
architectures, and its high arithmetic intensity value highlights low memory band-
width requirements. For instance, considering the RX 550, the roofline shows
that the bandwidth required is lower than 3.7 GB/s. Similar results apply to
the other architectures in Figure 6.12. Therefore, a single HBM2 channel (per
compute unit) would satisfy the bandwidth requirements of the application on
FPGA. Note, however, that we employed more channels to facilitate timing
closure, as previously mentioned. Being compute bound can also be explained
at the algorithmic level: the application reads cachable data (e.g., visibilities). It
produces the subgrid pixels by performing many operations over this cached data.
Thus, the application would be memory bound only in the case of architecture
with a lower DRAM bandwidth. Higher bandwidth requirements would also
be needed if next-generation FPGAs would enormously increase the computing
capability, e.g., with more sophisticated DSPs.
In Figure 6.13 we evaluate the throughput and the energy efficiency of the ac-
celerators. More precisely, Figure 6.13a reports the throughput in terms of
Mega Visibilities per second (Mvis). Figure 6.13a evaluates the performance
of our accelerators. All our designs have higher throughput compared to the i9
9900k up to 2.12x. Our best reduced-precision design is close to the AMD GPU
performance. Moreover, the reduced-precision prototype is 1.84x faster than the
single-precision baseline. However, the GTX 750 is the faster architecture due to
their special function units mentioned above. Our baseline architecture is also
outperformed by the Intel counterpart proposed in [104] because of the single-
precision DSPs support of Intel FPGAs.
As shown in Figure 6.13b and 6.13c our accelerators outperform up to 3.46x in
terms of energy-efficiency the CPU. The single-precision lookup table implemen-
tation reaches 88.97% of the empirical peak performance. Our best reduced-
precision design is 2.03x more energy efficient than the single-precision baseline
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Figure 6.13: Performance and energy efficiency evaluation on different architec-
tures. FPGAs prototypes outperform the CPU and are close in terms of throughput
to the AMD GPU. However, GPUs show better energy efficiency.

design. However, it is 78.77% and 63.29% less energy-efficient than the evaluated
AMD and NVIDIA GPUs.
We also observe that the AMD RX 550 is more energy-efficient than the NVIDIA
GTX 750. This is mainly caused by the different lithography technology. By
scaling the performance of the NVIDIA GTX 750 chip to 14 nm [205] the power
consumption would be ~2x reduced, thus being more efficient than the AMD
counterpart.
Summarizing, our key observations are:

1. Our single-precision floating-point accelerators are more energy-efficient com-
pared to CPUs with similar technology because of the better hardware
utilization.

2. Reduced precision improves the accelerator’s overall performance being much
faster than CPU and achieving comparable performance to AMD GPUs
thanks to the higher density of operations that we placed on the FPGA.

3. NVIDIA GPUs reach the highest percentage of peak performance exploited
(~88%) compared to the other architectures, especially against AMD GPUs
(~73%), thanks to the special units for sine and cosine. Overall, GPUs are
the more energy-efficient architecture (see Figure 6.12 and 6.13) compared
to CPUs and FPGAs with similar features due to their energy-efficient
architecture (see Table 6.6).

6.5.3 Lessons learned
Radio-astronomical imaging applications usually employ single-precision or double-
precision floating-point data types. We evaluate the use of reduced-precision data
types for the gridding kernel and make the following observations:
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Reduced precision applicability in radio-astronomical imaging: Different
from artificial intelligence applications, where it is possible to highly reduce the
data size, e.g. 1 or 8 bits [219, 220], radio-astronomical imaging needs higher
precision for reconstructing sky images. Indeed, from our analysis, we observe that
reduced precision can be applied in a state-of-the-art radio-astronomical imager.
However, compared to AI tasks, the required precision is higher to avoid image
artifacts. Tensor-Float floating-point numbers have a sufficiently high dynamic
range for radio-astronomical imaging kernels, but the number of bits is too low
to accurately represent the application values, such as visibilities and subgrids.
Moreover, on GPUs this format can only be used for specific warp matrix-to-
matrix multiply and accumulate operations.
Benefits of applying reduced-precision in radio-astronomical imaging:
Reduced precision is a well-known technique for improving performance and en-
ergy efficiency [28]. It is a technique that can be applied to compute-bound
applications to reduce the compute unit size and memory-bound applications to
decrease memory bandwidth requirements. We observe a significant improvement
in GFLOP/s and energy efficiency, respectively 81.96% and 84.71% compared to
the standard single-precision accelerator and 25.75% and 33.02% compared to the
lookup-table implementation.
FPGAs vs CPUs and GPUs: The state of the art confirms that FPGAs and
GPUs are more energy-efficient than CPUs except in rare cases [17]. Most past
works shows that FPGAs are more energy-efficient than GPUs. However, these
works compare GPUs with higher performance and power consumption. In this
work, we show, as presented in [104], that for this particular application domain,
GPUs with similar peak performance, thermal design power and manufacturing
process are faster and have better energy efficiency. GPUs are also easier to
program compared to FPGAs, which require hours of compilation to generate
the bitstream. However, FPGAs have the flexibility to synthesize custom data
types on hardware for assessing performance improvement against standard data
types. In this work, we first evaluate the applicability of reduced precision for
radio-astronomical imaging. Then, we design a reduced precision accelerator for
radio-astronomical imaging on FPGAs reporting similar performance to GPUs
without special sine/cosine units and improved performance and energy efficiency
compared to its baseline.
Xilinx Alveo U50: We make the following observations about the Xilinx Alveo
U50 FPGA:

• The static region consumes many resources (~17% LUTs and ~13% DSPs)
reducing the maximum performance attainable with HLS accelerators.

• The power budget and timing closure constraints, which can be improved
with Vivado strategies and overclocking, make it impossible to fit more
compute units (see Table 6.8) in the designs reaching a maximum of 69% of
DSPs (77% counting the static-region effect).
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• Large accelerators are difficult to place as discussed in Section 6.4.4 due
to SLR placement. However, as previously discussed, Xilinx FPGAs are
appealing candidates due to their DSPs structure (see Section 6.2.3).

• A positive feature in HBM-based FPGAs is the possibility to map AXI
interfaces to a larger set of memory channels, alleviating congestion issues
arising from small numbers of memory channels.

6.6 Related work
Related work on radio-astronomical imaging acceleration on modern computing
systems is described in Section 6.6.1; moreover, we report related work on accel-
erating domain-specific-application by using Xilinx Vitis in Section 6.6.2.

6.6.1 Radio-astronomy acceleration
Over the past couple of years, hardware technologies have significantly improved,
and a fair amount of research has been done on optimizing radio-astronomy
algorithms to satisfy the, e.g., the huge Square Kilometre Array requirements
[221].
The current state-of-the-art full imager, WSClean, is proposed by Offringa et
al. [114]. It consists of an entire radio-astronomical imaging pipeline, including W-
stacking, which is an extension of the previous gridding and degridding algorithm,
the so-called W-projection, and different CLEAN algorithms such as Högbom,
Cotton-Schwab and Multiscale CLEAN [112].
Veenboer et al. [4, 222] optimize the Image-Domain Gridding [105], the current
state-of-the-art fastest algorithm for gridding and degridding for radio-astronomical
imaging. They show how GPUs could reach almost peak performance and deliver
better execution time and energy efficiency than CPUs. Image-Domain Gridding
is now part of the WSClean imager. In [104] the authors also accelerate the
gridding and degridding kernels on FPGA using a high-level-synthesis method-
ology based on OpenCL. Their FPGA implementation outperforms CPUs, but
the GPU one is more energy efficient. Our single-precision accelerator baseline is
outperformed by the one presented in [104] due to the single-precision floating-
point DSPs support of Intel Arria FPGA [198]. However, we employ Xilinx
FPGAs to assess the performance of a reduced precision accelerator for radio-
astronomical imaging.
Hou et al. [223] implement an optimized prototype for the degridding algorithm
on FPGA, outperforming both CPU and GPU by respectively 2.74x and 2.03x
in terms of energy-delay product (EDP). However, they employ an outdated
version of the degridding algorithm called W-projection, which does not reach
the performance of IDG and does not include DDE corrections [106].
Corda et al. [33] focus on estimating the benefit of near-memory computing
for huge images in IDG. They show that FFT is a critical bottleneck, which
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can be alleviated using architectures exploiting High-Bandwidth Memory. More
precisely, they demonstrate how an FPGA design could reach a similar perfor-
mance compared to a GPU with smaller memory and less memory bandwidth
(see Chapter 5).

Table 6.9: Radio-astronomy related work.

Work Date Application Platform Optimization
Offringa 2014-2017 W-Stacking, CLEAN, CPU Optimized full imager
[112,114] (Högbom Cotton-Schwab (WSClean)

Multiscale)
Veenboer 2017-2020 Image-Domain Gridding CPU/GPU code optimization
[4, 222] (added to WSClean)
Grel [224] 2018 Högbom CLEAN FPGA Custom accelerator of Högbom

CLEAN formulated as a
Compressive Sensing problem

Veenboer [104] 2019 Image-Domain Gridding FPGA custom accelerator
Seznec [225] 2019 Generic deconvolution GPU half-precision deconvolution
Hou [223] 2020 W-Projection FPGA custom accelerator
Corda [33] 2020 Large 2D FFT FPGA NMC acceleration
This work 2022 WSClean FPGA Reduced precision analysis

(Image-Domain Gridding) and acceleration

Seznec et al. [225] propose a simple deconvolution GPU implementation using half-
precision data type. While half-precision floating-points speed up the algorithm
significantly, using this data type causes output degradation depending on the
dataset used. Furthermore, they focus on small images (2048x2048 pixels), while
radio astronomical images are typically bigger, e.g., 5000x5000, 16000x16000 and
larger [4].
Grel et al. [224] formulate the Hogbom Clean as an Iterative Hard Thresholding
(IHT), a compressive sensing technique, to reduce the data dimensions. While this
work provides compelling insights, they optimize the most simple Clean algorithm
and use very low resoluted images (256x256 pixels).
To the best of our knowledge, our work is the first demonstration of a custom
floating-point architecture for radio-astronomical imaging by focusing on the main
bottleneck (gridding kernel).

6.6.2 Xilinx Vitis
Recent high-level synthesis work on Xilinx FPGAs is based on Xilinx’s new
programming tool-flow: Xilinx Vitis. Brown et al. [216] show the steps to take
when optimizing an application for Xilinx FPGAs by employing Xilinx Vitis.
Although some observations in their work have been helpful, they focus on very
small FPGA designs (using about 2% of the available resources), while we try to
put as many resources to good use as possible. Indeed, for a small accelerator, it
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is possible to reach a frequency of 450 MHz, while for realistic use cases, it turns
out to be in a range of 200-300 MHz.
Calore et al. [210] benchmark the Alveo U250 with the FPGA Empirical Roofline
model (FER), showing that there is a considerable difference between theoretical
and attainable performance on FPGA, which usually is not so high in different ar-
chitectures such as CPUs and GPUs. In our work, we employ the FER benchmark
to determine the single-precision horizontal roof for the Alveo U50.
Nguyen et al. [226] evaluate FPGAs from different vendors, comparing them to
GPUs showing that modern GPUs are easier to program and have better energy
efficient except for rare cases such as fixed-point precision computations.
Choi et al. [227] benchmark HBM-based FPGAs from different vendors to compare
the memory performance. They present insightful observations regarding how the
HBM2 memory channels must be mapped on Xilinx Vitis, e.g. Alveo FPGAs
usually has 30 channels available over a total of 32. Related to this work, we
notice that it is crucial to carefully select the HBM2 channel when implementing
the accelerator to avoid critical paths that can significantly reduce the achievable
frequency.

6.7 Summary and conclusions
We present the first reduced-precision custom floating-point analysis and acceler-
ator for radio-astronomical imaging. More precisely, we evaluate the bottleneck
of WSClean, the state-of-the-art radio-astronomical imager. Then, we analyze
for the first time the impact of reduced precision on radio-astronomical imaging
by employing custom floating-point for the main kernel, the so-called gridding,
from the state-of-the-art Image-Domain Gridding algorithm. We demonstrate
that reduced precision could be applied to radio-astronomical imaging, but data
types must be selected carefully based on the dataset to avoid precision loss.
Indeed, our analysis excludes standard low-precision data types supported in
modern GPUs and highlights insightful observations regarding how the analysis
can be evaluated in a shorter time. We port the gridding algorithm (from Image-
Domain Gridding) on Xilinx FPGAs using single-precision floating-point to serve
as a baseline. Moreover, we map the first reduced precision prototype of gridding
kernel on the same hardware by employing custom floating-point data types. We
find that the reduced precision accelerator is up to 1.84x faster and 2.03x more
energy-efficient than its single-precision version. Compared to the used CPU, our
best accelerator prototype is 2.12x faster and 3.46x more energy-efficient than
the CPU. However, it is 9.16% and 40.44% slower and 78.77% and 63.29% less
energy-efficient than AMD and NVIDIA GPUs.
Thus we corroborate with the earlier observation that currently GPUs are the
most energy-efficient architecture for radio-astronomical imaging, and custom
precision support in the next generation of GPUs could further improve the
performance/watt for radio astronomy imaging. Even though FPGA design
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support improved in the past years, FPGAs would need improved lithography
technology [228], more DSPs with improved performance for floating-point and
sine/cosine operations, smarter HLS compilers, and faster placement tools to be
competitive against GPU in this application domain.
This work paves the way for future research in this specific application domain.
Indeed, it would be interesting to explore reduced precision at runtime, e.g., by
reconfiguring the accelerators based on dataset requirements and/or user param-
eters, to further improve performance. Fine-grained reduced precision, which
consists of differentiating the data types for different instruction or kernel sections,
would be a viable option for higher performance and energy efficiency in future
works. The presented work also shows that FPGA technology can be improved to
make them more competitive compared to GPU in radio astronomy applications.

Limitations: FPGA technology is an interesting alternative to more traditional
architectures such as CPUs and GPUs. Typically FPGAs are faster and more
energy efficient than CPUs; however, this is not always true for GPUs. FPGAs
can be used to design custom hardware to match application requirements, like
in this Chapter. Nonetheless, current FPGA technology can hardly compete with
GPUs in applications where high accuracy and high performance are required,
such as our radio-astronomical imaging use case.
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7
Conclusions

Previous chapters show this thesis work on characterizing and optimizing ap-
plications for high-performance. This task is nowadays more difficult with the
widespread landscape of heterogeneous architecture available in compute clus-
ters. Therefore, we summarize the findings and the limitations of this thesis’
contributions in Section 7.1. Then, we describe how the hardware is evolving in
the present and near future, describing its main trends (Section 7.2); and how
these can bring open challenges for future work (Section 7.3).

7.1 Summary
Each contribution presented in this thesis pushes forward the state-of-the-art of
profiling and optimizing the application for high-performance computing systems.
Here, we summarize and discuss the contributions and how they improved the
state-of-the-art alongside their limitations.

7.1.1 Application profiling and offloading
Hardware-agnostic application characterization is a viable technique to extract
performance-critical metrics from applications without depending on the system
on which the profiling is executed. It is essential to evaluate intrinsic application
features to understand its bottleneck or design new computing architectures. In
Chapter 3 we provide an extension of the PISA tool with metrics directed towards
memory and parallelism. Then, we evaluate the feasibility of this technique in
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near-memory computing systems, a promising new computational paradigm that
shifts the computation from the processing units to the memory.

Limitations: platform-independent analysis can be successfully employed to de-
termine if an application should be offloaded on a accelerator to improve speedup
and energy efficiency performance. We mention the case of NAPEL, a high-level
framework built on top of PISA using ensemble machine learning. NAPEL can
accurately predict unseen application performance on near-memory computing
systems. Moreover, this framework can reduce the prediction time since it does
not need to run the system simulator during this phase. However, the platform-
independent application analysis is still applied to the prediction phase of this
framework, and this can be enormously time consuming. Indeed, it has an
overhead from 2 to 3 orders of magnitude on top of the application’s execution
time. For instance, the analysis can take up to hours or days in the case of large
datasets used in real-world applications making this technique unfeasible.

To overcome the limitations mentioned above, we employed hardware-dependent
characterization. We proposed NMPO, a high-level framework that employs
machine learning models and hardware-dependent application characterization
to predict the offloading suitability of unseen applications improving prediction
times. We demonstrate how hardware-dependent analysis has an unnoticeable
overhead over the application execution time. Compared to PISA it is much
more practical and efficient. We then demonstrate the framework capability to
decide application offloading suitability on a simulated near-memory computing
system with an accuracy of 85.6%.

Limitations: even though the hardware-dependent characterization is much
faster than its hardware-independent competitor, it results in less accuracy when
employed in performance prediction models. Indeed, NMPO can predict offload-
ing suitability as a first estimate, but it cannot accurately predict the resulting
performance. Moreover, we also included critical radio-astronomical imaging
kernels (Image-Domain Gridding) in this analysis showing how near-memory
computing is not a viable option for obtaining performance gains.

This thesis contributes to the state-of-the-art showing that hardware-independent
is a valuable methodology for characterizing applications. However, it is highly
time-consuming. Indeed, we assess that hardware-dependent profiling tools are
sufficiently good for providing application offloading insights with almost no ad-
ditional overhead to the application runtime. Moreover, the number of available
analysis tools is enormous. The path forward in the future would be to have a
unified methodology and tool to profile workloads on different architectures easily.
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7.1.2 Novel hardware architectures for radio-astronomical
imaging

2D FFT is a critical kernel in real-world applications such as space and radio-
astronomy. In particular, large 2D FFTs can be problematic in radio-astronomical
imaging. Modern radio-telescopes such as LOFAR and SKA process extremely
huges images that can be a critical bottleneck and sometimes can exceed the
limited GPU’s memory. Therefore, we profile large 2D FFTs employing hardware-
dependent techniques showing how this kernel is memory bound. Then, we evalu-
ate the performance of this critical workload on current CPU and GPU technology
and near-memory computing prototypes on FPGAs. The NMC prototype on
FPGA outperform CPUs by a factor of 120x; and we show similar performance on
accelerators equipped with HBM, such as GPUs and the near-memory computing
prototype.

Limitations: near-memory computing prototypes show interesting performance
compared to high-end GPUs. However, developing the systems mentioned above
is extremely time consuming, and the benefits do not justify the effort. High-
Bandwidth Memory technology is a viable technology for memory-bound kernels
such as FFT to obtain improved performance. Indeed, both the GPU and the
NMC system reached noticeable performance improvements by exploiting this
technology. Future GPU solutions would require larger memories to fit high-
resolution images and high bandwidth for CPU-GPU and GPU-GPU communi-
cation.

Image-Domain Gridding is a time-critical section in state-of-the-art radio-astrono-
mical imaging pipelines such as WSClean. As already mentioned, these kernels
are compute bound and privilege high-performance accelerators such as GPUs
and FPGAs. Additionally, radio-astronomical imaging needs high precision to
individuate new objects in the sky, such as pulsars and stars. Reduced precision
promises improved performance and unnoticeable results alterations compared
to high-precision computation. We evaluate the feasibility of this technique for
radio-astronomical imaging by evaluating the output quality in terms of SSIM
(Structural Similarity Index Measure). We showed how reduce-precision could
be employed to obtain high-quality images. Current state-of-the-art computing
architectures such as CPUs and GPUs support a limited set of data types such
as double-, single-, and half-precision floating point. On FPGAs, custom data
types can be deployed to obtain further performance improvements. Therefore,
we provide reduce-precision prototypes for radio-astronomical imaging on FPGAs
using High-Level Synthesis, showing their improved performance against single-
precision computing systems. More precisely, our reduced-precision implementa-
tion improves the throughput and energy efficiency of respectively 1.84x and 2.03x
compared to the single-precision floating-point baseline on the same FPGA. Our
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solution is also 2.12x faster and 3.46x more energy-efficient than an Intel i9 9900k
CPU and manages to keep up in throughput with an AMD RX 550 GPU.

Limitations: although the reduced-precision prototypes show improved perfor-
mance compared to CPUs and single-precision FPGA prototypes, they struggle to
keep GPUs’ technology improvement pace. Nevertheless, this contribution shows
how future hardware technologies could support radio-astronomical optimized
data types to meet the Science Data Processor performance requirements.

This thesis shows that accelerators should be employed for radio-astronomical
imaging. More precisely, GPUs should be a primary option because of their
excellent performance for compute- and memory-bound applications. However,
other architectures, such as future FPGAs with better floating-point and trigono-
metric function support, should be employed to prototype a custom solution.
Moreover, reduced-precision results in an applicable methodology for a high-
precision domain such as radio-astronomical imaging. The path forward for this
research topic would be to evaluate these hardware technologies and methods in
different parts of the radio-astronomical imaging pipeline to push forward the
state-of-the-art.

7.2 HPC hardware trends
New memory technologies try to fill the gap created in the past years between
processor and memory speed. Crucial solutions are represented by 2.5D and 3D
stacked chip solutions. While the commonly called processing-in-memory (PIM)
or near-data processing (NDP) produced niche products such as the Samsung PIM
chip developed for AI workloads [229] and the UPMEM DRAM with processing
units [230], important innovations will be integrated into more typical hardware
using 2.5D solutions.
Apart from the AMD 3D-cache previously mentioned in Chapter 1, Intel plan
to shortly release the first X86 CPU with HBM memory [231]. Note that CPUs
with HBM are already available in the Fugaku SuperComputer [232]. The HBM
bandwidth is far higher than the current DDR5 standard. This will definitely
help CPUs process memory bounded application and regain popularity compared
to GPUs.
The mentioned HBM-equipped CPU will also have the possibility to support the
same time DDR5 memory adding a new layer of memory heterogeneity similar to
what can already be found in FPGAs such as the Xilinx Alveo U280 [234].
High-performance CPUs were mainly CISC cores, which, compared to RISC,
are highly complex. RISC cores were mainly employed in embedded systems to
achieve low-power solutions [235, 236]. Nevertheless, the trend is now changing.
Ampere started producing HPC CPU with ARM cores [237] and NVIDIA recently
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Figure 7.1: Intel CPUs with HBM memory. The CPU consists of multiple
chiplets (group of cores) with their own HBM memory. The CPU will support at
the same time DDR5 memory [231].

announced to enter the CPU market by introducing the next-generation Grace
CPU and Hopper GPU. In particular, the NVIDIA solution can provide high-
performance chips with a CPU and GPU connected through coherent memory
up to 900 GB/s, which is enormously faster than PCIe5 [233]. They also propose
dual CPUs with memory bandwidth up to 1 TB/s.
While a great effort is spent in bringing CPU to a similar performance level to
accelerators, GPUs and FPGAs are improving too. GPUs become every year
larger and equipped with faster memory, e.g., Hopper with 3 TB/s memory.
However, a great limitation is the power consumption increase: upcoming GPUs
will have a TDP of about 600-700 W compared to previous ones that were about
300-400 W. Additionally, they support special units to perform AI task with
reduced precision and matrix operations efficiently. Today’s FPGAs reached
similar power consumption compared to GPUs. However, their performance
in single-precision floating point are still far from GPUs. Indeed, new specific
DSPs units are integrated into new generation FPGAs such as AMD/Xilinx Versal
ACAP [12].
Artificial Intelligence and Machine Learning mainly drive these hardware trends.
Indeed, these applications are employed in many research fields or even industries
to develop digital twins. A digital twin is a digital copy of something that exists
in reality and can be used to evaluate the past state of it and predict the future.
This may be helpful in the field like weather forecasting, such as in the case of
NVIDIA Omniverse [238] or also to predict the production level in a car factory.
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Figure 7.2: NVIDIA Grace-Hopper chips. On the left a Grace CPU with ARM
cores and a Hopper GPUs connected with a coherent interface that can reach
900 GB/s and supporting high bandwidth memory. On the right 2 Grace CPUs
with high bandwidth memory and fast interconnect [233].

These upcoming hardware innovations will make the maintenance of existing
software more challenging. Indeed, even if an automatic solution is desired, a
large research effort must be spent on understanding how efficiently algorithms
must adapt to new technologies in order not to waste computing power and energy.
Some of these upcoming challenges are described in the next section.

7.3 Future work
This thesis work explored the varied landscape of available architectures for
improving modern applications, focusing on radio-astronomical imaging. Nev-
ertheless, there are still many open challenges that need to be addressed in the
future.

Application characterization
Previous chapters show how hard and time consuming it is to perform hardware-
independent characterization. An efficient and enough accurate solution is to
employ hardware-dependent characterization. One main drawback of this tech-
nique is that each architecture is different, thus requiring, in worst cases, different
tools.
Hardware vendors usually provides tools for profiling such as nvprof [62], CodeXL
[63], Intel VTune [64]. However, it is hard to have a single tool or framework to
analyze applications on multiple architectures. An example of similar attempts
is Likwid [131], but it is limited to CPUs. Another weakness is the absence of
standardized ways of characterizing applications. An example can be the roofline
model [65], or more advanced models like X [239].
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A challenge for the future would be to research and provide a common framework
capable of profiling applications on various architectures with a standardized
method. This would ease the application profiling tasks and provide a common
ground for researchers interested in understanding application bottlenecks.

Approximate computing in HLS

We presented just one technique used in approximate computing in Chapter 6.
Other approaches focus on building basic operations such as multiplication and
division, which are common in today’s workloads and time-consuming, exploiting
solution approximation [240,241]. One of the main limitations of these approaches
is that they are mainly provided as black boxes written in HDL languages. For
instance, Ullah et al. [242, 243] proposed a novel approximate multiplier archi-
tecture designed specifically for FPGAs, which can be configured for different
input sizes, achieving low power and reduced area results. Ebrahimi et al. [244]
proposed an approximate multiplier and divider for fixed-point numbers exploiting
the logarithmic approximation of these operations. Similar approaches have also
been applied to floating point operations, such as Cheng et al. [245].
Similar to the templatized soft floating-point library in HLS [184], approximate
operators can be expressed using High-Level Synthesis with low overhead but
improving portability, readability, and usability. This would amplify the use
of approximate computing in more application fields, bringing performance and
power consumption benefits.

Optimization of other radio-astronomy applications

Image-Domain Gridding is almost perfectly optimized, reaching more than 85% of
the peak performance of modern GPUs. This shift the bottleneck to other parts
of the radio-astronomical imaging pipeline. For example, the CLEAN algorithm,
as explained in Chapter 2, aims to remove the noise from the dirty sky image.
This is done iteratively and can be highly time consuming based on how deep the
cleaning is.
A preliminary analysis shows that CLEAN is memory bound (see the roofline
model in Figure 7.3). Thus, CLEAN would be a great candidate for computation
on accelerators such as FPGAs and GPUs. Furthermore, since Gridding/De-
gridding and FFTs are usually accelerated, CLEAN acceleration would also save
communication time between the host and accelerators.
It should be mentioned that also other radio-astronomy kernels outside the imag-
ing step can benefit from accelerated architectures, such as the calibration that
tries to reduce the direction independent errors introduced by the instrument
(radio-telescope) [103].
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Figure 7.3: Roofline Analysis of the main kernels in WSClean. As shown in
the Chapter 6 the gridder and degridder kernel are compute bound. However, the
deconvolution or CLEAN algorithm is mostly memory bound.

AI Hardware for radio-astronomical imaging
GPUs have been equipped with hardware specifically optimized for Artificial
Intelligence tasks in the past couple of years. One clear example is represented by
tensor-cores units. Tensor cores are compute units that perform a matrix multiply
and accumulate operation at warp level. These units exploit reduced-precision
data-types representation to improve performance. The lastest generation of
NVIDIA GPUs provides tensor-core units capable of performing up to 5-10x than
in single precision. However, this computational model is typically applicable only
to artificial intelligence workloads. A first attempt is represented by [246], where
tensor-core units are employed for the first time for radio-astronomy applications.
More precisely, Romein shows that considerable effort is needed to reshape the
application into the tensor-core notation, but the gains are extremely interesting
in speedup and energy consumption.
Therefore, since many radio-astronomical imaging algorithms such as gridding
contains various multiply and accumulate operations, it makes sense to investigate
the applicability of new AI hardware for the kernels mentioned above.

Machine Learning for radio-astronomical imaging
The CLEAN algorithms [109–111, 114, 247] are considered the state-of-the-art
technique to remove instrument and observation noise from radio-astronomical
images. Recently, a new approach called POLISH [248] has been presented.
POLISH mixes super-resolution techniques and convolutional neural networks to
obtain higher-resolution cleaned images. POLISH is currently able to work on
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synthetic data of the DSA-2000 radio telescope. We would like to investigate the
feasibility of this technique on real datasets from LOFAR and/or SKA telescopes.
Furthermore, we would like to compare its performance in terms of execution time
and energy efficiency compared to WSClean.
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A
HLS custom floating-point library

comparison

The main custom floating-point libraries for High-Level-Synthesis are the custom-
precision floating-point (cpfp) [186], and the templatised soft floating-point for
high-level synthesis (thls) [187]. Both the libraries are based on the Xilinx arbi-
trary precision library [249]. While cpfp supports homogeneous custom floating-
point, thls enables heterogeneous custom floating-point, which may be helpful for
fine-grained mixed-precision or compute operations at higher precision and then
truncate the result. Since we do not not need heterogeneous operators for this
work the cpfp library would be sufficient. However, we evaluate the resource usage
of the two libraries for the adder (see Figure A.1) and multiplier operator (see
Figure A.2) to motivate our choice of thls over cpfp.
Both the operators are convenient compared to single-precision floating-point for
the presented precision, including the one employed in our highest performing
accelerator (6 bits exponent and 11 bits mantissa, with a total of 18 bits). Unlike
the adder operator, the multiplier operator, when considering the same precision
and number of DSPs (1), has similar resource usage (less in the case of thls) as
half-precision. Overall thls has reduced LUTs, e.g. Figure A.2b vs Figure A.2a,
and FFs, e.g. Figure A.2d vs Figure A.2c, usage compared to cpfp. This analysis
thus motivate the usage of thls over cpfp.
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APPENDIX A. HLS CUSTOM FLOATING-POINT LIBRARY COMPARISON
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Figure A.1: Custom floating-point adder (not using DSP) resource usage for
the cpfp and thls libraries.
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Figure A.2: Custom floating-point multiplier (1 DSP) resource usage for the
cpfp and thls libraries.
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