32 research outputs found

    Behavioral modeling and FPGA implementation of digital predistortion for RF and microwave power amplifiers

    Get PDF
    With the high interest in digital modulation techniques which are very sensitive to the PA nonlinearity, modern wireless communication systems require the usage of linearization techniques to improve the linear behavior of the RF power amplifier. The powerful and cheap digital processing technology makes the digital predistortion (DPD) a competitive candidate for the linearization of the PA. This thesis introduces the basic principle of DPD, its implementation on FPGA and the adaptive DPD system. The linearization of 4 PAs with DPD technique has been introduced: for the hybrid class AB PA operating at 2.6 GHz with a WiMAX testing signal, 33.7 dBm average power, 29.6 % drain efficiency, 13 dB ACPR and 9 dB NMSE improvement have been obtained; for the hybrid Doherty PA operating at 3.4 GHz with an I/Q testing signal, 35.0 dBm average power, 36.8 % drain efficiency, 12 dB ACPR and 13 dB NMSE improvement have been obtained; for the MMIC class AB PA operating at 7 GHz with an I/Q testing signal, 29.4 dBm average power, 25.7 % drain efficiency, 12 dB ACPR and 12 dB NMSE improvement have been obtained; for the two-stage PA operating at 24 GHz with an I/Q testing signal, 23.5 dBm average power, more than 14.0 % drain efficiency, 11 dB ACPR and 11 dB NMSE improvement have been obtained. The DPD algorithm has been implemented on FPGA with two methods based on LUT and a direct structure with only adders and multipliers. The block RAM on the FPGA board is chosen as the table in the LUT methods. The linearization performance for these three methods is similar. The test PA is the hybrid Doherty PA mentioned above and the test signal is the I/Q signal with 7.4 dB PAPR. 35.1 dBm average power, 36.8 % efficiency, 11 dB ACPR and 11 dB NMSE improvement have been obtained. The cost of logic resources for the direct structure method is the largest with 1,172 flip-flops, while the number of flip-flops for the two LUT methods are 263 and 583, respectively. A new adaptive algorithm has been proposed in this thesis for the adaptive DPD system. This new algorithm improves the performance in extracting the model parameters in complex number domain. With the experimental data from a combined class AB PA, the final accuracy of the model extracted by the new algorithm has been improved from -20 dB to about -40 dB and the converge speed is faster

    ワイヤレス通信のための先進的な信号処理技術を用いた非線形補償法の研究

    Get PDF
    The inherit nonlinearity in analogue front-ends of transmitters and receivers have had primary impact on the overall performance of the wireless communication systems, as it gives arise of substantial distortion when transmitting and processing signals with such circuits. Therefore, the nonlinear compensation (linearization) techniques become essential to suppress the distortion to an acceptable extent in order to ensure sufficient low bit error rate. Furthermore, the increasing demands on higher data rate and ubiquitous interoperability between various multi-coverage protocols are two of the most important features of the contemporary communication system. The former demand pushes the communication system to use wider bandwidth and the latter one brings up severe coexistence problems. Having fully considered the problems raised above, the work in this Ph.D. thesis carries out extensive researches on the nonlinear compensations utilizing advanced digital signal processing techniques. The motivation behind this is to push more processing tasks to the digital domain, as it can potentially cut down the bill of materials (BOM) costs paid for the off-chip devices and reduce practical implementation difficulties. The work here is carried out using three approaches: numerical analysis & computer simulations; experimental tests using commercial instruments; actual implementation with FPGA. The primary contributions for this thesis are summarized as the following three points: 1) An adaptive digital predistortion (DPD) with fast convergence rate and low complexity for multi-carrier GSM system is presented. Albeit a legacy system, the GSM, however, has a very strict requirement on the out-of-band emission, thus it represents a much more difficult hurdle for DPD application. It is successfully implemented in an FPGA without using any other auxiliary processor. A simplified multiplier-free NLMS algorithm, especially suitable for FPGA implementation, for fast adapting the LUT is proposed. Many design methodologies and practical implementation issues are discussed in details. Experimental results have shown that the DPD performed robustly when it is involved in the multichannel transmitter. 2) The next generation system (5G) will unquestionably use wider bandwidth to support higher throughput, which poses stringent needs for using high-speed data converters. Herein the analog-to-digital converter (ADC) tends to be the most expensive single device in the whole transmitter/receiver systems. Therefore, conventional DPD utilizing high-speed ADC becomes unaffordable, especially for small base stations (micro, pico and femto). A digital predistortion technique utilizing spectral extrapolation is proposed in this thesis, wherein with band-limited feedback signal, the requirement on ADC speed can be significantly released. Experimental results have validated the feasibility of the proposed technique for coping with band-limited feedback signal. It has been shown that adequate linearization performance can be achieved even if the acquisition bandwidth is less than the original signal bandwidth. The experimental results obtained by using LTE-Advanced signal of 320 MHz bandwidth are quite satisfactory, and to the authors’ knowledge, this is the first high-performance wideband DPD ever been reported. 3) To address the predicament that mobile operators do not have enough contiguous usable bandwidth, carrier aggregation (CA) technique is developed and imported into 4G LTE-Advanced. This pushes the utilization of concurrent dual-band transmitter/receiver, which reduces the hardware expense by using a single front-end. Compensation techniques for the respective concurrent dual-band transmitter and receiver front-ends are proposed to combat the inter-band modulation distortion, and simultaneously reduce the distortion for the both lower-side band and upper-side band signals.電気通信大学201

    High Performance RF and Basdband Analog-to-Digital Interface for Multi-standard/Wideband Applications

    Get PDF
    The prevalence of wireless standards and the introduction of dynamic standards/applications, such as software-defined radio, necessitate the next generation wireless devices that integrate multiple standards in a single chip-set to support a variety of services. To reduce the cost and area of such multi-standard handheld devices, reconfigurability is desirable, and the hardware should be shared/reused as much as possible. This research proposes several novel circuit topologies that can meet various specifications with minimum cost, which are suited for multi-standard applications. This doctoral study has two separate contributions: 1. The low noise amplifier (LNA) for the RF front-end; and 2. The analog-to-digital converter (ADC). The first part of this dissertation focuses on LNA noise reduction and linearization techniques where two novel LNAs are designed, taped out, and measured. The first LNA, implemented in TSMC (Taiwan Semiconductor Manufacturing Company) 0.35Cm CMOS (Complementary metal-oxide-semiconductor) process, strategically combined an inductor connected at the gate of the cascode transistor and the capacitive cross-coupling to reduce the noise and nonlinearity contributions of the cascode transistors. The proposed technique reduces LNA NF by 0.35 dB at 2.2 GHz and increases its IIP3 and voltage gain by 2.35 dBm and 2dB respectively, without a compromise on power consumption. The second LNA, implemented in UMC (United Microelectronics Corporation) 0.13Cm CMOS process, features a practical linearization technique for high-frequency wideband applications using an active nonlinear resistor, which obtains a robust linearity improvement over process and temperature variations. The proposed linearization method is experimentally demonstrated to improve the IIP3 by 3.5 to 9 dB over a 2.5–10 GHz frequency range. A comparison of measurement results with the prior published state-of-art Ultra-Wideband (UWB) LNAs shows that the proposed linearized UWB LNA achieves excellent linearity with much less power than previously published works. The second part of this dissertation developed a reconfigurable ADC for multistandard receiver and video processors. Typical ADCs are power optimized for only one operating speed, while a reconfigurable ADC can scale its power at different speeds, enabling minimal power consumption over a broad range of sampling rates. A novel ADC architecture is proposed for programming the sampling rate with constant biasing current and single clock. The ADC was designed and fabricated using UMC 90nm CMOS process and featured good power scalability and simplified system design. The programmable speed range covers all the video formats and most of the wireless communication standards, while achieving comparable Figure-of-Merit with customized ADCs at each performance node. Since bias current is kept constant, the reconfigurable ADC is more robust and reliable than the previous published works

    Novel Predistortion System for 4G/5G Small-Cell and Wideband Transmitters

    Get PDF
    To meet the growing demand for mobile data, various technologies are being introduced to wireless networks to increase system capacity. On one hand, large number of small-cell base stations are adopted to serve the reduced cell size; on the other hand, millimeter wave (mm-wave) systems with large antenna arrays that transmit ultra-wideband signals are expected in fifth generation (5G) networks. Power amplifiers (PAs), responsible for boosting the radio frequency (RF) signal power, are the most critical components in base station transmitters, and dominate the overall efficiency and linearity of the system. The design challenges to balance the contradictory requirements of efficiency and linearity of the PAs are usually addressed by linearization techniques, particularly the digital predistortion (DPD) system. However, existing DPD solutions face increasing difficulties keeping up with new developments in base station technologies. When considering sub-6 GHz small-cell base station transmitters, analog and RF predistortion techniques have recently received renewed attention due to their inherent low power nature. Their achievable linearization capacity is significantly limited, however, largely by their implementation complexity in realizing the needed predistortion models in analog circuitry. On the other hand, despite significant developments in DPD models for wideband signals, the implementations of such DPD models in practical hardware have received relatively little attention. Yet the conventional implementation of a DPD engine is limited by the maximum clock frequency of the digital circuitry employed and cannot be scaled to satisfy the growing bandwidth of transmitted signals for 5G networks. Furthermore, both analog and digital solutions require a transmitter-observation-receiver (TOR) to capture the PA outputs, necessitates the use of analog-to-digital converters (ADCs) whose complexity and power consumption increase with signal bandwidth. Such trend is not scalable for future base stations, and new innovations in feedback and training methods are required. This thesis presents a number of contributions to address the above identified challenges. To reduce the power overhead of the linearization system, a digitally-assisted analog-RF predistortion (DA-ARFPD) system that uses a novel predistortion model is introduced. The proposed finite-impulse-response assisted envelope memory polynomial (FIR-EMP) model allows for a reduction of hardware implementation complexity while maintaining good linearization capacity and low power overhead. A two-step small-signal-assisted parameter identification (SSAPI) algorithm is devised to estimate the parameters of the two main blocks of the FIR-EMP model, such that the training can be completed efficiently. A DA-ARFPD test bench has been built, which incorporates major RF components, to assess the validity of the proposed FIR-EMP scheme and the SSAPI algorithm. Measurement results show that the proposed FIR-EMP model with SSAPI algorithm can successfully linearize multiple PAs driven with various wideband and carrier-aggregated signals of up to 80~MHz modulation bandwidths for sub-6 GHz systems. Next, a hardware-efficient real-time DPD system with scalable linearization bandwidth for ultra-wideband 5G mm-wave transmitters is proposed. It uses a novel parallel-processing DPD engine architecture to process multiple samples per clock cycle, overcomes the linearization bandwidth limit imposed by the maximum clock rate of digital circuits used in conventional DPD implementation. Potentially unlimited linearization bandwidth could be achieved by using the proposed system with current digital circuit technologies. The linearization performance and bandwidth scalability of the proposed system is demonstrated experimentally using a silicon-based Doherty (DPA) with 400 MHz wideband signal operating at 28 GHz, and over-the-air measurements using a 64-element beamforming array with 800 MHz wideband signal, also at 28 GHz. The proposed DPD system achieves over 2.4 GHz linearization bandwidth using only a 300 MHz core clock for the digital circuits. Finally, to reduce the power consumption and cost of the TOR, a new approach to train the predistorter using under-sampled feedback signal is presented. Using aliased samples of the PA's output captured at either baseband or intermedia frequency (IF), the proposed algorithm is able to compute the coefficients of the predistortion engine to linearize the PA using a direct learning architecture. Experimentally, both the baseband and IF schemes achieve linearization performance comparable to a full-rate system. Implemented together with a parallel-processing based DPD engine on a field-programmable gate array (FPGA) based system-on-chip (SOC), the proposed feedback and training solution achieves over 2.4~GHz linearization bandwidth using an ADC operating at a clock rate of 200 MHz. Its performance is demonstrated experimentally by linearizing a silicon DPA with 200 MHz and 400 MHz signals in conductive measurements, and a 64-element beamforming array with 400 MHz and 800 MHz signals in over-the-air testing

    Dirty RF Signal Processing for Mitigation of Receiver Front-end Non-linearity

    Get PDF
    Moderne drahtlose Kommunikationssysteme stellen hohe und teilweise gegensätzliche Anforderungen an die Hardware der Funkmodule, wie z.B. niedriger Energieverbrauch, große Bandbreite und hohe Linearität. Die Gewährleistung einer ausreichenden Linearität ist, neben anderen analogen Parametern, eine Herausforderung im praktischen Design der Funkmodule. Der Fokus der Dissertation liegt auf breitbandigen HF-Frontends für Software-konfigurierbare Funkmodule, die seit einigen Jahren kommerziell verfügbar sind. Die praktischen Herausforderungen und Grenzen solcher flexiblen Funkmodule offenbaren sich vor allem im realen Experiment. Eines der Hauptprobleme ist die Sicherstellung einer ausreichenden analogen Performanz über einen weiten Frequenzbereich. Aus einer Vielzahl an analogen Störeffekten behandelt die Arbeit die Analyse und Minderung von Nichtlinearitäten in Empfängern mit direkt-umsetzender Architektur. Im Vordergrund stehen dabei Signalverarbeitungsstrategien zur Minderung nichtlinear verursachter Interferenz - ein Algorithmus, der besser unter "Dirty RF"-Techniken bekannt ist. Ein digitales Verfahren nach der Vorwärtskopplung wird durch intensive Simulationen, Messungen und Implementierung in realer Hardware verifiziert. Um die Lücken zwischen Theorie und praktischer Anwendbarkeit zu schließen und das Verfahren in reale Funkmodule zu integrieren, werden verschiedene Untersuchungen durchgeführt. Hierzu wird ein erweitertes Verhaltensmodell entwickelt, das die Struktur direkt-umsetzender Empfänger am besten nachbildet und damit alle Verzerrungen im HF- und Basisband erfasst. Darüber hinaus wird die Leistungsfähigkeit des Algorithmus unter realen Funkkanal-Bedingungen untersucht. Zusätzlich folgt die Vorstellung einer ressourceneffizienten Echtzeit-Implementierung des Verfahrens auf einem FPGA. Abschließend diskutiert die Arbeit verschiedene Anwendungsfelder, darunter spektrales Sensing, robuster GSM-Empfang und GSM-basiertes Passivradar. Es wird gezeigt, dass nichtlineare Verzerrungen erfolgreich in der digitalen Domäne gemindert werden können, wodurch die Bitfehlerrate gestörter modulierter Signale sinkt und der Anteil nichtlinear verursachter Interferenz minimiert wird. Schließlich kann durch das Verfahren die effektive Linearität des HF-Frontends stark erhöht werden. Damit wird der zuverlässige Betrieb eines einfachen Funkmoduls unter dem Einfluss der Empfängernichtlinearität möglich. Aufgrund des flexiblen Designs ist der Algorithmus für breitbandige Empfänger universal einsetzbar und ist nicht auf Software-konfigurierbare Funkmodule beschränkt.Today's wireless communication systems place high requirements on the radio's hardware that are largely mutually exclusive, such as low power consumption, wide bandwidth, and high linearity. Achieving a sufficient linearity, among other analogue characteristics, is a challenging issue in practical transceiver design. The focus of this thesis is on wideband receiver RF front-ends for software defined radio technology, which became commercially available in the recent years. Practical challenges and limitations are being revealed in real-world experiments with these radios. One of the main problems is to ensure a sufficient RF performance of the front-end over a wide bandwidth. The thesis covers the analysis and mitigation of receiver non-linearity of typical direct-conversion receiver architectures, among other RF impairments. The main focus is on DSP-based algorithms for mitigating non-linearly induced interference, an approach also known as "Dirty RF" signal processing techniques. The conceived digital feedforward mitigation algorithm is verified through extensive simulations, RF measurements, and implementation in real hardware. Various studies are carried out that bridge the gap between theory and practical applicability of this approach, especially with the aim of integrating that technique into real devices. To this end, an advanced baseband behavioural model is developed that matches to direct-conversion receiver architectures as close as possible, and thus considers all generated distortions at RF and baseband. In addition, the algorithm's performance is verified under challenging fading conditions. Moreover, the thesis presents a resource-efficient real-time implementation of the proposed solution on an FPGA. Finally, different use cases are covered in the thesis that includes spectrum monitoring or sensing, GSM downlink reception, and GSM-based passive radar. It is shown that non-linear distortions can be successfully mitigated at system level in the digital domain, thereby decreasing the bit error rate of distorted modulated signals and reducing the amount of non-linearly induced interference. Finally, the effective linearity of the front-end is increased substantially. Thus, the proper operation of a low-cost radio under presence of receiver non-linearity is possible. Due to the flexible design, the algorithm is generally applicable for wideband receivers and is not restricted to software defined radios

    Analogue neuromorphic systems.

    Get PDF
    This thesis addresses a new area of science and technology, that of neuromorphic systems, namely the problems and prospects of analogue neuromorphic systems. The subject is subdivided into three chapters. Chapter 1 is an introduction. It formulates the oncoming problem of the creation of highly computationally costly systems of nonlinear information processing (such as artificial neural networks and artificial intelligence systems). It shows that an analogue technology could make a vital contribution to the creation such systems. The basic principles of creation of analogue neuromorphic systems are formulated. The importance will be emphasised of the principle of orthogonality for future highly efficient complex information processing systems. Chapter 2 reviews the basics of neural and neuromorphic systems and informs on the present situation in this field of research, including both experimental and theoretical knowledge gained up-to-date. The chapter provides the necessary background for correct interpretation of the results reported in Chapter 3 and for a realistic decision on the direction for future work. Chapter 3 describes my own experimental and computational results within the framework of the subject, obtained at De Montfort University. These include: the building of (i) Analogue Polynomial Approximator/lnterpolatoriExtrapolator, (ii) Synthesiser of orthogonal functions, (iii) analogue real-time video filter (performing the homomorphic filtration), (iv) Adaptive polynomial compensator of geometrical distortions of CRT- monitors, (v) analogue parallel-learning neural network (backpropagation algorithm). Thus, this thesis makes a dual contribution to the chosen field: it summarises the present knowledge on the possibility of utilising analogue technology in up-to-date and future computational systems, and it reports new results within the framework of the subject. The main conclusion is that due to its promising power characteristics, small sizes and high tolerance to degradation, the analogue neuromorphic systems will playa more and more important role in future computational systems (in particular in systems of artificial intelligence)

    Computational modelling of the human motor control system: Nonlinear enhancement of the adaptive model theory through simulation and experiment

    Get PDF
    Adaptive Model Theory (AMT) proposes that the brain forms and adaptively maintains inverse models of the world around it for adaptive feedforward control. This leading motor control theory unites principles of neurobiology, psychology and engineering. A modified version of AMT was developed with the capacity to control nonlinear systems, to predict signals with nonlinear statistical characteristics, and to perform simultaneous feedback and feedforward adaptive control. The modified version is called nonlinear Adaptive Model Theory or nAMT. An experimental study was also performed investigating inverse model formation in the human motor control system, the results of which were then compared with the nAMT model. A nonlinear dynamic system identification method was developed for nAMT to replace the linear structures employed by AMT. This method employs a neurobiologically-inspired locally-recurrent neural-network structure. A multi-layer adaptation algorithm was also developed specifically for this structure. Nonlinear AutoRegressive Moving-Average (NARMA) adaptive predictor structures replace the linear Moving Average (MA) predictor circuits used in AMT. Adaptive feedback control is augmented using a nonlinear dynamic forward model observer to improve the quality of the estimated response signal. Nonlinear dynamic inverse models are formed by placing the forward model in an internal feedback loop in which the gain function is adjusted to maintain stability. The internal inverse model motor-control hypothesis was tested experimentally in a study looking at human open-loop performance in a tracking task. The study was aimed at directly demonstrating the formation of an internal inverse model of a novel visuomotor relationship for feedforward control in the brain. The study involved 20 normal adult subjects who performed a pursuit random tracking task with a steering wheel for input. During learning the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Results showed a transfer of learning from the unblanked runs to the blanked runs for a static nonlinear system (14% median improvement between first 4 and last 4 runs, p = .001) thereby demonstrating adaptive feedforward control in the nervous system. No such transfer was observed for a dynamic linear system, indicating a dominant adaptive feedback control component. The observed open-loop responses showed a high-pass frequency response which could not be explained using traditional control-systems motor control models. Experimental results were compared with simulated results from the nAMT model. Results from the experimental study were used to verify and tune the computational model. The resulting simulations produced effects that mirrored the closed- and openloop characteristics of the experimental response trajectories. This supports the claim that an internal feedback loop is used for the inversion of external systems in the human brain. Other control-systems models (both AMT and feedback-error learning) would require substantial ad hoc modification to reproduce the observed disparity between closed- and open-loop results. In contrast, nAMT naturally reproduced the effect as a consequence of its novel nonlinear inversion method. In nAMT an inverse model is formed by embedding a forward model in an internal feedback loop incorporating a low derivative gain. The derivative loop-gain caused the inverse model to be relatively inaccurate at low frequencies, for which the feedback control loop was adequate, but to be increasingly accurate at higher frequencies. Maintenance of the loop-gain at the lowest possible levels maximizes the internal stability of the inverse. The simulation work confirmed that the nAMT model is capable of reproducing human behaviour under a wide range of conditions
    corecore