507 research outputs found

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Large gain amplification mechanism for piezoelectric actuators utilizing a rolling contact joint

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 55-56).Due to the limited displacement of piezoelectric stack actuators, common practice is to use some form of displacement amplification mechanism. An efficient, heavy-duty displacement amplification mechanism for piezoelectric stack actuators is presented in this thesis. The displacement amplification gain is increased by a factor of more than 100 in a single stage by using a buckling mechanism combined with a novel rolling contact design. Unlike traditional flexure-type monolithic mechanisms, which are accurate but inefficient and fragile, the new mechanism consists of all rolling contact couples, providing high stiffness, durability and energy efficient characteristics. Furthermore, a new design of pre-loading mechanism using shape memory alloy doubles the possible cyclic work output and provides a desirable restoring force for constraining the rolling contact mechanism stably and efficiently. This mechanism is intended to be interfaced with a sinusoidal gear cam that acts as the load. The dynamics of the system are derived and are shown to be fifth order. Due to the significantly nonlinear amplification caused by the buckling phenomenon and the gear, the dynamics are run in simulation to gain insight into the dynamic performance of the actuator. There is shown to be an optimal speed at which to run the actuator to maximize the possible power output. Furthermore, due to the simple binary control significant benefits are achieved by varying the control timing based on the velocity to ensure the force and velocity of the output are in phase. Finally, a prototype was constructed to compare to the static model. The prototype had a peak to peak displacement of 6.8 mm, an amplification of over 150, and produced a peak charged force of 56 Newtons.by James Torres.S.M

    The 1993 Space and Earth Science Data Compression Workshop

    Get PDF
    The Earth Observing System Data and Information System (EOSDIS) is described in terms of its data volume, data rate, and data distribution requirements. Opportunities for data compression in EOSDIS are discussed

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    NASA Tech Briefs, November 2007

    Get PDF
    Topics include: Wireless Measurement of Contact and Motion Between Contact Surfaces; Wireless Measurement of Rotation and Displacement Rate; Portable Microleak-Detection System; Free-to-Roll Testing of Airplane Models in Wind Tunnels; Cryogenic Shrouds for Testing Thermal-Insulation Panels; Optoelectronic System Measures Distances to Multiple Targets; Tachometers Derived From a Brushless DC Motor; Algorithm-Based Fault Tolerance for Numerical Subroutines; Computational Support for Technology- Investment Decisions; DSN Resource Scheduling; Distributed Operations Planning; Phase-Oriented Gear Systems; Freeze Tape Casting of Functionally Graded Porous Ceramics; Electrophoretic Deposition on Porous Non- Conductors; Two Devices for Removing Sludge From Bioreactor Wastewater; Portable Unit for Metabolic Analysis; Flash Diffusivity Technique Applied to Individual Fibers; System for Thermal Imaging of Hot Moving Objects; Large Solar-Rejection Filter; Improved Readout Scheme for SQUID-Based Thermometry; Error Rates and Channel Capacities in Multipulse PPM; Two Mathematical Models of Nonlinear Vibrations; Simpler Adaptive Selection of Golomb Power-of- Two Codes; VCO PLL Frequency Synthesizers for Spacecraft Transponders; Wide Tuning Capability for Spacecraft Transponders; Adaptive Deadband Synchronization for a Spacecraft Formation; Analysis of Performance of Stereoscopic-Vision Software; Estimating the Inertia Matrix of a Spacecraft; Spatial Coverage Planning for Exploration Robots; and Increasing the Life of a Xenon-Ion Spacecraft Thruster

    Wave Chaos Studies and The Realization of Photonic Topological Insulators

    Get PDF
    Wave propagation in various complex media is an interesting and practical field that has a huge impact in our daily life. Two common types of wave propagation are examined in this thesis: electromagnetic wave propagation in complex wave chaotic enclosures, where I studied its statistical properties and explored time-domain pulse focusing, and unidirectional edge modes propagating in a reciprocal photonic topological insulator waveguide. Several theories, e.g. the Random Matrix Theory and the Random Coupling Model, have been developed and validated in experiments to understand the statistical properties of the electromagnetic waves inside wave chaotic enclosures. This thesis extends the subject from a single cavity to a network of coupled cavities by creating an innovative experimental setup that scales down complex structures, which would otherwise be too large and cumbersome to study, to a miniature version that retains its original electromagnetic properties. The process involves shrinking down the metal cavity in size by a factor of 20, increasing the electromagnetic wave frequency by the same factor and cooling down the cavity by a dilution refrigerator to reduce its ohmic loss. This experimental setup is validated by comparison with results from a full-scale setup with a single cavity and it is then extended for multiple coupled cavities. In the time domain, I utilized the time-reversal mirror technique to focus electromagnetic waves at an arbitrary location inside a wave chaotic enclosure by injecting a numerically calculated wave excitation signal. I used a semi-classical ray algorithm to calculate the signal that would be received at a transceiver port resulting from the injection of a short pulse at the desired target location. The time-reversed version of this signal is then injected into the transceiver port and an approximate reconstruction of the short pulse is observed at the target port. Photonic topological insulators are an interesting class of materials whose photonic band structure can have a bandgap in the bulk while supporting topologically protected unidirectional edge modes. This thesis presents a rotating magnetic dipole antenna, composed of two perpendicularly oriented coils fed with variable phase difference, that can efficiently excite the unidirectional topologically protected surface waves in the bianisotropic metawaveguide (BMW) structure recently realized by Ma, et al., despite the fact that the BMW medium does not break time-reversal invariance. In addition to achieving high directivity, the antenna can be tuned continuously to excite reflectionless edge modes to the two opposite directions with various amplitude ratios. Overall, this thesis establishes the foundation for further studies of the universal statistical properties of wave chaotic enclosures, and tested the limits of its deterministic properties defined by the cavity geometry. It also demonstrated in experiment the excitation of a unidirectional edge mode in a Bianisotropic Meta-waveguide, allowing for novel applications in the field of communications, for example phased array antennas

    Recording, compression and representation of dense light fields

    Get PDF
    The concept of light fields allows image based capture of scenes, providing, on a recorded dataset, many of the features available in computer graphics, like simulation of different viewpoints, or change of core camera parameters, including depth of field. Due to the increase in the recorded dimension from two for a regular image to four for a light field recording, previous works mainly concentrate on small or undersampled light field recordings. This thesis is concerned with the recording of a dense light field dataset, including the estimation of suitable sampling parameters, as well as the implementation of the required capture, storage and processing methods. Towards this goal, the influence of an optical system on the, possibly bandunlimited, light field signal is examined, deriving the required sampling rates from the bandlimiting effects of the camera and optics. To increase storage capacity and bandwidth a very fast image compression methods is introduced, providing an order of magnitude faster compression than previous methods, reducing the I/O bottleneck for light field processing. A fiducial marker system is provided for the calibration of the recorded dataset, which provides a higher number of reference points than previous methods, improving camera pose estimation. In conclusion this work demonstrates the feasibility of dense sampling of a large light field, and provides a dataset which may be used for evaluation or as a reference for light field processing tasks like interpolation, rendering and sampling.Das Konzept des Lichtfelds erlaubt eine bildbasierte Erfassung von Szenen und ermöglicht es, auf den erfassten Daten viele Effekte aus der Computergrafik zu berechnen, wie das Simulieren alternativer Kamerapositionen oder die Veränderung zentraler Parameter, wie zum Beispiel der Tiefenschärfe. Aufgrund der enorm vergrößerte Datenmenge die für eine Aufzeichnung benötigt wird, da Lichtfelder im Vergleich zu den zwei Dimensionen herkömmlicher Kameras über vier Dimensionen verfügen, haben frühere Arbeiten sich vor allem mit kleinen oder unterabgetasteten Lichtfeldaufnahmen beschäftigt. Diese Arbeit hat das Ziel eine dichte Aufnahme eines Lichtfeldes vorzunehmen. Dies beinhaltet die Berechnung adäquater Abtastparameter, sowie die Implementierung der benötigten Aufnahme-, Verarbeitungs- und Speicherprozesse. In diesem Zusammenhang werden die bandlimitierenden Effekte des optischen Aufnahmesystems auf das möglicherweise nicht bandlimiterte Signal des Lichtfeldes untersucht und die benötigten Abtastraten davon abgeleitet. Um die Bandbreite und Kapazität des Speichersystems zu erhöhen wird ein neues, extrem schnelles Verfahren der Bildkompression eingeführt, welches um eine Größenordnung schneller operiert als bisherige Methoden. Für die Kalibrierung der Kamerapositionen des aufgenommenen Datensatzes wird ein neues System von sich selbst identifizierenden Passmarken vorgestellt, welches im Vergleich zu früheren Methoden mehr Referenzpunkte auf gleichem Raum zu Verfügung stellen kann und so die Kamerakalibrierung verbessert. Kurz zusammengefasst demonstriert diese Arbeit die Durchführbarkeit der Aufnahme eines großen und dichten Lichtfeldes, und stellt einen entsprechenden Datensatz zu Verfügung. Der Datensatz ist geeignet als Referenz für die Untersuchung von Methoden zur Verarbeitung von Lichtfeldern, sowie für die Evaluation von Methoden zur Interpolation, zur Abtastung und zum Rendern

    NASA Tech Briefs, May 2012

    Get PDF
    Topics covered include: An "Inefficient Fin" Non-Dimensional Parameter to Measure Gas Temperatures Efficiently; On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz; Software to Control and Monitor Gas Streams; Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column; Anomaly Detection in Test Equipment via Sliding Mode Observers; Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems; Goldstone Solar System Radar Waveform Generator; Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System; Iridium Interfacial Stack - IrIS; Downsampling Photodetector Array with Windowing; Optical Phase Recovery and Locking in a PPM Laser Communication Link; High-Speed Edge-Detecting Line Scan Smart Camera; Optical Communications Channel Combiner; Development of Thermal Infrared Sensor to Supplement Operational Land Imager; Amplitude-Stabilized Oscillator for a Capacitance-Probe Electrometer; Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data; Histogrammatic Method for Determining Relative Abundance of Input Gas Pulse; Predictive Sea State Estimation for Automated Ride Control and Handling - PSSEARCH; LEGION: Lightweight Expandable Group of Independently Operating Nodes; Real-Time Projection to Verify Plan Success During Execution; Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data; Web-Based Customizable Viewer for Mars Network Overflight Opportunities; Fabrication of a Cryogenic Terahertz Emitter for Bolometer Focal Plane Calibrations; Fabrication of an Absorber-Coupled MKID Detector; Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays; Method of Bonding Optical Elements with Near-Zero Displacement; Free-Mass and Interface Configurations of Hammering Mechanisms; Wavefront Compensation Segmented Mirror Sensing and Control; Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration; Reliable Optical Pump Architecture for Highly Coherent Lasers Used in Space Metrology Applications; Electrochemical Ultracapacitors Using Graphitic Nanostacks; Improved Whole-Blood-Staining Device; Monitoring Location and Angular Orientation of a Pill; Molecular Technique to Reduce PCR Bias for Deeper Understanding of Microbial Diversity; Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars; High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle; PRTs and Their Bonding for Long-Duration, Extreme-Temperature Environments; Mid- and Long-IR Broadband Quantum Well Photodetector; 3D Display Using Conjugated Multiband Bandpass Filters; Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow; Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators; Dual-Compartment Inflatable Suitlock; Large-Strain Transparent Magnetoactive Polymer Nanocomposites; Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine; Time Distribution Using SpaceWire in the SCaN Testbed on ISS; and Techniques for Solution- Assisted Optical Contacting

    Analysis and Design of Low-Cost Waveguide Filters for Wireless Communications

    Get PDF
    The area of research of this thesis is built around advanced waveguide filter structures. Waveguide filters and the waveguide technology in general are renowned for high power capacity, low losses and excellent electromagnetic shielding. Waveguide filters are important components in fixed wireless communications as well as in satellite and radar systems. Furthermore, their advantages and utilization become even greater with increase in frequency, which is a trend in modern communication systems because upper frequency bands offer larger channel capacities. However, waveguide filters are relatively bulky and expensive. To comply with more and more demanding miniaturization and cost-cutting requirements, compactness and economical design represent some of the main contemporary focuses of interest. Approaches that are used to achieve this include use of planar inserts to build waveguide discontinuities, additive manufacturing and substrate integration. At the same time, waveguide filters still need to satisfy opposed stringent requirements like small insertion loss, high selectivity and multiband operation. Another difficulty that metal waveguide components face is integration with other circuitry, especially important when solid-state active devices are included. Thus, improvements of interconnections between waveguide and other transmission interfaces are addressed too. The thesis elaborates the following aspects of work: Further analysis and improved explanations regarding advanced waveguide filters with E-plane inserts developed by the Wireless Communications Research Group, using both cross coupled resonators and extracted pole sections (Experiments with higher filter orders, use of tuning screws, degrees of freedom in design, etc. Thorough performance comparison with competing filter technologies) - Proposing novel E-plane filter sections with I-shaped insets - Extension of the E-plane filtering structures with metal fins to new compact dual band filters with high frequency selectivity and miniaturized diplexers. - Introduction of easy-to-build waveguide filters with polymer insert frames and high-performance low-profile cavity filters, taking advantage of enhanced fabrication capabilities when using additive manufacturing - Developing new substrate integrated filters, as well as circuits used to transfer signals between different interfaces Namely, these are substrate integrated waveguide to metal waveguide planar transitions that do not require any modifications of the metal waveguides. Such novel transitions have been designed both for single and orthogonal signal polarizations
    corecore