77,453 research outputs found

    An Enhanced Method For Evaluating Automatic Video Summaries

    Full text link
    Evaluation of automatic video summaries is a challenging problem. In the past years, some evaluation methods are presented that utilize only a single feature like color feature to detect similarity between automatic video summaries and ground-truth user summaries. One of the drawbacks of using a single feature is that sometimes it gives a false similarity detection which makes the assessment of the quality of the generated video summary less perceptual and not accurate. In this paper, a novel method for evaluating automatic video summaries is presented. This method is based on comparing automatic video summaries generated by video summarization techniques with ground-truth user summaries. The objective of this evaluation method is to quantify the quality of video summaries, and allow comparing different video summarization techniques utilizing both color and texture features of the video frames and using the Bhattacharya distance as a dissimilarity measure due to its advantages. Our Experiments show that the proposed evaluation method overcomes the drawbacks of other methods and gives a more perceptual evaluation of the quality of the automatic video summaries.Comment: This paper has been withdrawn by the author due to some errors and incomplete stud

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ā€˜shotā€™ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ā€˜broadcastā€™ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Towards real-time body pose estimation for presenters in meeting environments

    Get PDF
    This paper describes a computer vision-based approach to body pose estimation.\ud The algorithm can be executed in real-time and processes low resolution,\ud monocular image sequences. A silhouette is extracted and matched against a\ud projection of a 16 DOF human body model. In addition, skin color is used to\ud locate hands and head. No detailed human body model is needed. We evaluate the\ud approach both quantitatively using synthetic image sequences and qualitatively\ud on video test data of short presentations. The algorithm is developed with the\ud aim of using it in the context of a meeting room where the poses of a presenter\ud have to be estimated. The results can be applied in the domain of virtual\ud environments

    Identifying person re-occurrences for personal photo management applications

    Get PDF
    Automatic identification of "who" is present in individual digital images within a photo management system using only content-based analysis is an extremely difficult problem. The authors present a system which enables identification of person reoccurrences within a personal photo management application by combining image content-based analysis tools with context data from image capture. This combined system employs automatic face detection and body-patch matching techniques, which collectively facilitate identifying person re-occurrences within images grouped into events based on context data. The authors introduce a face detection approach combining a histogram-based skin detection model and a modified BDF face detection method to detect multiple frontal faces in colour images. Corresponding body patches are then automatically segmented relative to the size, location and orientation of the detected faces in the image. The authors investigate the suitability of using different colour descriptors, including MPEG-7 colour descriptors, color coherent vectors (CCV) and color correlograms for effective body-patch matching. The system has been successfully integrated into the MediAssist platform, a prototype Web-based system for personal photo management, and runs on over 13000 personal photos

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl
    • ā€¦
    corecore