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Abstract 

This thesis addresses a new area of science and technology, that of neuromorphic 

systems, namely the problems and prospects of analogue neuromorphic systems. The 

subject is subdivided into three chapters. 

Chapter 1 is an introduction. It formulates the oncoming problem of the creation 

of highly computationally costly systems of nonlinear information processing (such as 

artificial neural networks and artificial intelligence systems). It shows that an analogue 

technology could make a vital contribution to the creation such systems. The basic prin­

ciples of creation of analogue neuromorphic systems are formulated. The importance 

will be emphasised of the principle of orthogonality for future highly efficient complex 

information processing systems. 

Chapter 2 reviews the basics of neural and neuromorphic systems and informs on 

the present situation in this field of research, including both experimental and theoret­

ical knowledge gained up-to-date. The chapter provides the necessary background for 

correct interpretation of the results reported in Chapter 3 and for a realistic decision on 

the direction for future work. 

Chapter 3 describes my own experimental and computational results within the 

framework of the subject, obtained at De Montfort University. These include: the 

building of (i) Analogue Polynomial Approximator/lnterpolatoriExtrapolator, (ii) Syn­

thesiser of orthogonal functions, (iii) analogue real-time video filter (performing the 

homomorphic filtration), (iv) Adaptive polynomial compensator of geometrical distor­

tions of CRT- monitors, (v) analogue parallel-learning neural network (backpropagation 

algorithm). 

Thus, this thesis makes a dual contribution to the chosen field: it summarises the 

present knowledge on the possibility of utilising analogue technology in up-to-date and 

future computational systems, and it reports new results within the framework of the 

subject. The main conclusion is that due to its promising power characteristics, small 

sizes and high tolerance to degradation, the analogue neuromorphic systems will playa 

more and more important role in future computational systems (in particular in systems 

of artificial intelligence). 
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Chapter 1 
Introduction 

The project is dedicated to investigating different aspects of the problem of cre­

ation of analogue computational systems: the problem of influence of elements' preci­

sion, different schemes of self-correction, the use of the principle of orthogonality and 

of polynomial representation of functions. 

The aim of the project was to contribute to the theory of analogue neuromorphic 

systems, as well as to expand the basis of purely analogue elements in order to employ 

the advantages of analogue technology (compactness, low power consumption, etc.) by 

analogue VLSI (very large scale integration) systems. Another aim of the project was 

to find some new applications for analogue nonlinear adaptive (neuromorphic) systems. 

The objectives of the project are first to analyse the influence of imperfections 

of analogue neuromorphic systems on their characteristics and to suggest some ap­

proaches to solution of this problem (different self-correction systems); second to sug­

gest schemes of different analogue adaptive nonlinear systems (and develop breadboard­

models), which could find application in purely analogue neuromorphic information 

processing systems (such as Analogue Polynomial Approximator, Synthesiser of Or­

thogonal Functions, Compensator of AO nonlinear distortions, etc.). 

This chapter formulates the oncoming problem of the creation of highly compu­

tationally intensive nonlinear information processing systems, such as artificial neural 

networks and artificial intelligence systems. It shows that analogue technology could 

make a vital contribution to the creation of such systems. The basic principles of cre­

ation of analogue neuromorphic systems are formulated. The importance of the prin­

ciple of orthogonality for the future highly efficient complex information processing 

systems is emphasised. 
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1.1 Neural Networks as a new promising area of science 
and technology 

Over the last two decades, interest in Artificial Neural Networks (ANN) has been 

growing very fast. Computational Neuroscience, which is a new area of science dedi­

cated to Artificial Neural Networks, has now become a very well structured, developed 

and expanding area of science. 

There are many definitions of ANN. Let us introduce the following one: let's 

describe by the term Artificial Neural Networks (ANN) the complex adaptive nonlinear 

systems of information processing. Although some other systems (like adaptive filters) 

also obey this definition, I think it is the most appropriate one. Let us mention here 

some reasons for the fast growing interest in ANN. 

• Understanding of general principles of neural information processing: 

Along with Computational Neuroscience, Neurobiology has also been a very 

fast developing science over last decades. The stimuli for such biological 

researches were the collection of information about normal and abnormal 

(pathological) neural activity, as well as the successes in researches into the 

mechanisms of information processing taking place in natural neural systems. 

So these two sciences represent two approaches to the problem of neural 

processing: the fundamental approach (Computational Neuroscience) and the 

phenomenological approach (Neurobiology). It should be mentioned here that 

Neurobiology up to now gave very little understanding of neural processes 

taking place in brain. A number of theories and models have been created 

describing some electrochemical phenomena taking place in neural cell. In 

particular, the mechanism of neural spike generation and propagation, synaptic 

exchange, different neural channels, etc. were described. Nevertheless, since 

the neural cell is an extremely complex object, many very important properties 

of natural neural networks, such as the processes responsible for the learning of 

the neural network as a whole, are not understood yet. This is not surprising, 

since it is well-known in technology (as stated by John von Neumann [4]), 

that the complexity of description of a complex system is progressing very fast 

(roughly speaking in accordance with the factorial low) with increasing number 

I I 
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1.1 Neural Networks as a new promising area of science and technology 

of independent parameters (degrees of freedom) of a system. The attempts to 

understand the processes of natural neural network function could be compared 

to the attempts to understand the function of a computer processor by means of 

direct measurement of signals propagating between transistors. I don't believe 

that it is a productive approach. In cases of complex systems a fundamental 

approach is supposed to be much more efficient, since any elementary unit of 

an artificial system is well-described and understood and more complex systems 

(based on these units) could therefore be entirely analysed and understood. So 

Computational Neuroscience could be useful for interpretation of experimental 

neurobiological results. On the other hand the natural brain is a plentiful source 

of ideas and inspiration for researchers in Computational Neuroscience (since the 

fact that some information processing system exists, even as a biological system, 

is a great stimulus for creation of artificial systems doing the same). 

• Architecture: Those who have dealt with superpowerful computational systems 

(supercomputers) know that it is a great problem to arrange efficient functioning 

of multiprocessor systems such that most of the processors are involved in the 

calculation process. The two main principles, which are used in supercomputers 

are: 1) the parallelism and 2) the staging. It is easy to see that an ANN is 

utilising both of these principles: the parallelism is represented by multiple 

neurons in a neural layer whereas the staging is represented by the multilayer 

architecture of ANN. It is possible to show also that neural architecture (if it 

is real neural architecture, and not just simulation of ANN on a uni-processor 

or multiprocessor system) provides the fastest possible information processing. 

This is since results are produced by one pass of information from the inputs of 

a neural network (if the ANN has been taught), through several neural layers, to 

the output of the ANN1• It apears that the complexity of optimal programming 

of conventional multiprocessor systems is the main reason why, until now, the 

universal mass-production of computers has evolved in the direction of higher 

speed uni-processor systems rather than in the direction of multi-processor 

systems. Thanks to the progress in physics and microprocessor technology, this 

1 The neural architecture: Multilayer Perceptron was used as an example of ANN 
architecture [5]. It should be mentioned, also, that the ANN could take a lot of learning 
cycles and, concequently, a lot of time for learning. 
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1 . 1 Neural Networks as a new promising area of science and technology 

evolution has been fast enough to meet customers requirements until now. At the 

same time, there are physical restrictions of sizes of transistors (about 0.1 Jim 

see [6]) and, consequently, in computational power ofuni-processor systems. 

Therefore sooner or later the problem of creation of universal multiprocessor 

systems will arise. On the other hand the problem of optimal programming of 

universal multiprocessor system, it seems, cannot be solved in principle. That is, 

it's very difficult (virtually impossible) to create for a multiprocessor system a 

compiler which will generate an optimal code from a higher level language (like 

e.g. C or Fortran). In the same way, it is impossible to create the optimisation 

procedure which will guarantee the convergence of the parameter of quality 

of an arbitrary complex nonlinear system to its global optimum. At the same 

time, the problem of optimal programming of universal multiprocessor systems 

must be solved (by some sub-optimal way), since it would be inappropriate if 

the multiprocessor system, containing let's say 10000 processors, will use on 

average, let's say, 100 processors. 

So one of the main advantages of neural architecture is its ability to provide the 

maximal possible speed of information processing and supposedly near-optimal 

computational process. 

• Task statement: However, to realise the potential of such a computationally 

powerful system, a learning procedure is required which adjusts the strength 

of interconnections between neurons of ANN. The ANN learning process very 

often takes a lot of time. At the same time the advantage of ANN is that the task 

for ANN could be stated on a very high "level of abstraction" (that is, could 

be much less formalised). On the other hand to create programs in C or other 

similar languages (or even in, so called, languages of artificial intelligence, like 

Lisp or Prolog, see [7] and [8]) a lot of work should be done by the programmer 

(and, probably, by a modeller) to convert real-life problems to these suitable for 

computer formal logical forms. So the learning system of ANN is performing 

the same function as a programmer+compiler of conventional computers, that 

is, the adaptation of real-life problems into a form suitable for a particular 

hardware. This is one of the reasons why ANN s are so attractive for researchers 

and developers of computational systems, that is their ability to perform 
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1.1 Neural Networks as a new promising area of science and technology 

functions which in the case of conventional computational systems require the 

human's (programmer's) involvement. This property of ANNs makes them 

especially useful instruments for solution of problems, which are very difficult 

or impossible to formalise, and which very often arise in Signal Processing, 

sound/image processing/recognition, etc. Neural networks are very successful at 

the handling such kind of problems. 

Both these two properties of ANN (fastest, maximally parallel architecture and 

"high level" of task statement) are very critical for Artificial Intelligence (AI) system 

creation. Therefore one of the main motivations of neural researches is the creation of 

the hardware basis for systems of Artificial Intelligence. 

There is a very interesting question to answer: what is the complexity of the sys­

tem of Artificial Intelligence? This question seems to be extremely complex and is 

beyond the scope of this thesis, nevertheless we can state it and explain its importance. 

Obviously the AI system will be simpler than the human brain (we are assuming here 

that AI systems will not blindly mimic the natural brain, but will be based on princi­

ples of rationality). The question is: how much simpler? There are many examples of 

artificial systems which are much more efficient than natural systems. We can men­

tion here the wheel, which allows us to move very fast by car or train (whereas animals 

can move only step by step, which seems to be much less efficient). As for the infor­

mation processing system, the simplest calculator is a good example of a very efficient 

(in comparison with the natural brain) high precision computational system. It takes 

much less time to perform the computation, consumes much less power and is much 

smaller in size than the human brain. This fact (irrationality of natural systems) could 

be explained by the fact that the human brain is the result of evolution from the simplest 

one-cell organism into a human. Besides, any organism (in particular, humans) devel­

ops from one cell into the whole organism. Therefore some researchers could assume 

that AI systems could be several orders of magnitude simpler than the natural brain. 

My personal opinion, however, is that the complexity of AI systems will be comparable 

with the complexity of the human brain. This opinion is based on analysis of prob­

lems the human brain (and hence the AI system) copes with. Our brain is irrational in 

cases of logical problems and high precision computation. At the same time, it seems 

the human brain has a proper architecture to solve the nonformalised problems as well 
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1.1 Neural Networks as a new promising area of science and technology 

as to process badly conditioned and/or noisy data and so on. Actually nowadays an 

estimation of the computational power of the human brain has been agreed amongst re­

searchers to be approximately 1011 neurons. Each neuron has on average 103 synapses. 

It could be assumed also that it takes 0.1 sec for information to propagate through the 

brain. So the computational power of the human brain could be estimated as 1015 mul­

tiplications per second. This is approximately 106 times higher than the computational 

power of a conventional uni-processor computer. So one can assume the possibility of 

creation of artificial computational systems with comparable computational power in 

the foreseeable future (10-30 years). However, the problems of huge size memory, as 

well as of the appropriate computational architecture are to be solved. Besides, it is very 

important to make such AI systems reliable, of small size and low power consumption. 

One way or another, Computational Neuroscience will be an important and fast­

developing branch of science and technology at least until the Artificial Intelligence 

systems (that is- artificial systems, which are as intelligent as a human brain) are created. 

This will not happen soon (maybe in a hundred or in several hundred years). 

During the next few decades, the creation of systems solving different tasks of 

recognition, control, optimisation (in particular, the control of robots and automata) in 

real-time will be the most important problem for Computational Neuroscience. 

In this connection it should be emphasised that the technology should not blindly 

follow the biology, trying to copy particular schemes and approaches. That could be 

extremely irrational. Let us consider the Silicon Retina (described in [6]), which, in my 

view, is an example of such irrational systems. The description of the Silicon Retina is 

in subsection 2.3.1. The Silicon Retina is an integrated structure,which is not only pro­

ducing the video-signal (as the conventional CCD-based video-cameras do), but also is 

performing nonlinear spaced brightness equalisation. So, the overall contrast of the pic­

ture is increasing, which results in increasing the efficient dynamic range of the video 

signal. The suggested scheme of the Silicon Retina is mimicking the biological retina 

(see subsection 2.3.1). In spite of the great importance of the Silicon Retina for the in­

terdisciplinary branch of science and technology: Neuromorphic Systems, it is easy to 

show its irrationality. Indeed, the Silicon Retina has a parallel computational architec­

ture. The system is implemented on the basis of standard silicon VLSI technology, thus 

the speed of the nonlinear transform is greater than lO MHz, whereas the images are 

normally changing very slowly (-20 Hz). Therefore the potential (i.e. the speed) of the 
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standard VLSI technology will not be used in nonnal situations. Such systems however 

could be used for high speed applications (for example super high-speed video record­

ing, a very exotic problem which probably will have some importance in the future). 

For standard applications in real-time nonlinear image processing (compression of the 

dynamic range, contrast enhancement, etc.) serial (rather than parallel) systems seem 

to be more appropriate. 

The dynamic range of the analogue signal taken from the CCD typically has very 

high dynamic range (more than 2000: 1), 10 times higher than that of the nonnal digital 

video signal. Therefore a special microchip enhancing the analogue video signal taken 

from a CCD (e.g. compressing by 10 times the dynamic range of the video-signal), 

rather than the Silicon Retina, would be a commercial implementation of the principles 

of image processing used by the biological retina. In subsection 3.5 an analogue sys­

tem is described which perfonns real-time nonlinear transfonn of a video-signal (the 

Homomorphic Filtration), similar to the nonlinear transfonn perfonned by the Silicon 

Retina. 

Conclusion: Artificial systems of infonnation processing could be much more 

computationally efficient than natural ones. The aim of my work is to contribute to 

the creation of complex and supercomplex computational systems, in particular ANN, 

which, supposedly, will be the main components of Artificial Intelligence systems. An­

other aim is to suggest simple and highly efficient computational systems, which could 

be implemented in the near future. 
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1.2 Analogue technology - fundamental advantages and 
drawbacks 

1.2.1 Advantages 

The human brain is the most complex and reliable infonnation processing system 

known up to now. At the same time, I don't think that there is something incomprehen­

sible in the human brain that is vital for its infonnation processing function and yet can 

not be reproduced (and utilised) in artificial systems. 

Although there is at present no complete understanding of infonnational pro­

cesses taking place in the brain, there is some understanding of electro-chemical and 

biological processes taking place in neural cells. This allow us to analyse some of the 

properties of natural neural networks. These properties are for the most part the pa­

rameters of nonlinear infonnation processing, which in the case of ANN are related to 

feedforward networks (the processes of learning by natural neurons are far less under­

stood). 

The clue to success of a N atural Neural Network (NNN) seems to be that it uses 

the nonlinear bio-electro-chemical phenomena taking place in neural cells to perfonn 

the mathematical transfonns. In [9] Carver Mead showed that the use of nonlinear phys­

ical phenomena taking place in transistors to perfonn mathematical transfonns could 

give a huge gain in power consumption (more than 104), a reduction in size (about 

100) and an increase in speed (about 100). Therefore artificial systems of infonnation 

processing, based on semiconductor VLSI technology and utilising physics to perfonn 

nonlinear mathematical transfonns, will be fast, small-size and highly power-efficient. 

Analysis shows that the signal-to-noise ratio (SNR) of natural neurons is about 

100, whereas in the case of analogue VLSI systems it could be better than 106
. The 

speed of propagation of signals between neurons of NNN can be estimated as 10Hz 

whereas in the case of the analogue ANN it could be several hundred MHz. 

This is the ideological basis of the Neuromorphic Systems, interdisciplinary area 

of science and technology, which is situated between Computational Neuroscience, 

Physics and Neurobiology. So I would suggest defining Neuromorphic Systems as 

artificial computational systems, utilising physical phenomena to perform arithmetic 

(non binary) operations. 

17 



1.2 Analogue technology - fundamental advantages and drawbacks 

It should be noted however that natural brain seems to have a huge advantage 

in size in comparison with up-to-date VLSI technology (even if it is neuromorphic 

VLSI). Firstly, the sizes of neural synapses could be very small (tens of nanometers), 

a great challenge for semiconductor VLSI technology. Secondly, the NNN is a three­

dimensional structure, therefore the interconnection problem for such a highly parallel 

structure (where an output of one neuron could be connected with 1000 to 10000 inputs 

of other neurons) is solved very efficiently. The problem of 3D neuromorphic systems 

will be mentioned later in this Introduction. 

1.2.2 Drawbacks 

In spite of great advantages of analogue technology for ANN implementation, 

most of ANN hardware is digital. The reason for this is that it is a very nontrivial 

problem to utilise the potential of analogue technology. For example, the Backpropaga­

tion (BP) algorithm (the most popular algorithm of Multilayer Perceptron ANN (MLP) 

learning) can not be directly implemented on an analogue elements basis because it de­

mands very high precision of the learning circuits. Unlike digital systems (which can be 

as precise as necessary) analogue systems have restricted precision. There are several 

parameters of analogue systems contributing to the imprecision: noise, off-sets (mostly 

caused by inequality of transistors or other elements of the analogue system), nonlinear 

distortions, time delay (phase distortions), etc. 

Analysis of the influence of different kinds of nonidealities is a complex prob­

lem and depends on a particular case (a particular neural architecture and a task to be 

solved). In subsection 3.7 will be described the influence of different kinds of non ide­

alities of analogue technology on the characteristics of MLP ANN with parallel im­

plementation of the BP algorithm of learning. The different kind of nonidealities affect 

different parts of ANN (feedforward network and the learning system) in different ways. 

It will be shown that the feedforward network is sensitive to the noise of the system, that 

is, accumulating the noise of element of the system) and very tolerant to off-sets and 

nonlinear distortions. On the other hand the learning system of such parallel-learning 

ANN is very sensitive to off-sets and to nonlinear distortions but is quite tolerant to the 

noise of elements of the systems (since the learning of such ANN typically many or-
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ders of magnitude slower than the signal propagation through the feedforward network 

of the ANN, therefore noise is averaged in the learning system). 

1.2.3 Prospects (analogue technology as a necessary attribute of 
the future high-complexity computational systems) 

To suppress the harmful influence of analogue element off-sets on the learning 

system, a special system of "self-correction" of high precision circuits of analogue 

ANN is necessary. Several kinds of such "self-correction" system for parallel-learning 

analogue MLP ANN are described in subsection 3.7. 

The purpose of this self-correction system is the creation of a high precision sys­

tem on the basis of imprecise elements. To achieve this aim a special phase of the ANN 

function (the self-correction phase) is necessary. So, such analogue parallel-learning 

ANN have three phases of function: 

• the "working" phase, when the nonlinear transform is fixed (all weights are 

constant) and the aim of ANN is nonlinear processing of input information; 

• the learning phase, when the ANN must adjust its weights aiming to minimise 

the error of ANN or maximise the parameter of quality of the ANN; 

• the self-correction phase, when the self-correction system is adjusting the high 

precision units of the learning system (zeroed error signal, fixed weights). 

In ideal (or digital) ANN there are only the two first above mentioned phases. 

Such a 3-phase scheme of function is typical for natural neural networks (which 

are based on analogue mechanisms of nonlinear transform, and therefore have off-sets, 

which must be suppressed). In this case the self-correction stage may be taking place 

during the sleep of an animal or a human. Thus the structure of analogue ANN is, 

generally, more complex than the structure of the digital ANN (see Fig. 1). At the same 

time the complexity of self-correction systems is normally less than the complexity 

of the feedforward network or learning system (and the time which it takes for the 

self-correction procedure is less than the time for learning). Therefore the gains in 

power consumption and size overwhelmingly prevails over the necessary increased 

complication of systems based on analogue elements. 
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Figure 1. The block-schemes of (a) ideal (digital) neural network; (b) analogue paral­
lel-learning neural network 

The important point is that some of the self-correction systems of analogue ANN 

have a property not only to suppress small off-sets of high precision learning circuits, 

but also are capable of localising the harmful influence of broken element(s) of the 

ANN (irrespective of whether it is an element of the feedforward network, the learning 

system or of the self-correction system). This problem will be discussed in subsection 

3.7 . This property of some analogue architectures could be very important for creation 

of superreliable systems, as well as in cases of not very reliable (with relatively high 

probability of defects) Ultra Large Scale Integration (ULSI) technologies for creation of 

analogue ANNs. It is an important advantage of analogue technology since the break­

age (or defect) of only one transistor causes the crash of the whole digital processor. 

The potential property of analogue ANNs of high tolerance to breakage or defects 

of their elements (along with the advantage in power consumption) could be very im­

pOl1:ant e.g. for creation of multi-layer integrated structures. In thi s case the vitality of 

analogue systems is very important since in the case of ultra-complex (especially three­

dimensional) systems some defects will inevitably occur somewhere in the structure . 

The harm from these defects should be minimised by a proper hardware architecture . 
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To justify the prospects and the reality of multilayer integrated technology for 

analogue ANN implementation, let us consider a quasi-3D integrated structure which 

could be composed on the basis of up-to-date VLSI technology. 

Let us suggest that a wafer-sized analogue VLSI implementation of ANN was 

created. As a next step, let us suggest that 100 such wafers were pasted together, so 

that overall thickness (and other dimensions) of the structure is less than 10 cm. Let 

us estimate the characteristics of the resulting structure. We will assume that the ana­

logue VLSI system performing the same quantity of calculations as a digital one could 

be 10 times smaller in sizes (thus 100 times less area) and take 105 times less power. 

Note that the area of a Pentium III crystal is about 1 cm2 whereas the power consump­

tion is about 30 Watt. The above sandwiched structure will be just 10 times more power 

consuming than the Pentium III (500MHz) processor and 105 times more computation­

ally powerful. Such a structure will be almost as computationally powerful as a human 

brain (see the above estimations of the human brain's computational power, which is 

about 106 times faster than the Pentium). 

The fact that such a naive structure (which can not be called a real 3D structure 

since there are no interconnections between layers) could be so computationally pow­

erful is quite surprising. Nevertheless it doesn't mean that we are close to creation of 

artificial brain. 

Firstly, the great question is what is the computational architecture of AI systems? 

F or several decades mathematicians have been working on this problem. It is obvious 

however that it is impossible to succeed in this problem without experiments. Computa­

tional experiments based on computer simulations seem unpromising because of far too 

low computational power. In this connection the creation of computationally powerful 

systems will be vital for progress in establishing of AI architecture. 

The second reason why the creation of AI systems is a great challenge for technol­

ogy is the huge (~1 05 Gbyte) memory of natural brain. It is very fundamental problem 

since the sizes of synapses of the natural brain could be just tens of nanometers. Since 

the ANN for artificial brain are supposed to be very interconnected, the technologi­

cal problem of local massive interconnection is also of great importance. To solve this 

problem it would not be enough just to develop existing VLSI technology. Probably 

some principally different approach is necessary. Such systems definitely must be three 
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dimensional (i.e. multilayer integrated structures) In such super-complex systems, the 

tolerance to element degradation will be very important. 

Conclusions 

1. The computational power of artificial systems could become comparable with 

that of the human brain in the foreseeable future. The creation of systems of artificial 

intelligence however is a much greater problem since firstly the proper computational 

architecture has to be established and secondly, the problem of huge (~1 05 Gbyte) mem­

ory of the AI system must be solved in hardware. 

2. A special self-correction system is necessary for creation of highly efficient 

analogue neuromorphic systems. 

3. The low power consumption of analogue ANN gives the opportunity of cre­

ating the multilayer integrated structure, thus of increasing the scale of integration by 

several (more than four) orders of magnitude. 
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1.3 Other paradigms of highly efficient computational 
systems 

The creation of artificial brain is definitely the greatest aim for researchers and 

developers of artificial neural networks. This goal will not be reached in the next few 

decades. On the other hand some of the simplest neural systems could be created and 

find commercial applications in the near future. These systems will be able to solve 

tasks of image/speech processing/recognition, multiparameter optimisation, etc. 

Such systems will not be as universal as the computer or as a human brain or 

AI systems, but could be very efficient since they could be optimised for particular 

problems, will be based on principles of rationality and will utilise the advantages of 

analogue adaptive technology (high speed, small sizes and low power consumption). 

Let us consider the two principles which are widely used by signal processing 

systems but seems to be out of use by the natural information processing systems: poly­

nomial representation and the principle of orthogonality. 

Polynomial transforms and approximation. As was already mentioned, neu­

romorphic systems should not mimic natural systems, but must use nonlinear physical 

phenomena as computational primitives and should be built on the basis of principles 

of rationality. 

One of the main tasks which neural networks (both natural and artificial) are solv-

ing is the task of approximation. 

Natural neural networks seem to be mostly using the universal technique of ap-

proximation based on sigmoid-like functions f(x) = sigm(x) (e.g. f(x) = l+e~(-x))' 

which, in accordance with the Kolmogorov's theorem about approximation (see [10]), 

indeed are capable of approximation of any function of any number of arguments 

<I> (Xl 1 X2, X3, ... XN). The sigmoid has a linear part when the argument x is near zero: 

-1 < x < 1 and is constant (saturated) if x « -lor 1 « x (see Fig. 2). 

At the same time, it is known from the theory of approximation that an optimal 

approximation of different classes of functions demands different basic functions. "Op­

timal" means that the minimal quantity of degrees of freedom are to be adjusted to get 

the required precision of approximation. The functions to be approximated could be fi­

nite or they could be periodical. They could have different degree of smoothness. The 

precision of approximation could also be different in different cases. For each problem 
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Figure 2. An example of sigmoid function 

an appropriate basis of approximating functions must be established and used. There­

fore, ANN dedicated to solve particular problems must have proper (relevant to the 

problem) activation functions. 

In real life the tasks (and subtasks) to be solved vary in a very wide range . There­

fore the ANN should be built on the basis of a priori knowledge about the task to be 

so lved, otherwise the efficiency of ANN will dramatically decrease . For example, the 

human brain become very inefficient solving the problems of high precision calcula­

tions or complex logical tasks, which could be easily solved by a simplest calculator. 

So the ANN should be task-specific rather than universal systems . 

One particular case is very important. A very wide class of physical phenomena 

and analogue systems are weakly nonlinear. That's why the polynomial representation 

and approximation for modelling of such phenomena are widespread in science and 

technology. 

The efficiency (simplicity) and high accuracy of polynomial approximation of 

weakly nonlinear functions is the main motivation of polynomial-based ANN. The most 

well-known polynomial ANN are the so-called Volterra neural networks (see e. g. [11 ]). 

In the section 3.1 several examples of polynomial-based analogue adaptive systems are 

described. 

Another useful application of polynomials is a result of the fac t that many very im­

portant orthogonal bases can be represented by polynomials. For example : the Cheby­

shev polynomials ~~ (x) give us sine and cosine bases offunctions: Tn (sin ( t) ) = in ( nt ). 
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The Legendre, Laguerre and Hermit polynomials as well as some other functions 

also play very important roles in signal processing, telecommunications, etc. In section 

3.2 the analogue synthesiser of different orthogonal functions is described. 

Several examples of the application of polynomial-based analogue systems are 

described in sections 3.3 and 3.6 

The principle of orthogonality. Orthogonal functions play a very important 

role in mathematics, physics, informatics, image/signal processing, telecommunication 

and other branches of science and technology. The most famous orthogonal functions 

nowadays are sine/cosine functions which make up the Fourier basis. For several years, 

the wavelet family of functions (specific finite orthogonal functions) became very im­

portant in image/signal processing. 

Orthogonal functions are so important since (as it is known from mathematical 

analysis) an arbitrary piecewise continuous function <I> (x) could be efficiently rep­

resented as an expansion in terms of orthonormal (orthogonal normalised) functions 

fi(X): <I>(x) '"'-' 2: cifi(X) ,where Ci = J <I>(X)fi(X)dx (see [42]). 

If the fi basis of functions was not orthogonal, the expansion of <I> (x) in terms 

of fi functions (if fi are complete): <I> (x) '"'-' 2: cifi(X) still will be possible but the 

calculation of Ci coefficients will be much more complex. 

The selection of appropriate orthogonal functions <I> i (x) allows highly efficient 

characterisation of a function f(x). For example: the fact that the first terms of the 

Fourier basis are smoother than the higher order terms allows one to obtain the smooth 

approximation of the function f (x) by a truncated basis <I> i (x) where i < N. The 

selection of N allows us to get the desirable smoothness of the approximating function. 

Thus if we have an a priori knowledge that the function <I>i(X) is a smooth function 

with added noise, the approximation by a truncated Fourier basis allows elimination of 

nOIse. 

We can mention several other examples when a priori knowledge about functions 

could be utilised by means of selection of appropriate basis of functions. 

Thus the bigger variety of orthogonal bases the greater the chance to realise in 

full the a piori knowledge about the system to be modelled or characterised. 
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Figure 3. Typical scheme of neuron, constituting the MLP ANN 

This fact was the main motivation for the creation of the Analogue Synthesiser 

of Orthogonal Functions, described in section 3.2, which let us to synthesise a wide 

variety of orthogonal function. 

Another stimulus was the fact that analogue neuromorphic systems could be much 

more efficient if they utilise the principle of orthogonality. Actually the Synthesiser is 

a specific analogue adaptive system, which could be used as a unit to build a more 

complex purely analogue information processing system. 

Orthogonal functions are already used by some ANN architectures. For example, 

the Chebyshev polynomials-based (CPB) unified model neural network is described in 

[12]. The fast training polynomial approximator based on Legendre polynomials is 

described in [13]. 

The remarkable properties of the above mentioned approximators are their very 

fast adaptation as well as the guaranteed convergence to the global minimum of er­

ror. In section 3.1 there is a comparison of the power-type functions-based polynomial 

approximator with the Legendre polynomials-based approximator. This comparison 

demonstrates the importance of the principle of orthogonality. 

The advantages of the orthogonal transforms also become apparent when one 

compare the analogue homomorphic video-filter (which is based on orthogonal trans­

forms and described in section 3.5) with the Silicon Retina (which is based on nonorthog­

onal parallel image processing and attempts to mimic the natural retina , see [6]) . 

Orthogonal and polynomial systems vs. multi-layer perceptron In spi te of the 

importance of the principle of orthogonality and the polynomial representation, the 
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Figure 4. An example ofMLP neural network architecture 

Multi-Layer Perceptron ANN architecture (see Fig. 3 and Fig. 4) based e.g. on the 

sigmoid activation function, seems to me to be the basis for implementation of AI sys­

tems. 

The reasons are : 

1. the sigmoid-based approximators (ANN) cover a very wide range of functions 

to be approximated. Indeed, in the case of large weights, the ANN wi ll behave similar 

to the digital scheme, whereas in the case of weak weights the neural network will have 

weakly-nonlinear transfer functions (thus will allow approximation of smooth interre­

lations). The polynomial-based ANN are efficient only in case of weak nonlinearity 

of functions to be approximated, and in cases of stronger nonlinearity (higher than 6th 

degree of polynomial) their use becomes inefficient. 

2. The advantage of orthogonal approximators of fast adaptation to the global 

minimum of error does not work in cases of standard ANN tasks. This is because 

nonnally the data set to be processed by ANN is not regular (but nonnally is some 

sparse irregular multi -dimensional set of data) and in such cases the orthogonal func­

tions (which assumes orthogonality over some interval) will lose their orthogonality, 

. ~ (-=-+) (-=-+) -t >: h >:. h Kr k d I . >: - { 1, if i = j /, I.e . ~k J i Xk . J j Xk r Uij, were Uij ·lS t e onec er eta. Uij - 0, if i f j ,"-

is the number of data samples used during ANN learning. 

Therefore the slowness of learning of the sigmoid-based MLP ANN seems like 

the payment for its potentially extremely high flexibility, and its efficiency of use of 

its degrees of freedom in the cases of substantially nonlinear functions to be approxi-

mated/interpolated . 
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One of the promising directions of research in my view will be aiming to utilise 

the principle of orthogonality in a specific ANN, dedicated to solve standard ANN 

tasks. Such ANN could contain some adaptive units, which will locally orthogonalise 

and normalise the data propagating through the ANN. I hope such an approach will let 

us increase both the speed of learning and the probability of convergency of the ANN to 

the global minimum of error, and will be able to solve the same spectrum of problems 

as the MLP ANN. 

Conclusions 

1. Polynomial-based adaptive analogue systems as well as adaptive systems util­

ising the principle of orthogonality, could be very efficient and could find commercial 

applications already in the near future. 

2. In many typical ANN tasks (especially in cases of complex tasks) multi-layer 

perceptron neural architecture could be much more efficient than polynomial-based 

adaptive systems. In many cases the principle of orthogonality is not applicable. 
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Chapter 2 
Review (relevant biological, mathematical 

and technological background and 
up-to-date results and developments) 
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2.1 Basics of neural networks 

2.1.1 Biological neurons 

A human brain consists of approximately lO ll computing elements called neu­

rons. They communicate through a connection network ofaxons and synapses having a 

density of approximately 104 synapses per neuron. Our hypothesi s regarding the mod­

eling of the natural nervous system is that neurons communicate with each other by 

means of electrical impulses ([ 14 J) . The neurons operate in a chemical environment 

that is even more important in terms of actual brain behavior. We thus can consider 

the brain to be a densely connected electrical switching network conditioned largely 

by the biochemical processes. The vast neural network has an elaborate structure with 

very complex interconnections. The input to the network is provided by sensory recep­

tors. Receptors deliver stimuli both from within the body, as well as from sense organs 

when the stimuli originate in the external world. The stimuli are in the form of elec­

trical impulses that convey the information into the network of neurons . As a result of 

information processing in the central nervous systems, the effectors are controlled and 

give human responses in the form of diverse actions. We thus have a three-stage sys­

tem, consisting of receptors, neural network, and effectors , in control of the organism 

and its actions. 

Figure 5. Infonnation flow in nervous system. 
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Figure 6 . Schematic diagram of a neuron and a sample of pul se train. ( [1]) 

A lucid, although rather approximate idea, about the information links in the ner­

vous system is shown in Figure 5. As we can see from the figure , the information is 

processed, evaluated, and compared with the stored information in the central nervous 

system. When necessary, commands are generated there and transmitted to the mo­

tor organs. Notice that motor organs are monitored in the central nervous system by 

feedback links that verify their action. Both internal and external feedback control the 

implementation of commands. As can be seen, the overall nervous system structure has 

many of the characteristics of a closed-loop control system. 

The elementary nerve cell , called a neuron, is the fundamental building block of 

the biological neural network. Its schematic diagram is shown in Figure 6. 

A typical cell has three major regions : the cell body, which is also called the soma, 

the axon, and the dendrites. Dendrites form a dendritic tree, which is a very fine bush 
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of thin fibers around the neurons body. Dendrites receive information from neurons 

through axons -long fibers that serve as transmission lines. An axon is a long cylindri­

cal connection that carries impulses from the neuron. The end part of an axon splits into 

a fine arborization. Each branch of it terminates in a small endbulb almost touching the 

dendrites of neighboring neurons. The axon-dendrite contact organ is called a synapse. 

The synapse is where the neuron introduces its signal to the neighboring neuron. The 

signals reaching a synapse and received by dendrites are electrical impulses. The in­

terneuronal transmission is sometimes electrical but is usually effected by the release 

of chemical transmitters at the synapse. Thus, terminal-boutons generate the chemical 

that affects the receiving neuron. The receiving neuron either generates an impulse to 

its axon, or produces no response. The neuron is able to respond to the total of its inputs 

aggregated within a short time interval called the period of latent summation. The neu­

ron's response is generated if the total potential of its membrane reaches a certain level. 

The membrane can be considered as a shell, which aggregates the magnitude of the in­

coming signals over some duration. Specifically, the neuron generates a pulse response 

and sends it to its axon only if the conditions necessary for firing are fulfilled. 

Let us consider the conditions necessary for the firing of a neuron. Incoming 

impulses can be excitatory if they cause the firing, or inhibitory if they hinder the firing 

of the response. A more precise condition for firing is that the excitation should exceed 

the inhibition by the amount called the threshold of the neuron, typically a value of 

about -40mV ([14]). Since a synaptic connection causes the excitatory or inhibitory 

reactions of the receiving neuron, it is practical to assign positive and negative unity 

weight values, respectively, to such connections. This allows us to reformulate the 

neuron's firing condition. The neuron fires when the total of the weights to receive 

impulses exceeds the threshold value during the latent summation period. 

The incoming impulses to a neuron can only be generated by neighboring neurons 

and by the neuron itself. Usually, a certain number of incoming impulses are required to 

make a target cell fire. Impulses that are closely spaced in time and arrive synchronously 

are more likely to cause the neuron to fire. As mentioned before, observations have 

been made that biological networks perform temporal integration and summation of 

incoming signals. The resulting spatio-temporal processing performed by natural neural 

networks is a complex process and much less structured than digital computation. The 

neural impulses are not synchronized in time as opposed to the synchronous discipline 
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of digital computation. The characteristic feature of the biological neuron is that the 

signals generated do not differ significantly in magnitude; the signal in the nerve fiber 

is either absent or has the maximum value. In other words, information is transmitted 

between the nerve cells by means of binary signals. 

After carrying a pulse, an axon fiber is in a state of complete nonexcitability for 

a certain time called the refractory period. For this time interval the nerve does not 

conduct any signals, regardless of the intensity of excitation. Thus, we may divide the 

time scale into consecutive intervals, each equal to the length of the refractory period. 

This will enable a discrete-time description of the neuron's performance in terms of 

their states at discrete time instances. For example, we can specify which neurons will 

fire at the instant k+ 1 based on the excitation conditions at the instant k.The neuron will 

be excited at the present instant if the number of excited excitatory synapses exceeds 

the number of excited inhibitory synapses at the previous instant by at least the number 

T, where T is the neuron's threshold value. 

The time units for modeling biological neurons can be taken to be of the order 

of a millisecond. However, the refractory period is not uniform over the cells. Also, 

there are different types of neurons and different ways in which they connect. Thus, 

the picture of real phenomena in the biological neural network becomes even more 

involved. We are dealing with a dense network of interconnected neurons that release 

asynchronous signals. The signals are then fed forward to other neurons within the 

spatial neighborhood but also fed back to the generating neurons. 

The above discussion is extremely simplified when seen from a neurobiological 

point of view, though it is valuable for gaining insight into the principles of biological 

computation. Our computing networks are far simpler than their biological counter­

parts. Let us examine an artificial neuron model that is of special, historical signifi-

cance. 

2.1.2 McCulloch-Pitts Neuron Model 

The first formal definition of a synthetic neuron model based on the highly sim­

plified considerations of the biological model described in the preceding section was 

formulated by McCulloch and Pitts [15]. The McCulloch-Pitts model of the neuron is 

shown in Figure 7a. The inputs Xi, for i = 1,2, ... , N, are 0 or 1, depending on the 
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Figure 7. McCulloch-Pitts model neuron and elementary logic networks : (a) model diagram, 
(b) NOR gate, (c) NAND gate and (d) memory cell. 

absence or presence of the input impulse at instant k. The neuron's output signal is 

denoted as o. The firing rule for this model is defined as follows 

k+l _ { 1 if L~= l WiX~ > T 
o - 'f ,\",n k o I L..,., i= l WiX i < 1 

where superscript k = 0, 1, 2, ... denotes the discrete-time instant, and Wi is the multi­

plicative weight connecting the i' th input with the neuron's membrane. In further dis­

cussion, we will assume that a unity delay elapses between the instants k and k+ 1. Note 

that W i = + 1 for excitatory synapses, Wi = -1 for inhibitory synapses for this model , 

and T is the neuron's threshold value, which needs to be exceeded by the weighted sum 

of signals for the neuron to fire. 

Although this neuron model is very simplistic , it has substantial computing poten­

tial. It can perform the basic logic operations NOT, OR, and AND, provided its weights 

and thresholds are appropriately selected. As we know, any multivariable combina­

tional function can be implemented using either the NOT and OR, or alternatively the 

NOT and AND, Boolean operations. Examples of three-input NOR and NAND gate 

using the McCulloch-Pitts neuron model are shown in Figure 7(b) and (c). 

Both the neuron model and the example logic circuits discussed so far have been 

combinational and little attention has been paid to the inherent delay involved in their 
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operation. However, the unity delay property of the McCulloch-Pius neuron model 

maker it possible to build sequential digital circuitry. 

First note that a single neuron with a single input x and with the weight and thresh­

old values both of unity, computes ok+l = Xk. Such a simple network thus behaves as a 

single register cell able to retain the input for one period elapsing between two instants. 

As a consequence once a feedback loop is closed around the neuron as shown in Fig­

ure 7( d). we obtain a memory cell. An excitatory input of 1 initializes the firing in this 

memory cell, and an inhibitory input of 1 initializes a nonfiring state. The output value, 

at the absence of inputs, is then sustained indefinitely. This is because the output of ° 
fed back to the input does not cause firing at the next instant, while the output of 1 does. 

Thus, we see that digital computer hardware of arbitrary complexity can be con­

structed using an artificial neural network consisting of elementary building blocks as 

shown in Figure 7. Our purpose, however, is not to duplicate the function of already ef­

ficient digital circuitry, but rather to assess and exploit the computational power that is 

manifested by interconnected neurons subject to the experientialleaming process. 

2.1.3 Neuron Modeling for Artificial Neural Systems 

The McCulloch-Pitts model of a neuron is characterized by its formalism and 

its elegant, precise mathematical definition. However, the model makes use of several 

drastic simplifications. It allows binary 0, 1 states only, operates under a discrete-time 

assumption, and assumes synchrony of operation of all neurons in a larger network. 

Weights and the neurons' thresholds are fixed in the model and no interaction among 

network neurons takes place except for signal flow. Thus, we will consider this model 

as a starting point for our neuron modeling discussion. Specifically, the artificial neu­

ral systems and computing algorithms employ a variety of neuron models that have 

more diversified features than the model just presented. Below, we introduce the main 

artificial neuron models. 

Every neuron model consists of a processing element with synaptic input con­

nections and a single output. The signal flow of neuron inputs, Xi, is considered to 

be unidirectional as indicated by arrows, as is a neuron's output signal flow. A gen­

eral neuron symbol is shown in Figure 8. This symbolic representation shows a set of 

weights and the neurons processing unit or node. The neuron output signal is given by 
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Figure 8. General symbol of neuron consisting of processing node and synaptic connections 

the following relationship: 

n 

o = f (wT x ), or 0 = f (L, W iXi) 

i= l 

where w is the weight vector defined as 

and x is the input vector: 

(All vectors defined in this text are column vectors; superscript T denotes a transposi­

tion.) The function f(wT x ) is often referred to as an activation function. Its domain is 

the set of activation values, net, of the neuron model , we thus often use this function as 

f (net ). The variable net is defined as a scalar product of the weight and input vector 

net w T x 

The argument of the activation function, the variable net, is an analogue of the biologi­

cal neuron's membrane potential. Note that the threshold value is not explicitly used in 

the above equations, but this is only for notational convenience . We have momentarily 

assumed that the modeled neuron has n - 1 actual synaptic connections that come from 

actual variable inputs X l , X2, .. . , Xn -l' We have also assumed that Xn = 1 and Wn = - T . 

Since threshold plays an important role for some models, we will sometimes need to 

extract explicitly the threshold as a separate neuron model parameter. 

After the operation of summation of its weighted inputs the neuron perform the 

nonlinear operation f (net) through its activation fun ction. Typical activation function 
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used are 

f (net ) tanh (,\ . net ) (1) 

and 

{ 
+ 1 net> 0 

f (net ) sgn(net ) = I ' - 0 - , net < (2) 

where ,\ > 0 is proportional to the neuron gain determining the steepness of the con­

tinuous function f (net) near net = O. The continuous activation function is shown in 

Figure 9(a) for various ,\. Notice that as ,\ -7 00, the limit of the continuous function 

becomes the sgn( net ) function. Activation functions (2.1) and (2 .2) are called bipolar 

continuous and bipolar binary functions, respectively. The word bipolar is used to point 

out that both positive and negative responses of neurons are produced for this definition 

of the activation function. 

By shifting and scaling the bipolar activation functions defined by (2 .1) and (2.2), 

unipolar continuous and unipolar binary activation functions can be obtained, respec­

tively, as 

1 
f(n et) ---- --

1 + exp( -,\ . net) 

and 

f ( ) = { + 1, net > 0 
net - 0 t 0 , ne < 

(see Figure 9(b).) Again, the unipolar binary function is the limit of continuous f (net) 

when ,\ -7 00. The soft-limiting activation functions are often called sigmoidal char-

j(net) 

-3 -2 -[ 3 1Ji'/ 

(a) ( 0) 

Figure 9. Activation functions of a neuron : (a) bipolar continuous and (b) unipolar continu­

ous. 
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acteristics, as opposed to the hard-limiting activation functions given. Hard-limiting 

activation functions describe the discrete neuron model. Most neurons employ bipolar 

activation functions. Some neural network architectures or applications do, however, 

specifically require the unipolar neuron responses. If this is the case, appropriate quali­

fication for the type of activation function used is made. 

Some neural models require the use of another type of nonlinearity than that de­

fined in the above equations. 

Artificial neural systems using the models defined by the above equations do not 

involve the biological neuron features of delay, refractory period, or discrete-time op­

eration. In fact, the neuron models listed so far in this section represent instantaneous, 

memoryless networks; i.e. they generate the output response determined only by the 

present excitation. A delay feature can be added to the instantaneous neuron model by 

adding an external delay element to make the ensemble of neurons operate with mem-

ory. 

2.1.4 Learning and adaptation 

Each of us acquires and then improves our skills and abilities through the ba­

sic phenomenon of learning. Learning is a fundamental subject for psychologists. In 

general, learning is a relatively permanent change in behavior brought about by expe­

rience. Learning in human beings and animals is an inferred process; we cannot see 

it happening directly and we can assume that it has occurred by observing changes in 

performance. Learning in neural networks is a more direct process, and we typically 

can capture each learning step in a distinct cause-effect relationship. To perform any 

of the processing tasks discussed in the previous section, neural network learning of 

an input-output mapping from a set of examples is needed. Designing an associator or 

a classifier can be based on learning a relationship that transforms inputs into outputs 

given a set of examples of input-output pairs. 

Our focus in this section will be artificial neural network learning rules. A neuron 

is considered to be an adaptive element. Its weights are modifiable depending on the 

input signal it receives, its output value, and the associated teacher response. In some 

cases the teacher signal is not available and no error information can be used, thus the 
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Figure 10. Illustration for weight learning rules (di provided only for mode). 

neuron will modify its weights based only on the input and / or output. This is the case 

for unsupervised learning. 

Let us study the learning of the weight vector Wi, or its components Wij connect­

ing the j'th input with the i'th neuron. The trained network is shown in Figure 10 and 

uses the neuron symbol from Figure 8. In general, the j'th input can be an output of 

another neuron or it can be an external input. Our discussion in this section will cover 

single-neuron and single-layer network supervised learning. Under different learning 

rules, the form of the neurons activation function may be different. Note that the thresh­

old parameter may be included in learning as one of the weights. This would require 

fixing one of the inputs, say X n . We will assume here that X n , if fixed, takes the value 

of -1. 

The following general learning rule is adopted in neural network studies ( [16]): 

The weight vector wI = [Wil Wi2 Win]T increases in proportion to the product 

of input x and learning signal 8. The learning signal 8 is in general a function of 

Wi) x, and sometimes of the teacher's signal di . We thus have for the network shown in 

Figure 10: 

(3) 

The increment of the weight vector Wi produced by the learning step at time t according 

to the general learning rule is 

(4) 
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where a is a positive number called the learning constant that determines the rate of 

learning. The weight vector adapted at time t becomes at the next instant, or learning 

step, 

(5) 

The superscript convention will be used in this text to index the discrete-time training 

steps as in Eq.(2.5). For the k'th step we thus have from (2.5) using this convention 

(6) 

The learning in 2.6 assumes the form of a sequence of discrete-time weight modifica­

tions. Continuous-time learning can be expressed as 

dWi(t) 
dt = a8[wi(t), x(t), di(t)]x(t) 

Discrete-time, or stepwise, learning is reviewed below. Weights are assumed have been 

suitably initialized before each learning experiment started. 

2.1.5 Delta Learning Rule 

The delta learning rule is only valid for continuous activation functions as defined 

e.g. in 2.1, and in the supervised training mode. The learning signal for this rule is 

called delta and is defined as follows 

(7) 

The term l' (wT x) is the derivative of the activation function f (net) computed for 

net = wT x. The explanation of the delta learning rule is shown in Figure 11. This 

learning rule can be readily derived from the condition of least squared error between 0i 

and di . Calculating the gradient vector with respect to Wi of the squared error defined 

as 

1 )2 E -(di - 0i 
2 

which is equivalent to 

we obtain the error gradient vector value 

(8) 

40 



2.1 Basics of neural networks 

XI Continuou, 

X 
J 

c 

Figure 11. Delta learning rule 
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Since the minimization of the error requires the weight changes negative gradient 

direction, we take 

(9) 

where TJ is a positive constant. We then obtain from Eqs. (2.8) and (2.9) 

(10) 

Note that the weight adjustment as in (2.10) is computed based on minimization 

of the squared error. Considering the use of the general learning rule (2.4) and plugging 

in the learning signal as defined in (2.7), the weight adjustment becomes 

(11) 

Therefore, it can be seen that (2.10) is identical to (2.11), since a and TJ have been 

assumed to be arbitrary constants. The weights are initialized at any values for this 

method of training. 

The delta rule was introduced only recently for neural network training (Rumel­

hart [17]). This rule parallels the discrete perceptron training rule. It also can be called 

the continuous perceptron training rule. The delta learning rule can be generalized for 

multilayer networks. 

2.1.6 Multilayer Perceptrons 

In this subsection we consider an important class of neural networks, namely, 

multilayer feedforward networks. Typically, the network consists of a set of sensory 

units (source nodes) that constitute the input layer, one or more hidden layers of com­

putation nodes, and an output layer of computation nodes. The input signal propagates 

through the network in a forward direction, on a layer-by-Iayer basis. These neural net­

works are commonly referred to as multilayer perceptrons (MLPs), which represent a 

generalization of the single-layer perceptron considered in previous subsections. 

Multilayer perceptions have been applied successfully to solve some difficult and 

diverse problems by training them in a supervised manner with a highly popular al­

gorithm known as the error back-propagation algorithm. This algorithm is based on 

the error-correction learning rule. As such, it may be viewed as a generalisation of an 

equally popular adaptive filtering algorithm: the ubiquitous least-me an-square (LMS) 
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algorithm (or delta-rule algorithm) described in previous subsection for the special case 

of a single linear neuron model. 

Basically, the error back-propagation process consists of two passes through the 

different layers of the network: a forward pass and a backward pass. In the forward 

pass, an activity pattern (input vector) is applied to the sensory nodes of the network, 

and its effect propagates through the network, layer by layer. Finally, a set of outputs is 

produced as the actual response of the network. During the forward pass the synaptic 

weights of the network are all fixed. During the backward pass, on the other hand, the 

synaptic weights are all adjusted in accordance with the error-correction rule. Specifi­

cally, the actual response of the network is subtracted from a desired (target) response 

to produce an error signal. This error signal is then propagated backward through the 

network, against the direction of synaptic connections hence the name "error back­

propagation". The synaptic weights are adjusted so as to make the actual response of 

the network move closer to the desired response. The error back-propagation algorithm 

is also referred to in the literature as the back-propagation algorithm, or simply back­

prop. The learning process performed with the algorithm is called back-propagation 

learning. 

A multilayer perceptron has three distinctive characteristics: 

1. The model of each neuron in the network includes a nonlinearity at the out­

put end. The important point to emphasize here is that the nonlinearity is smooth (i.e., 

differentiable everywhere), as opposed to the hard-limiting used in Rosenblatts per­

ceptron. A commonly used form of nonlinearity that satisfies this requirement is a 

sigmoidal nonlinearity defined by the logistic function: 

1 
Y·=-----

J - 1 + exp(-sj) 

where Sj is the net internal activity level of neuron j, and Yj is the output of the neuron. 

The presence of nonlinearities is important because, otherwise, the input-output relation 

of the network could be reduced to that of a single-layer perceptron. Moreover, the use 

of the logistic function is biologically motivated, since it attempts to account for the 

refractory phase of real neurons (Pineda, [18]). 

2. The network contains one or more layers of hidden neurons that are not part of 

the input or output of the network. These hidden neurons enable the network to learn 
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complex tasks by extracting progressively more meaningful features from the input 

patterns (vectors). 

3. The network exhibits a high degree of connectivity, determined by the synapses 

of the network. A change in the connectivity of the network requires a change in the 

population of synaptic connections or their weights. 

Indeed, it is through the combination of these characteristics together with the 

ability to learn from experience through training that the multilayer perceptron derives 

its computing power. These same characteristics, however, are also responsible for the 

deficiencies in our present state of knowledge on the behavior of the network. First, the 

presence of a distributed form of nonlinearity and the high connectivity of the network 

make the theoretical analysis of a multilayer perceptron difficult to undertake. Second, 

the use of hidden neurons makes the learning process harder to visualise. In an implicit 

sense, the learning process must decide which features of the input pattern should be 

represented by the hidden neurons. The learning process is therefore made more diffi­

cult because the search has to be conducted in a much larger space of possible functions, 

and a choice has to be made between alternative representations of the input pattern. 

Research interest in multilayer feedforward networks dates back to the pioneering 

work of Rosenblatt (1962) [19] on perceptrons and that ofWidrow and his students on 

Madalines [20]. Madalines were constructed with many inputs, many Adaline elements 

in the first layer, and with various logic devices such as AND, OR, and majority-vote­

taker elements in the second layer. The Madalines of the 1960s had adaptive first layers 

and fixed threshold functions in the second (output) layer [21]. However, the tool that 

was missing in those early days of multilayer feedforward networks was what we now 

call back-propagation learning. 

The usage of the term back-propagation appears to have evolved after 1985. How­

ever, the basic idea of back-propagation was first described by Werbos in his Ph.D. the­

sis [22], in the context of general networks with neural networks representing a special 

case. Subsequently, it was rediscovered by Rumelhart, Hinton, and Williams [23], and 

popularized through the publication of the seminal book entitled Parallel distributed 

Processing (Rumelhart and McClelland, 1986 [17]). A similar generalisation of the 

algorithm was derived independently by Parker in 1985 [24]. 

The development of the back-propagation algorithm represents a landmark in neu­

ral networks in that it provides a computationally efficient method for the training of 
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Figure 12. Architectural graph of a multilayer perceptron with two hidden layers. 

multilayer perceptrons. Although it cannot be claimed that the back-propagation algo­

rithm can provide a solution for all solvable problems, it is fair to say that it has put to 

rest the pessimism about learning in multilayer machines that may have been inferred 

from the book by Minsky and Papert (see [25]). 

Derivation of the backpropagation algorithm Figure 12 shows the architec­

tural graph of a multilayer perceptron with two hidden layers. To set the stage in its 

general form, the network shown here is fully connected, which means that a neuron 

in any layer of the network is connected to all the nodes/neurons in the previous layer. 

Signal flow through the network progresses in a forward direction, from left to right and 

on a layer-by-layer basis. 

Figure 13 depicts a. portion of the multilayer perceptron. In this network, two 

kinds of signals are identified: 

1. Function Signals. A function signal is an input signal (stimulus) that comes in at 

the input end of the network, propagates forward (neuron-by-neuron) through the 

network, and emerges at the output end of the network as an output signal. We 

refer to such a signal as a "function signal" for two reasons. First, it is presumed 

to perform a useful function at the output of the network. Second, at each neuron 
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Figure 13. Illustration of the directions of two basic signal fl ows in a multilayer perceptron, 
namely, forward propagation of function signals and back-propagation of error signals. 

of the network through which a function signal passes, the signal is calculated as a 

function of the inputs and associated weights applied to that neuron. 

2. Error Signals. An error signal originates at an output neuron of the network, 

and propagates backward (layer by layer) through the network. We refer to it 

as an "error signal" because its computation by every neuron of the network 

involves an error-dependent function in one form or another. The output neurons 

(computational nodes) constitute the output layer of the network. The remaining 

neurons (computational nodes) constitute hidden layers of the network. Thus 

the hidden units are not part of the output or input of the network hence their 

designation as "hidden". The first hidden layer is fed from the input layer made up 

of sensory units (source nodes); the resulting outputs of the first hidden layer are 

in turn applied to the next hidden layer; and so on for the rest of the network. 

Each hidden or output neuron of a multilayer perceptron is designed to perform 

two computations: 

1. The computation of the function signal appearing at the output of a neuron, which 

is expressed as a continuous nonlinear function of the input signals and synaptic 

weights associated with that neuron; 
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Figure 14. Signal-flow graph highlighting the details of output neuron j 

2. The computation of an instantaneous estimate of the gradient vector (i.e., the 

gradients of the error surface with respect to the weights connected to the inputs of 

a neuron), which is needed for the backward pass through the network 

The error signal at the output of neuron j at iteration k (i.e., presentation of the 

kth training pattern) is defined by 

8j (k) = dj(k) - Yj(k), neuron j is an output node (12) 

We define the instantaneous value of the squared error for neuron j as ~ 8~ (k ). Corre­

spondingly, the instantaneous value E(k) of the sum of squared errors is obtained by 

summing ~8~ (k) over all neurons in the output layer; these are the only "visible" neu­

rons for which error signals can be calculated. The instantaneous sum of squared errors 

of the network is thus written as 

E(k) = ~ L 8J(k) 
j=C 

where the set C includes all the neurons in the output layer of the network. Let N 

denote the total number of patterns (examples) contained in the training set. The aver­

age squared error is obtained by summing E(k) over all k and then normalizing with 
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respect to the set size N, as shown by 

The instantaneous sum of error squares E (k ), and therefore the average squared error 

Eav is a function of all the free parameters (i.e., synaptic weights and thresholds) of the 

network. For a given training set, Eav represents the cost function as the measure of 

training set learning performance. The objective of the learning process is to adjust the 

free parameters of the network so as to minimize Eav. To do this minimisation we use 

an approximation similar in rationale to that used for the derivation of the delta-rule (or 

LMS) algorithm (subsection 2.1.5). Specifically, we consider a simple method of train­

ing in which the weights are updated on a pattern-by-pattern basis. The adjustments 

to the weights are made in accordance with the respective errors computed for each 

pattern presented to the network. The arithmetic average of these individual weight 

changes over the training set is therefore an estimate of the true change that would re­

sult from modifying the weights based on minimising the cost function Eav over the 

entire training set. 

Consider then Fig. 14, which depicts neuron j being fed by a set of function 

signals produced by a layer of neurons to its left. The net internal activity level S j (k) 

produced at the input of the nonlinearity associated with neuron j is therefore 

p 

sj(k) = L wji(k)Yi(k) 
i=O 

where p is the total number of inputs (excluding the threshold) applied to neuron j. The 

synaptic weight w jO (corresponding to the fixed input Yo = 1) equals the threshold (), 

applied to neuron j. Hence the function signal Yj (k) appearing at the output of neuron 

j at iteration k is 

In a manner similar to the LMS algorithm, the back-propagation algorithm ap­

plies a correction 6 W ji (k) to the synaptic weight W ji (k ), which is proportional to the 

instantaneous gradient :~:~~)' According to the chain rule, we may express this gradi­

ent as follows: 

8E(k) 8E(k) 8bj (k) 8Yj(k) 8sj (k) 
6Wji(k) rv 8Wji(k) = 8bj (k) 8Yj(k) 8sj (k) 8Wji(k) 

( 13) 
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The correction 6Wji(k) applied to wji(k) is defined by the delta rule 

6w .. (k) = _ aE(k) 
Jt TJawji(k) (14) 

where TJ is a constant that detennines the rate of learning; it is called the learning-rate 

parameter of the back-propagation algorithm. The use of the minus sign in Eq. 2.14 

accounts for gradient descent in weight space. 

Let us introduce the parameter aj as 

_ aE(k) 
aj(k) = - ()" as· k J 

(15) 

This parameter is called the activity of a jth neuron or local gradient. The local gradient 

points to required changes in synaptic weights. 

(16) 

We may identify two distinct cases, depending on where in the network neuron j is 

located. In case I, neuron j is an output node. This case is simple to handle, because 

each output node of the network is supplied with a desired response of its own, making 

it a straightforward matter to calculate the associated error signal. In case II, neuron j 

is a hidden node. Even though hidden neurons are not directly accessible, they share 

responsibility for any error made at the output of the network. The question, however, is 

to know how to penalise or reward hidden neurons for their share of the responsibility. 

This problem is indeed the credit-assignment problem. It is solved in an elegant fashion 

by back-propagating the error signals through the network. 

In the sequel, cases I and II are considered in turn. 

Case I: Neuron j Is an Output Node 

When neuron j is located in the output layer of the network, it would be supplied 

with a desired response of its own. Hence we may use Eq. 2.12 to compute the error 

signal bj(k) associated with this neuron; see Fig. 14. Having detennined bj(k), it is a 

straightforward matter to compute the local gradient 

(17) 

Case II: Neuron j Is a Hidden Node 

When neuron j is located in a hidden layer of the network, there is no specified 

desired response for that neuron. Accordingly, the error signal for a hidden neuron 

would have to be determined recursively in terms of the error signals of all the neurons 
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Neuron j Neuron n 
r~---------A~--------~ ~ ______ ~A~ ______ _ 

\( , 
yo=-l 

Figure 15. Signal-flow graph highlighting the details of output neuron n connected to hidden 
neuron). 

to which that hidden neuron is directly connected; this is where the development of the 

back-propagation algorithm gets complicated. Let's consider the situation depicted in 

Fig. 15, which depicts neuron j as a hidden node of the network whereas the nth neuron 

is in the nth output layer. According to Eq. (2.15), we may define the activity for hidden 

neuron J as 

aJ.(k) - 8E(k) 1'( .) = _ 8 (~2:n=C 8~(k)) f'(s.) = 
8y j ( k ) S J 8y j ( k ) J 

_ 1'( .) '" 8 (k) 8(dn(k) - Yn(k)) = 1'( .) '" 8 (k) 8Yn(k) 
sJ f::c n 8Yj(k) sJ f::c n 8Yj(k) 

Taking into consideration that 

finally: 

aj(k) = f'(sj(k)) L 8n(k)f'(sn(k))wjn(k) 
n=C 

after rearranging terms, taking into account the Eq. (2.17): 

aj(k) = f'(sj(k)) L an(k)wjn(k) (18) 

n=C 
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2.1 Basics of neural networks 

The similar calculations could be done for the subsequent layers, which will give 

the same result as Eq. (2.18). So, the signal of activity of neurons is propagating in back 

direction and bringing the learning information from the output layer to every previous 

layer. The signal of activity of neuron aj depends on whether neuron j is an output 

node or a hidden node: 

1. If neuron j is an output node, aj equals the product of the derivative l' ( 3 j ( k ) ) 

and the error signal8j (k), both of which are associated with neuron j; see Eq. (2.17). 

2. If neuron j is a hidden node, aj equals the product of the associated derivative 

l' ( 3 j (k )) and the weighted sum of the parameters of activity computed for the neurons 

in the next hidden or output layer that are connected to neuron j; see Eq. (2.18). 

The Two Passes of Computation 

In the application of the back-propagation algorithm, two distinct passes of com­

putation may be distinguished. The first pass is referred to as the forward pass, and the 

second one as the backward pass. In the forward pass the synaptic weights remain un­

altered throughout the network, and the function signals of the network are computed 

on a neuron-by-neuron basis. 

The backward pass, on the other hand, starts at the output layer by passing the 

error signals leftward through the network, layer by layer, and recursively computing 

the aj (i.e., the parameter of activity or local gradient) for each neuron. This recursive 

process permits the synaptic weights of the network to undergo changes in accordance 

with the delta rule ofEq. (2.16). 

Sigmoidal Nonlinearity 

The computation of the a for each neuron of the multilayer perceptron requires 

knowledge of the derivative of the activation function 1 (.) associated with that neuron. 

F or this derivative to exist, we require the function 1 (. ) to be continuous. In basic terms, 

differentiability is the only requirement that an activation function would have to satisfy. 

An example of a continuously differentiable nonlinear activation function commonly 

used in multilayer perceptrons is the sigmoidal nonlinearity, a particular form of which 

is defined for neuron j by the logistic function 

1 
Yj(k) = Ij(3j) = 1 + exp( -sj(k))' 

(19) 

According to this nonlinearity, the amplitude of the output lies inside the range 0 < 

Yj < 1 Another type of sigmoidal nonlinearity is the hyperbolic tangent, which is 
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anti symmetric with respect to the origin and for which the amplitude of the output lies 

inside the range -1 < Yj < +1. 

Differentiating both sides ofEq. (2.19) with respect to Sj, we get 

8Yj(k) = f(sj(k)) = exp( -sj(k)) 
8sj(k):J [1 + exp( -Sj(k))]2 

Since the amount of change in a synaptic weight of the network is proportional to the 

derivative fj (s j (k ) ), it follows that for a sigmoidal activation function the synaptic 

weights are changed the most for those neurons in the network for which the func­

tion signals are in their midrange. 

Thus, we have described above the backpropagation algorithm function. Al­

though many very important aspects of the BP algorithm (such as criteria of optimal 

speed of learning, optimal number of neurons in hidden layers, etc.) are out of scope of 

this review, the description will be helpful for understanding of principles of analogue 

implementation of BP-based ANN described in subsection 3.7. 
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Since the pioneering work of Carver Mead and his group at Caltech, analogue 

neural computing has considerably matured to become a technology that can provide 

superior solutions to many real-world problems. 

Many books and technical papers have been written over the last ten years on 

analogue implementations of artificial neural networks in silicon. 

Analogue microelectronic implementations of artificial neural networks offer a 

number of attractive features: 

• they provide an inherent parallelism since computational elements can be highly 

compact and interconnected; 

• in many real-world applications they do not require expensive and bulky 

analogue to digital converters as they can interface directly to analogue sensory 

inputs; 

• when implemented using weak inversion CMOS circuit design techniques, the 

resulting system can operate at very low power which could be very attractive for 

pattern recognition applications in battery operated devices; 

• analogue implementations can provide higher operating speeds than digital 

implementations within their precision and noise margins; 

• in fully parallel implementations, they provide a degree of fault tolerance because 

information is represented in a distributed fashion. 

• analogue computational systems operate in asynchronous regime. 

However, the attractive features of analogue computation can only be exploited if 

the following obstacles can be tolerated or overcome: 

• accuracy is limited in practice to less than 8 bits which can degrade the 

performance of learning algorithms; 

• 
• 

noise immunity is a serious design constraint; 

automated analysis and simulation tools of analogue circuits are limited when 

compared to digital simulation and timing verification tools; 
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• memory is not accurate and is bulky to implement in up-to-date analogue as well 

as digital technology. 

2.2.1 "Physics for computation" 

Biological information-processing systems operate on completely different prin­

ciples from those with which engineers are familiar. For many problems, particularly 

those in which the input data are ill-conditioned, biological solutions are many orders 

of magnitude more effective than those we have been able to implement using digi­

tal methods. It could be shown that this advantage can be attributed principally to the 

use of elementary physical phenomena as computational primitives, and to the repre­

sentation of information by the relative values of analogue signals, rather than by the 

absolute values of digital signals. This approach requires adaptive techniques to correct 

for differences between nominally identical components, and that this adaptive capabil­

ity leads naturally to systems that learn about their environment. Although the adaptive 

analogue systems build up to the present time are rudimentary, they have demonstrated 

important principles as a prerequisite to undertaking projects of much larger scope (e.g. 

mulilayer wafer-scale ULSI systems). Perhaps the most intriguing result of these ex­

periments has been the suggestion that adaptive analogue systems are 100 times more 

efficient in their use of silicon, and they use 10000 times less power than comparable 

digital systems. It is also clear that these systems are more robust to component degra­

dation and failure than are more conventional systems. The basic two-dimensional 

limitation of silicon technology is not a serious limitation in exploiting the potential of 

neuromorphic systems. For these reasons, the large-scale adaptive analogue technology 

expected to permit the full utilisation of the enormous potential of wafer-scale silicon 

fabrication. 

2.2.2 Analogue multiplier 

MOS transistors The MOS (metal, oxide, semiconductor) transistors are main 

active elements in up-to-date electronic systems. The general form of the MOS transis-
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Figure 16. Circuit symbols for n- and p-channel MOS transistors. 
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Figure 17. Saturation current of a MOS transistor as a function of gate voltage. 

tor current is: 

I = Ioe kT 1 - e kT = Isat 1 - e- kT • -~ ( -~) ( ~) 

qVgs 
Isat = Ioe - kT 

(20) 

It is possible to see that the dynamic range of the analogue transistor and thus analogue 

VLSI systems could be rather high: up to 106 : 1 (whereas the dynamic range of natural 

neurons could be estimated as 100: 1.) 

Current Operations on current-type signals are well defined; they do not suffer 

from any of the problems mentioned for voltage-type signals. Current is the flow of 

charge; the zero of current corresponds to no charge moving. The reference for current 

55 



2.2 Neuromorphic systems: main principles 
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Figure 18. Schematic diagram of the simple transconductance amplifier. The current mirror 
formed by Q3 and Q4 is used to form the output current, which is equal to 11-12. The symbol 
used for the circuit is shown in the inset. 

is thus the coordinate system within which the transistors or neurons are stationary. We 

will have no trouble defining a zero for current. 

Addition and subtraction on current-type signals are particularly elegant because 

they follow from a basic law of physics, Kirchhoffs current law. This Law states that 

the sum of the currents into an electrical node is zero; that is, the sum of the currents 

out of the node is the same as the sum of the currents into the node. 

Kirchhoffs current law is a result of the basic physical concept of conservation of 

charge. 

Transconductance Amplifier One of the most important elementary circuit is 

called the transconductance amplifier (an example of the circuit is shown in the Fig. 18.) 

The transconductance amplifier generates the output current lout that is proportional to 
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Figure 19. Output current of the transconductance amplifier as a function of differential 
input voltage. The mismatch between transistor characteristics can be seen in two ways. For 
this particular amplifier, the input offset voltage is approximately 25 m V, typical for a digital 
CMOS process. The limiting current for positive inputs is approximately 6% larger than that 
for negative inputs; a more typical variation would be 20%. 

the differential input voltage VI2 = VI - 112 More precise fonnula for the output current 

"1 I I It hll:(V1-V2 ) 0.7e( th 1 tr ' h ) IS. out = I - 2 = b an 2 ' K, rv kT e- e e ec on s c arge . 

Transistor Mismatch The effects of differences of 10 between transistors can be 

seen in Figure 19. The circuit from which these data were taken is typical: The tanh 

curve is shifted by about 25 millivolts. In addition, the saturated current coming out 

of Q4 is not the same as the current coming out of Q2. In other words, the negative 

asymptote is not the same as the positive asymptote. In Figure 19, the difference is 

about 6 percent. 

The Q3-Q4 current mirror does not have 100-percent reflectivity. What we take 

out of Q3 does not necessarily come out of Q4, because Q4 may have a slightly larger 

or smaller value of 10 than does Q3. Differences of a factor of two between 10 values 

of nominally identical transistors are observed in circuits such as this. A more typical 

number for transistors that are physically adjacent is ±20 percent, corresponding to a 

difference in gate voltage of ± 1 0 millivolts. 

The difference across a whole chip is not much bigger than a difference between 

two reasonably closely spaced transistors. The 10 variation occurs on a small distance 

scale. For this reason, putting transistors physically close to one another will not elimi-

nate the problem. 
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Figure 20. Symbol of analogue multiplier. 

We can design circuits in a manner such that these variations can be tolerated. 

The voltage difference matters in some applications; it does not matter in others. It 

is a good habit not to trust the transistors to be closer than a factor of two in current 

(approximately ±30 millivolts in gate voltage). 

The best way to ensure that a circuit will tolerate such variations is to have it 

self-compensate for the voltage offsets. 

Self-compensation has another advantage: As circuits age and change and shift 

with time, the system tunes itselfup. 

Four-Quadrant Multiplier To multiply in analogue domain a signal of either 

sign by another signal of either sign, we need a four-quadrant multiplier. The prin­

ciple is illustrated in Figure 21. The output current of the Gilbert multiplier [26] is 

described by equation: 

The analogue multiplier is a good demonstration of advantages of analogue technology, 

since it contain just several transistors whereas the digital multiplier contain hundreds 

of thousands transistors. 
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Figure 2l. Schematic of the Gilbert multiplier. In the range where tanh(x) is approximately 
equal to ;y, this circuit multiplies Vl- V2 by 113 - V4 · 

59 



2.2 Neuromorphic systems: main principles 

Because of the transistors mismatch the output voltage signal of analogue multi­

plier could be represented by a formula: 

The symbol of analogue multiplier is shown in Figure 20. The symbols : 6z ) 6x and 6y 

are mismatches of the multiplier. 

2.2.3 Other basic elements of neuromorphic systems 

We saw (Eq.(2.20)) that a diode-connected transistor creates a voltage that is pro­

portional to the logarithm of the input current. This voltage can be used to control the 

output currents of other transistors, a technique we used in Figure 22 but it is below the 

range of usable inputs for circuits such as transconductance amplifiers or multipliers . A 

voltage that is well within the operating range of these circuits can be generated by two 

diode-connected transistors in series, as shown in Figure 22(a). The inverse operation 

creating a current proportional to the exponential of a voltages accomplished by the cir­

cuit of Figure 22(b). The relationship between voltage and current for these circuits is 

shown in Figure 22( c). 

From Equation 2.20, we know that the saturated drain current I sot is exponential 

in the gate-source voltage Vgs: 

I 1 ",\19 -Vs 
sat = Oe e 

Applying this expression to Q 1 and Q2, we obtain 
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Figure 22. Two circuits that exploit the natural logarithmic voltage-current characteristic of 
the MOS transistor. The voltage-input version (b) generates an output current that is exponen­
tially related to the input voltage. The current-input version (a) generates an output voltage that 
is proportional to the logarithm of the input current. The advantage of either arrangement over 
a single transistor is that the input voltage range is well within the normal operating range of 
circuits such as the transconductance amplifier. The measured transfer curve for V2 (c) shows 
an e-fold increase in current for each 90-millivolt increase in V2. This value corresponds to 
K,~O.7. 

Taking logarithms of the last two tenns 

V2=K:+l Vi 
K: 

From which we conclude 

In the ideal case the K: is equal to one 

and we would expect the slope of the upper curve of Figure 22(c) to be twice that of the 

lower curve. 

Summary. We have seen how we can add and subtract currents using Kirchhoffs 

law, how we can subtract voltages using a differential amplifier, how we can multiply a 

voltage difference by a current in a transconductance amplifier, and how we can multi-
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ply two voltage differences using a Gilbert multiplier. Logarithms and exponentials are 

primitives provided by the Boltzmann relation. Physics has given us its own natural in­

terpretation of certain mathematical functions. If we can use the primitives nature gives 

us, we can create formidable computations with physically simple structures. As we 

evolve the technology to the system level, we will see many applications of this oppor­

tunistic principle. The artificial neural system seems to be one of the most promising 

application. 

2.2.4 Pulse-Stream Encoding of information 

The pulse-stream encoding mainly implies that the analogue value is encoded 

in some kind of signal, which composed of pulses of fixed (constant) amplitude and 

variable duration pulses or period of time between pulses (the exception is the Pulse 

Amplitude Modulation, which implies that the pulses following with fixed frequency 

and have modulated amplitude reflecting the variation in Vi - see Figure 23). The ad­

vantages of the pulse-stream encoding is in high tolerance of encoded signal to noise, 

nonlinear distortions, dispersion, decay, etc., which are harmful for analogue signal. On 

the other hand the converters analogue-to-pulse and pulse-to-analogue are much sim­

pler than ADC and DAC respectively. 

Let us look briefly at the pulse stream technique origins. The pulse concept is not 

new the biological nervous system has been operating on just such a principle for rather 

a long time for instance [27]. Furthermore, pulse-coding in electrical circuitry is a well­

established technique. A condensed review of pulsed techniques in communication is 

presented in [28], while a more comprehensive treatment is provided by [29], pp. 134-

183. 

The advantage of the pulse technique is that it allows essentially analogue VLSI 

devices on a digital CMOS process. Indeed, the digital processes do not incorporate 

good analogue components such as resistors and capacitors. Furthermore, transistor 

characteristics are not closely controlled, beyond that which is necessary to maintain 

correct digital behavior. 

Pulse-stream encoding was first used and reported in context of neural integration 

in 1987 [30],[31]. 
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Figure 23. Methods for encoding a time-varying analogue neural state onto a pulsed signa l 
(the picture was taken from [2]). 
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Pulse Width Modulation This technique is representing the instantaneous value 

of the state Vi, as the width of individual digital pulses (i.e the width is proportional to 

Vi). The advantages of scheme using the pulse encoding now become apparent, as no 

analogue voltage is present in the signal and information is coded as described along 

the time axis. This signal is therefore robust, and furthermore can he decoded to yield 

an analogue value by integration. 

Pulse Frequency Modulation Here, the instantaneous value of the state Vi is 

represented as the instantaneous frequency of digital pulses (i.e. the frequency is pro­

portional to Vi) whose widths are equal. Again, the scheme shows its value, for the 

same reasons as described above for Pulse Width Modulation. 

Pulse or Delay Modulation In this final example, two signals are used to rep­

resent each neural state, and the instantaneous value of Vi is represented as the phase 

difference between the two waveforms - in other words by modulating the delay be­

tween the occurrence of two pulses on one or two wires. This technique enjoys many 

of the advantages of the Pulse Width Modulation and Pulse Code Modulation variants 

described above, but it does imply the use of two wires for signalling, unless one of the 

signals is a globally-distributed reference pulse waveform. If this choice is made, how­

ever, signal skew becomes a problem, distorting the phase information across a large 

device, and between devices. In a massively parallel analogue VLSI device, signal skew 

is a fact of life. 

Multiplication and summation of pulse signals. The multiplication of pulse 

encoded signal could be performed by a rather simple scheme, see Figure 24. On a 

scheme ( a) the output current Iij is proportional to the product of the pulse incoded 

signal Vj and the weight voltage VTij . The output is therefore a stream of current pulses 

whose amplitude is proportional to VTij and whose frequency is proportional to Vj. 

As Figure 24b shows, the summator for transconductance synapses is composed 

of an operational amplifier based leaky integrator and a Voltage Controlled Oscilla­

tor (VCO). The leaky integrator sums the packets of charge from a column of these 

transconductance synapses, converting them into the neurons activity voltage. This 

voltage then controls the duty cycle of the YCO. 

64 



-
2.2 Neuromorphic systems: main principles 

v, 

VT - I ~ - I 
yeo 

T M2 

Vss 

(a) (b) 

Figure 24. Electrical schemes of a multiplier and sumrnator of a pulse encoded signal. 
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Since the pulse encoding accumulates some advantages both from digital and 

analogue encoding, it will definitely be used in the future analogue ANN. 
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First of all let us classify the hardware implementations of artificial neural net­

works (ANN). Firstly we can divide ANN into two main classes: with off-chip and 

with on-chip training (see Figure 25). 

1. off-chip learning: 

In this case training is performed completely off the chip and the weights are down­

loaded to the chip. Such technique implies that the weights are stored into on-chip 

digital memory. Meanwhile the feedforward network could be either analogue or digi­

tal. 

Most of the up-to-date neural hardware is based on digital chips implementing 

the feedforward network of ANN without an on-chip learning system (see Figure 26). 

We will mention here the Adaptive Solutions CNAPS [32], Philips L-Neuro chips 

[33] and Synapse-3 PC board: 

- The Adaptive Solutions CNAPS/PC 128 accelerator card runs at speeds of up to an 

astounding 2.27 billion connections per second - more than 1,000 times faster than a 

486/66; 

- L-Neuro 2.3 is a second generation board that builds on the L-Neuro 1.0 experience. 

It is cascadable as for the L-Neuro 1.0 and consists of 12 processors that may be op­

erated in either parallel (SIMD) or pipelined modes. It has 16-bit weights and neuron 

outputs in basic mode. Each of the 12 processors contains 128 16-bit registers for stor­

ing weights and states, a 16-to-32 bit multiplier, a 32-bit ALU and a barrel shifter. With 

a 60MHz clock the chip can compute a 32-bit weighted sum over 12 16-bit inputs ev­

ery 17ns. This provides 720MOPS or 27 times the 8-bit mode of the L-Neuro 1.0. In 

learning the 12 weights are updated in parallel within 34ns. ; 

- The SYNAPSE-3 is a low budget PCI-board with 2 MA16 co-processors designed for 

very fast matrix computations and very fast neurocomputing (Kohonen Self-Organizing 

Feature Maps and Back Propagation).The peak performance of one board is approxi­

mately 2560 MOPS. 

We will mention here also two examples of ANN of analogue off-chip learn-

ing ANN: the Intel Electrically Trainable Artificial Neural Network (ETANN) chip [34] 

and the Edinburgh Pulse-Stream Implementation of a Learning-Oriented Network (EP-

SILON) chip [2]. 
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Figure 25. Diagram symbolising the variety of neural hardware implementations. 

The ETANN is an example of the continuous analogue computation system, whereas 

the EPSILON uses the pulse-stream approach to implement the neural architecture. 

Such kind of systems (analogue with off-chip learning) could be very useful in 

some practical applications, where the weights' values could be reliably estimated (dur­

ing off-chip training) and where the weights' imprecision could be tolerated. 

On the other hand in many cases such an approach idoes not work for one of the 

following reasons: 

- the precision of the weight, stored after the off-line training, is not high enough; 

- in the case of complex neural networks the learning could be extremely computa-

tionally costly, thus off-chip learning on the basis of conventional computing is not 

applicable (since it could take too long a time) and on-chip leaming is necessary; 

- the weights, which give a proper result at a given time in the case of ana logue y tern 

wi ll not necessarily give the same results in the future (because of temperature en itiv-

68 



2.3 Examples ofneuromorphic systems 

ity and long-term degradation of analogue elements); 

- in case of complex ANN their ability to adapt to the variable environment is assumed. 

In such cases it is necessary to use systems with 

II. on-chip learning: 

1) The most trivial case is Digital ANN. In fact most of such systems are neural sim­

ulators rather than neural networks. For example, the use of Digital Signal Proces­

sors (DSP) technology gives several orders of magnitude acceleration of the neural net­

work's simulation in comparison with conventional computers. The digital ANN could 

implement mathematical transforms of any necessary precision. There is no any prob­

lem with implementation of highly precision algorithms (such as the "backpropagation" 

algorithm of learning of Multi-layer Perceptron) in the case of digital ANN 

The characteristics of some other neural chips and neural accelerators can be seen 

in Figures 26 and 27. These tables give us some notion of popular neural hardware 

implementations. We can see that most of the commercial neural hardware is based on 

digital technology. 

In principle it is possible to imagine also the hybrid neural systems, based on an 

analogue feedforward network and a digital learning system. In practice, however, such 

systems are not popular because of incompatibility of the digital elements with high 

precision analogue ones (resulting into impossibility of securing of a high precision 

analogue signal if digital elements are in the vicinity of analogue ones). I would say 

that such (hybrid) systems accumulate the drawbacks of both technologies (analogue 

and digital) rather than the advantages. 

Let us consider now purely analogue ANN. As we can see from Figure 26, purely 

analogue ANN are not very widespread. The reason is that the backward part of the 

ANN (the learning system) must be extremely precise (generally speaking the necessary 

precision of analogue ANN depends on the task the ANN must solve, as well as on a 

particular neural architecture, but typical necessary precision is about 10-6
, see e.g. 

[51]). 

The only known purely analogue MLP ANNs are based on a perturbation-based 

learning system. Such systems are based on either serial weight perturbation (see [52] 

and [53]) or on the combined outputs and weights perturbation technique (described in 

[51]). Such perturbation-based systems are very tolerant of analogue nonidealities. On 

the other hand they are much slower learning, that is a larger number of cycles of learn-
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Type NII.DI2 .An:h4ednre Learn Precision Neuron. Synap_ Speed 
Analos Intel FdFwd, ML no 6b I 6b 64 102110 20CPS 

ETANN 

S1D.aptia N enromorphi&; no na 4.!II4.!I Re.illtift n~ na 
Silicon ~ina 

Digital NenraLogix FdFwd, ML no 1-16b 16 Off-chip lIOOCPS 
NLX-420 

HNC 100-N AP OP,SIMD,FP program lI2b 100PE 512K off-chip 250MCPS 

64:MCUPS 
H4achi Wamr,SIMD Hopfiel.d 9b I lib 576 lI2.i: ll1l1MCPS 

WSI 

H4achi Wamr,SIMD BP 9b I lib 144 na lIOOMCUPS 

WSI 
Ino_ OP,SIMD,Inl program 1-16b 64.PE 128K 1170MCPS 

N64.000 220MCUPS 

mM RBF ROI 8b lI6 6Ul16 :l50.i: pat/_ 

ZISCOll6 

MCE FdFwd, ML no 1l1b II off-chip lI2MCPS 

MT1900ll 
Mi&;ro DeviJ:es FdFwd, ML no 1b I 16b 1 PE II 1I.9MCPS 

MD-1220 

N eslor /Intel RBF RCE,PNN 5b 1PE 256I1024 4.O.i: pat/_ 

NIlOOO 

Philip. FdFwd, ML no 1-16b 16 PE 64 26MCPS 

Lnenro-1 

Siemen. matm apR no 16b 16 PE 16I16 4.00MCPS 

MA-16 

Hybrid AT.kT FdFwd, ML no lib I 6b 16-256 4.096 :I.10CPS 

ANNA 

Bel.kore FCR Boll.mann 6b I 5b lI:I 992 100MCPS 

CLNN-lI:I 100MCUPS 

Mea R.-c.h FdFwd, ML no 6b I 5b 6 4.26 210CPS 

N enrocl...nfier 

Ricoh FdFwd, ML BP na 16 :156 lI.OGCPS 

RN-200 

Figure 26. Characteristics of some analogue, digital and hybrid neural chips 
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2.3 Examples of neuromorphic systems 

Type Name Chip Permnnance 
PC Accelerators AND HNet TrllUlBpute:r 1.0 TrIlUlBPU te:r T400 na 

BrainMaker Accel. TI TMS.320C2S DSP 4OMCPS,SOOMFLOPS 
Cnrrent Tech. MM32k prop. 204.8 PE/chip 4.9MCPS, 2.SMCUPS 

HNC Balbo B60 Intel iB60 BOMFLOPS I 
IBM mc ISA mM ZISC036 SOk pat/RC 

N enral Tech NTflOOO TI TMS320C20 DSP 2M CPS 
NenrodynamX XR50 Intel iB60 45MCPS 

Nestor NilOOO Nestor Nil000 40k pat/RC 
Rapid Imaging 0491EI-ISA Intel ETANN 2GCPS 

'Thle¥e 1000 NenroEug. prop. 140MCPS 

VISion Harvest NenroSim. Intel iB60 30MCPS,100MFLOPS 

Ward Sys. N enralBoard Ino_N64000 S.70GCPS, 1.SGCUPS 

HNC SNAP HNC 100 NAP SOOMCPS, 12BMCUPS 

Siemens SYN APSE-l Siemens MA-16 BOOMCPS 

Figure 27. Characteristics of some neural PC Accelerators 

ing is necessary to reach the same result. For example the serial weight perturbation­

based system is N times (N is the number of interconnections, i.e. synapses) slower 

than the fully parallel backpropagation learning system. In the case of a complex neural 

network (with e.g. N = 104) such a drawback of perturbation-based analogue ANNs 

could make them useless. 

If we take a look at natural neural networks, they obviously are based on parallel-

learning. 

Such kinds of systems, which should be highly precise (although they are based 

on imprecise analogue elements), must employ some kind of self-correction system and 

procedure. The procedure of self-correction of natural neural networks might be taking 

place during the sleep. 

As for artificial systems, until now non of the ANN were based on the on-chip (or 

on-board) analogue parallel learning systems. 

The problem of creation of purely analogue parallel-learning ANN is fundamental 

and important. The last chapter (3.7) of this thesis will be dedicated to this problem. 

2.3.1 Silicon Retina 

We will describe briefly a specific neuromorphic system: the Silicon Retina, 

which was proposed by Carver Mead (see e.g. [6]). It is actually a parallel analogue 

nonlinear adaptive system, capable of real-time image processing. The artificial retina 
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2.3 Examples of neuromorphic systems 

(see Figure 29), similarly to the natural one (see Figure 28), performs nonlinear 2D 

space filtering, thus is equalising the brightness and contrast, and increases the efficient 

dynamic range of an image (i.e. "compressing" the dynamic range). 

The electrical scheme of the artificial retina is rather simple. It consists of the re­

sistive network, each node of which contains a pixel element (illustrated in the circular 

window of Figure 29). This pixel element, which is a silicon model of the triad synapse, 

consists of a follower-connected transconductance amplifier by which the photorecep­

tor drives the resistive network, and an amplifier that takes the difference between the 

photoreceptor output and the voltage stored on the capacitance of the resistive network. 

These pixels are tiled in a hexagonal array. The resistive network results from a hexag­

onal tiling of pixels. 

The resistive network produces the spatially smooth approximation of the loga­

rithm of image intensity. Thus the output of such system will be the differential signal 

from the photoreceptor signal (which is the logarithm of image intensity) and the local 

average signal produced by the resistive network. Roughly speaking, on the output of 

the system a signal with spatially equalised contrast and brightness is produced. 

Although such a system represents a very simplified model of the eye, it has a 

number of advantages over standard CCD technology-based digital still or video cam­

eras. In particular the "dynamic range compression" in the analogue domain taking 

place in such systems allows minimising the noise of the signal, which could be critical 

in cases of very wide dynamic range images, like x-rays or night-vision images. 

On the other hand it should be mentioned that such an artificial retina is much 

more complex than the standard CCD image sensor. The complexity of the system 

seems to be excessive since normally images are changing relatively slowly (1/20 s), 

whereas the time of adaptation of the artificial retina could be less than 1 J-LS. The serial 

(digital or analogue) real-time image (video) processing system seems to be a much 

more rational solution. An example of such a system is described in the subsection 3.5. 

At the same time, the parallel computational structure of the Artificial Retina 

allows the creation of very fast image enhancement, which could be important for ex-

ample in processing of super-fast video. 
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2.3 Examples ofneuromorphic systems 

Figure 28. I\rtist's conception of a cross-section of a primate retina , indicating the primary 
cell types ~nd sl.gna.l pa~hways. The outer-plexiform layer is beneath the foot of the photorecep­
tors. The InvagInatIon Into the foot of the photoreceptor is the site of the triad synapse. In the 
center of the invagination is a bipolar-cell process, flanked by two hori zontal ce ll processes . R: 
photoreceptor, H: horizontal cell, 18: invaginating bipolar cell, F8: flat bipolar ce ll , A: amacrine 
cell, IP: interplexiform cell, G: ganglion cell. (Source: Adapted from [3].) 

Figure 29. Diagram of the silicon retina showing the resistive network : a single pixel cle­
ment is ill ustrated in the circular window. The silicon model of the triad synapse con 1st of a 
fo llower-connected transconductance amplifier by which the photoreceptor drive the re i tive 
network, and an amplifier that takes the difference between the photorece~tor output and the 
vo ltage stored on the capacitance of the resistive network. These pixels are t!led lil a hexagonal 
array. The resistive network results from a hexagonal tiling of pixels. (Source : [9 ]) 
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Chapter 3 
Personal results 

This chapter is dedicated to analogue adaptive (neuromorphic) systems. The re­

searches were inspired mainly by the fundamental Carver Mead's work [9] and were 

aimed at the realisation and development of ideas stated in this work. 

Most of the systems, described in this chapter, were implemented in hardware as bread­

board models. Most of the considered systems are based on polynomial transfonns. 

The principle of orthogonality was also widely employed by the suggested systems. 

The final section is dedicated to the problem of creation of purely analogue neural net­

works with a parallel learning. The unexpected side-effect the work, described in the 

section, was a very high tolerance of the suggested systems not only to weak imperfec­

tions of analogue elements, constituting ANN, but also to damage and degradation of 

separate elements as well as large areas of ANN hardware. 
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3.1 Analogue polynomial approximators 

In a number of applications the approximation, interpolation or nonlinear extrap­

olation of certain weakly (when every subsequent term of power series expansion is 

much less than previous one) nonlinear dependencies d(x), where x an arbitrary signal 

in time, is necessary. The problem of cancellation of nonlinear distortions of a signal in 

high precision analogue engineering could be an example of such application. In such 

cases it seems to be reasonable to use polynomial-based devices. 

In this section the neuromorphic devices capable of performing the operations of 

approximation, interpolation and nonlinear extrapolation are described. The schemes 

and working characteristics of a breadboard, based on analogue discrete components, 

are presented. Legendre polynomials were offered as basic functions for significant 

increasing of the speed of the approximator's convergence. 

3.1.1 Power-type-functions-based 
approximator/interpolator/extrapolator 

analogue Polynomial Approximator (APA) is the system, performing the opera­

tion of approximation of given two signals' - x and d(x) dependence (see Fig. 30). The 

signal x(t) can have various values in the range from Xmin to X max , and the signal d(x) 

is connected with x by a simple interrelation. The aim of the device is to minimise 

the mean-square deviation of the output signal f (x) from the reference one d( x) under 

given dependence x (t). The result is achieved by using the procedure of approximation 

of function d(x) by the polynomial f(x) = 2:i WiXi. 

The device could function in two regimes: in the regime of training and in the 

"functional" regime. During the training regime the input signal x(t) and the reference 

signal d(x) connected with x(t) by a simple interrelation should be applied to related in­

puts of the APA. In the second regime of the APA function the transfer function of APA 

is fixed, the signal x(t) is arbitrary and on the output of the APA we have the polynomial 

approximation of the reference function d(x): f(x) '" d(x) (see Figure 31a). 

APA is based on neural-like architecture with the "Widrow-Hoff delta rule" algo­

rithm of training [35]. The described device was made on the basis of analogue radio 

elements and functioning on a principle of continuous (not discrete in time) training. In 

the regime of training x(t) is a periodical signal with the period T.In the Fig. (31a) the 
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Figure 30. The analog polynomial approximator: (a) ~ in the regime of traini ng and (b) ~ in a 
"functiona l" regime. 
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Figure 31. Schematic diagrams: (a):APA in regime of training and (b): Analog multiplier 
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3.1 Analogue polynomial approximators 

electrical scheme of the system is presented. The device consists of 

1. Synthesizer of power-type functions from the source signal x in accordance with the 

formula Yi = xi 

2. A neuron (an adaptive element) with the linear activation function: f(x) = Li HT1y1 " 

The "Widrow-Hoff delta rule" training system performing the continuous in time up­

dating of the weights Wi with the purpose of mean-square deviation - e minimisation , 
where 

e = L [d(Xk) - f(Xk)]2 = J [d (x(t)) - f (x(t))f dt. (21) 
k T 

Assuming that the training is sufficiently slow, that is: ~ Wi IT « H"1 (where T is a 

period of the training cycle), we can represent the weights updating OH'i in a form: 

The x(t) is a periodical signal. If x(t) is a sawtooth waveform signal (see. Fig. 30) than 

the APA will minimise the mean square deviation between functions d(x) and f(x). 

Otherwise the APA will minimise the mean square deviation expressed by a formula 

(3.21). 

The breadboard model basic element is a chip - analogue multiplier (AD734, Ana­

log Device), (see Fig. 31b). Its operation can be described by the following equation: 

(x + ox + xo) . (y + oy + Yo) = z + oz + zo, where x and yare inputs, ;:; is an output of 

analogue multiplier, ox, oy and oz are offsets, xo, Yo and Zo are correction inputs. The 

analysis has showed that for normal function of the system it is not necessary to adjust 

all offsets: ox, oy and oz in each microchip, but it is enough to adjust only oz in the 

learning circuit of each cascade of the system. Another offsets will be compensated by 

previous cascades of the system. 

The dependence of signal deviation from the cycle number is shown in Fig. 33a. 

At the first moment (back edge of a surface) the system is not trained ( f (x) = 0, for 

any x). As a result of the system's training the maximal deviation of d(x) from f(x) 

becomes smaller than 0.1 %. It takes approximately 105 cycles for the convergency of 

the system, that is several minutes in the experiment (see Fig. 33c). 

The experiments and the analysis have shown that APA can be successfully used 

also for interpolation and nonlinear extrapolation of various smooth dependencies. 
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Figure 32. Breadboard of Analogue polynomial Approximator 
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Figure 33. Typical dependencies of (a) deviation signal (d(x) - f(x)), (b) weights n"1 and (c) 
mean- square deviation signal e as functions of time (number of training cycle) for APA based 
on power-type functions. 
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3.1 Analogue polynomial approximators 

In the Fig. 34a the result of interpolation ofa sample dependence d(Xk) (that was 

generated with addition of noise from the reference dependence D(x) = 3 + E>1,2 _ 

e2x - e-2
.
2x for values Xk) by the polynomial f(x) is shown. 

In the Fig. 34b the result of extrapolation of a sample dependence d(x) by a 

polynomial f (x) is shown. The sample dependence d( x) is determined on the range 

-1 < x < 1 and equal on this interval to a reference function D(x). The task of the 

extrapolator is to predict (relying on the d(x) defined on the interval-1 < x < 1) the 

behavior of D ( x) on the range 1 < x < 2 (see the Fig. 34b.) 

3.1.2 Fast-training analogue polynomial approximator 

As it was shown above, it takes a rather large number of cycles of training (and re­

spectively much time) for convergence of the Analogue Polynomial Approximator. The 

learning time can be considerably reduced by choosing orthogonal functions instead of 

the power-type functions as a basis for the function's approximation. In a case of saw­

tooth waveform signal x(t) (in regime of training) it will be the orthogonal at the range 

(Xmin, x max ) Legendre polynomials' basis - Pi(x) (see Fig. 35). 

N° Power-type functions X2 Legendre polynomials Pi 
0 1 1 
1 x x 
2 x:L. (3x:L. - 1)/2 
3 x;j (5x;j - 3x) /2 
4 X4 (35x4 - 30x£ + 3) /8 

So the offered system consists of: 

a) the synthesiser of Legendre polynomials Pi (x) 

b) the neuron with the "Widrow-Hoff delta rule" algorithm of training: 

f(x) = L:WiPi(X) (22) 

t 

oW; = -a a;i 5t = 2a(d(x) - f(X))Pi(X)5t. (23) 

The electrical scheme of the device is shown in the Fig. 36. 

It can be easily shown that the use of Legendre polynomial basis (thanks to its 

. . . h d J.(y d m oifthe S1·stem without off-orthogonalIty) allows the trammg of eac egree OJ Jf ee 0 • 
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1,5 

1,0 • - ----

0,5 

0,0 

• d(xk)-reference values, generated from noisy reference function 

-0,5 D(x) - reference functim 

f(x) - trans fer function of trained AP A 
-1,0 

-15~~--~----~--~----~--~~---L----~---L-
'-1,0 -0,5 0,0 0,5 1,0 X 

(a) 

o 

-10 

- <Xx) - appuxirnated part of tre refereoce functi::m 

IXx) - refereoce fi.n:fun 

f(x) - tran<;fer fi.n:fun oftraired APA 

(b) 

Figure 34. Examples of APA function in regimes of: (a) interpolation, (b) extrapolation. 
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Figure 35. Power-type functions xi and the Legendre polynomials Pi(X). 
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Figure 36. Electrical scheme of the analog approximator on the basis of Legendre polynomi­

als. 

82 

, f(x) 



3.1 Analogue polynomial approximators 

tuning of other degrees offreedom. Substituting (3.22) into (3.23) 

oWi = -a :;i ot = 2a (d(X) - ~ WiPi(X)) Pi(x)ot (24) 

In assumption of slow enough training, i.e. ~ WilT « Wi, (T is a period of training 

circle), taking into account the orthogonality of Legendre polynomials in the case of 

sawtooth waveform signal x(t), regrouping the Eq.(3.24) and, renaming 2a = a : 

aWi a {2 a { 
at + WiT iT Pi (x)dt = T iT d(X)Pi(X)dt (25) 

Assuming that Wilt=o = 0, finally, solving the differential equations (3.25) we will get 

the equations describing the dynamics of convergence of the approximator: 

J d(X)Pi(X)dt ( ( at ( )) 
Wi(t) ~ TIT P?(x)dt 1 - exp -T iT P?(x)dt . 

The Legendre polynomials' synthesiser functions on the basis of a recurrence relation: 

where ai are determined from the conditions: 

11 PiPi-2dx = 0 
-1 

(27) 

It should be noted here that in the Eq.(3.27) the integration variable is x, whereas in 

conventional analogue integrators the integration variable is time. That's why the saw­

tooth waveform signal x(t) with the period's duration - T was used to synthesise the 

Legendre polynomials. 

Let us consider how the condition (3.27) could be implemented in analogue hard­

ware. Let us rewrite the Eq.(3.27) for the case of sawtooth waveform signal x(t) and 

SUbstituting (3.26): 

{r (2XPi- 1Pi- 2 + aiPi~2) dt = 0 
ito 

(28) 

Since the ~~2(X) is a positive function, the condition (3.28) can be maintained by 

means of a negative feedback in accordance with the following equation: 

ai(r) = -fJ J (2XPi- 1Pi- 2 + aiP;'-2) dt, (29) 

(see the Fig. 36.), where {3 is a factor of speed of convergency of the synthesiser. After 

the synthesiser's convergency (T ~ 00) into the stationary-state we will have: 

L'.ai IT = [PiPi-2dX = 0 
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This means that it is possible to satisfy the conditions of recurrence relations (3.26) 

by a hardware implementing the negative feedback (3.29) and hence Pi is a Legendre 

polynomial of i degree (shown in the Fig. 35). 

The computer's modeling shows that the analogue Legendre polynomials based 

approximator is much faster trained (about 3 orders of magnitude) in comparison with 

the approximator based on power-type functions described in the above paragraph (com­

pare Figures 33a,b,c and Figures 37a,b,c). 

It should be noted, however, that additional circuits of analogue multipliers "zero" 

correction are necessary for reliable and precise operation of the system represented in 

Fig. 36 (these circuits are not shown in the scheme). 

Conclusions 

The suggested systems performing functions of approximation, interpolation and 

extrapolation, were studied experimentally and by methods of computer modeling. 

The devices showed good working characteristics (corresponding to theoretical 

description) In my opinion they can find application in high precision analogue engi­

neering for fast calibration of different devices, as an adaptive nonlinear element capa­

ble of compensating nonlinearity of radio-engineering units, etc. 

Besides these systems definitely could be pedagogically interesting as simplest 

adaptive neuromorphic systems. The Legendre polynomials' based approximator is a 

good demonstration of neuromorphic system using the principle of orthogonality. 
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Figure 37. Typical dependencies of (a) deviation signal (d(x) - f(x)), (b) weights lr1 and 
(c) mean- square deviation signal e as functions of time (number of training cycle) for APA 
based on Legendre polynomials. 
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Figure 38. Breadboard of Synthesiser of Orthogonal Signals 

3.2 Synthesiser of orthogonal functions 

3.2.1 Introduction 

Analogue technology for complex and nonlinear infonnation processing permits 

the creation of devices characterised by several potential advantages as compared with 

digital devices: greater speed (by more than an order of magnitude), smaller device 

size and lower power consumption; see e.g. [9] and [36]. The main factor contributing 

to these potential advantages of analogue technology is the use of nonlinear phys ical 

phenomena taking place in transistors to perfonn the infonnation processing proce­

dures, such as multiplication. For example, typically it takes about 10000 transi tor 

to be switched to perform the operation of multiplication in the digital domain wherea 

the operation of multiplication can be performed in the analogue domain by a imple 

scheme of Gilbert's analogue multiplier (see [6]) containing just a few tran istor . The 

analogue implementation therefore takes much fewer transistors . Furthennore, e\'en 
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3.2 Synthesiser of orthogonal functions 

more dramatically the statistical length of interconnections is reduced (and it is well 

known that most power is consumed by wires rather than by semiconductors). This 

gives us a potential gain in power consumption more than four orders of magnitude. 

A more detailed analysis of the potential advantages of the analogue adaptive 

technology for nonlinear information processing over the digital one can be seen in the 

very impressive work of Carver Mead [9], which is a basic work of a new and fast­

growing direction of neural science and technology: Neuromorphic Systems. It should 

be noted here that almost a hundred percent of the complex analogue nonlinear sys­

tems created up to now are analogue Artificial Neural Networks (references to several 

developments in the area are available in [37]). 

In spite of advantages of analogue technology it is relatively seldom used for com­

plex signal processing. One of the reasons seems to be the fact that the basis of ana­

logue elements (which now includes analogue multipliers, integrators, summators and 

some elements of nonlinear transform like exponent, logarithm, etc.) is not extensive 

enough to create purely analogue devices for nonlinear information processing (hybrid 

analogue-digital integrated systems seem unpromising because they are accumulating 

disadvantages of both techniques rather than their advantages). Another reason for the 

restricted use of analogue technology for nonlinear information processing is connected 

with the disadvantages of analogue elements such as zero off-sets, nonlinear distortions, 

noise, signal's delay, etc. 

Nevertheless there are a lot of potential applications for analogue technology 

where the parameters of analogue units are quite acceptable. For example it seems 

to be reasonable to use the analogue technology for creation of devices or elements for 

voice or image processing and recognition, as well as for some applications in signal 

synthesis, approximation, interpolation, etc., especially in cases when the data to be 

processed are noisy. Such devices are supposed to be small-size, fast and low power 

consuming. 

In essence, for creation of up-to-date highly efficient (small size, low power con-

sumption) purely analogue devices for sophisticated signal processing it is necessary to 

overcome or suppress the disadvantages of analogue technology as well as to increase 

the number of basic analogue elements. 

It should be noted here that the such a disadvantage of analogue technology as 

l'b' . 't th t can be easily imple-zero off-set may be overcome by means of ca 1 ratIon CIrCllI s a 
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mented in analogue systems. Another very important parameter of elements of analogue 

system is a scale factor (like as scale factor of analogue multiplier or an amplification 

coefficient of differential amplifier). The scale factor coefficients of analogue system 

may be adjusted during the process of analogue VLSI creation. However in this case the 

system will not be tolerant of temperature changes as well as of a long time degradation 

of elements. So it can be reasonable in some cases to create special adaptive architec­

tures to solve the problem of scale factor adjustment during the device functioning (or 

maybe during a special phase of device's self-correction). 

In this paper a new analogue system based on adaptive procedure of scale fac­

tor coefficients' (in particular, polynomial coefficients) adjustment is proposed. The 

system is able to produce a plurality of mutually orthogonal signals such as Legendre 

Polynomials, Cosine Basis of Functions, Smoothed Cosine Basis, etc. 

The principle of orthogonality (the use of orthogonal functions and transforms) is 

a very important paradigm of signal processing. Orthogonal functions are widely used 

now in digital image processing [38], in systems and control [39], speech processing 

(see e.g. [40]), in communication (see e.g. [41]), etc. In Author's opinion the creation 

of analogue VLSI microchip performing the function of orthogonal functions synthe­

sis will permit to increase the spectrum of highly efficient analogue systems of signal 

processmg. 

In the paper a proof-of-concept breadboard version of the Synthesiser is de­

scribed. The process of synthesis of the Smoothed Cosine basis of functions and char­

acteristics of the output functions are described. It is revealed that the device is charac­

terised by a fast and reliable process of signals' synthesis. 

3.2.2 Synthesiser 

The principal scheme of the Synthesiser of orthogonal signals is shown in Fig. 39b. 

The main elements of the device are analogue multipliers, integrators and sum­

mators. The device produces orthogonal signals as functions of time: Fi(t), where t is 

time, Fi (t) is the i-th orthogonal function. 

This device (Fig. 39b) will synthesise an orthogonal basis of functions if we will 

apply to inputs f(t) andg(t) some periodical signals with period T, that are respectively 

odd and even functions of t in relation to moments of time t = Tn within the ranges of 
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time Tn - T /2 < t < Tn + T /2 (that is, for every n: f(Tn - T) = - f(Tn - T) and 

g(Tn - T) = g(Tn + T), where 0 < T < T/2), n is a cycle number of the periodical 

(with period T) input (and output) signals. 

Furthermore, on the basis of the Synthesiser it is possible to create devices with 

some useful fixed nonlinear transfer functions, e.g. Legendre polynomials transfer func­

tions, Chebyshev polynomials transfer functions, etc. 

Principles of Functioning The output signals of the Synthesiser Fi are the func­

tions of input signals f (t) and 9 (t) in accordance with the recurrent relations: 

Fo(t) = g(t); 

FI ( t) = f ( t ) 9 ( t ) ; 

F2(t) = f(t)FI(t) + a2 FO(t); 

where ai for i > 2 is defined by: 

that is 

or 

n7 +T/2 

n7 +T/2 J F,(t)F,_2(t)dt = 0; 

n7 -T/2 

J (f(t)F'-1 (t) + a,F'_2(t)) Fi _ 2(t)dt = 0: 

n7 -T/2 

n7 +T/2 
J f(t)Fi _ l (t)Fi - 2(t)dt 

n7 -T/2 
nT+T/2 

J F?-2(t)dt 
nT-T/2 

(30) 

(31 ) 

(32) 

(33) 

To realise the condition Eq.(3.31) the device is employing not Eq.(3.33) but the follow­

ing technique: 
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3.2 Synthesiser of orthogonal functions 

(a) 

g(t) 1-+ 

f(t) 1-+ 

1-+ F,(l) 

1---+ F.(l) 

1---+ F, (l) 

(b) 

Figure 39. Scheme of analogue synthesiser of orthogonal signals. 
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3.2 Synthesiser of orthogonal functions 

o 

-1 

-2 

1 10 100 

Number of Tuning Cycle n 

Figure 40. The dynamics of coe.-fficients ai adjustment (for Legendre Polynomials synthesis). 
Due to the fact that every coefficIent ai depends only on previous coefficients a· (j < i) the 
process of convergence is not only stable, but also very fast. J 

Due to the fact that FL2(t) is a positive function, the condition Eq.(3.31) can be 

fulfilled by means of negative feedback in accordance with the following equation: 

t t 

ai(t) = -(3 J Fi(T)Fi-2(T)dT = -(3 J (f(T)Fi-l(T) + ai(T)Fi-2(T)) Fi- 2(T)dT 
o 0 

(34) 

(see Fig. 39a and Fig. 39b), where f3 > 0 is a Synthesiser's speed of convergence factor. 

If f3 is small enough, as a result of the Synthesiser's tuning, in the final stationary state 
nT+Tj2 

(T ---+ 00, that is: n ---+ (0) we have: ~ailT - -f3 J Fi (T)Fi- 2 (T)dT = O. 
nT-Tj2 

It should be noted here that, due to the fact that every subsequent coefficient ai 

depends only on previous ones, the process of adjustment of coefficients ai is not only 

stable but also very fast (see Fig. 40). 

To imagine the process of adjustment of coefficients ai (t) let us suggest that at 

some moment t = 0 the first I functions Fi , where I-I > i > 0, are already syn­

thesised (hence the ai coefficients are established and are time-constant) whereas the 

higher degree functions are not adjusted yet (in particular let's say aJ(O) = a~) . Let us 

analyse in such a situation the behavior of aI(t) coefficient as a function of time. Let 
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3.2 Synthesiser of orthogonal functions 

(a) 
-1.0 QO Q5 1.0 

(e) 
-1.0 1.0 

Figure 41. Examples of signals that it is possible to synthesise by the Analogue Synthesiser 
(see Table 1). 
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3.2 Synthesiser of orthogonal functions 

us suggest also, for the sake of simplicity, that (3 is small enough th h ( ) ,so at tea I t co-
efficient is not changed considerably during one period T of basic fun f f( ) 

nT +T/2 C IOns t and 

g(t): 6aIIT - -(3 J FI(T)FI- 2(T)d7 ~ aI . In this case from Eq (3 34) c 
nT -T/2 ' " lOr 

Tn - T/2 < t < Tn + T/2 we are getting: 

nT +T/2 nT +T/2 

t.a[(t)IT "" -(3 J !(r)F[-1(r)F[_2(r)dr - a[(t)(3 J F!-2(T)dT, 

nT -T/2 nT -T/2 

and the approximate differential equation for aI will be: 

That is: 

daI 
dt ~ - (3 (f ( t) FI -1 ( t) FI - 2 ( t )) - a I ( t) (3 (Fl_ 2 ( t)) ) 

where (f(t)FI- 1(t)Fi- 2(t)) and aI(t)(3 (Fl_2(t)) are expressions for the arithmetic 

mean of f(t)FI- 1 (t)FI- 2(t) and Fl_2(t) functions over the period T. 

The solution of this equation is 

Taking into consideration that (3 is a positive constant and that Fl_2(t) is a positive 

function, we can conclude that aI is exponentially converging to stable state 

(f (t )FI -1 (t )FI- 2 (t)) a I = - --'--'-----;----''----:--'-'-'-
t-+oo (Fl_2(t)) 

We can see that the proposed technique gives finally the same ai as direct calculation in 

accordance with Eq.(3.33) but is much more suitable for analogue implementation. 

Now, when we have a picture of the synthesis of ]th function from (I - 1)th and 

(J _2)th functions, we can approximately imagine the function ofthe system as a whole. 

Roughly speaking the dynamic of the synthesiser function can be seen as a subsequent 

synthesis of functions Fi from the first Fl to the last function of the synthesiser Fv (N 

is the number of cascades of the Synthesiser), i.e. F I , then F2 ) ... and finally F\,. with 

the speed of (exponential) convergence proportional to f3 (FL2 (t)) for the ith function. 

This description of the Synthesiser function is in good agreement with the results of 
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3.2 Synthesiser of orthogonal functions 

Table 1. Basic functions for synthesis of different orthogonal bases shown in Fig. 41. 

f(t) g(t) 
a) Legendre polynomials Saw(t)* 1 
b) Cosine Basis t sin( 7ft /2) 1 
c) Sine Basis sin( 7ft /2) cos( 7ft /2) 
d) Smoothed Cosine Basis sin( 7ft /2) cos'}. (7ft /2) 
e) Hermite polynomials Saw(t) exp 1-16Saw2 (t)1 
f) Saw(t) 1 

l+expT -(5Saw(t))2 101 

• Saw(t) is a Saw-wavefonn signal. 
t In this case the output functions Fi (t) will constitute the basis of Chebyshev polynomials of the first 
kind Fi(t) = Ti(t). 

computer modelling shown in Fig. 40 as well as with experimental results which we 

have observed with the breadboard of the Synthesiser described in the next section. 

The main statement of this section (the proof can be found in an Appendix A) is 

the following: 

if: f (t) and g( t) are some periodical signals with period T , that are respectively 

odd and even functions of t in relation to t = Tn in every period n (that is, for every 

n: f(Tn - T) = - f(Tn + T) and g(Tn - T) = g(Tn + T), where 0 < T < T/2), 

and Pi are defined by the recurrent equations (3.30), where ai are defined by integral 

equations (3.31), 

then: Pi are mutually orthogonal functions. 

The most important signals for the orthogonal signals creation are saw-tooth and 

sine waveform signals as well as some simplest non-linear transforms of these signals 

based on multiplication, dividing, logarithmic, exponential, etc. transforms which can 

be performed in analogue domain (like e.g. exp (-x2
)). As an example of an element 

performing such a nonlinear transform a logarithmic amplifier AD640 (Analog Device) 

can be considered. The element provides logarithm transform of analogue signal with 

bandwidth up to 120 MHz with the dynamic range 50 dB and can be used to implement 

the exponential or the logarithmic transform. Several examples of orthonormal bases of 

functions are shown in Fig. 41. The basic functions f(t) and g(t) for the synthesis of 

the orthogonal bases that shown in Fig. 41 are described in Table 1. 
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3.2 Synthesiser of orthogonal functions 

x, x, x, 

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 o 2 4 6 ~ 10 12 14 16 1 , 20 22 

Figure 42. An example of discreet orthogonal sequences Fi,k synthesised on the basis of fk 
sequence (F1,k = /k, gk = 1). 

3.2.3 Synthesis of orthogonal signals discrete in time 

The Synthesiser is able to produce not only orthogonal continuous signals but also 

some discrete orthogonal time sequences. 

Let us suggest we have some periodical signals f(t) and g(t), every period of 

which is consist of M discrete values fk and gk with duration Tk (k is an integer number 

from 1 to M) so that fk = - fM-k+l , gk = gM-k+l and Tk = TM-k+l· 

If we apply such odd and even discrete signals respectively to inputs f and 9 of 

the synthesiser we will have a mutually orthogonal time sequences on the outputs Fi . 

An example of such orthogonal time sequences is shown in Fig. 42. In this case 

gk = 1 and fk is coincide with F1,k (where F1,k is a signal on the output Fl of the 

synthesiser) . 

Such orthogonal sequences may be useful for example for fast interpolation of 

some discrete data. 

3.2.4 Synthesis of Chebyshev and Legendre polynomials 

In the case of input signals f(t) = sin(7rt/2) and g(t) = 1 on the output we 

will have the Cosine basis of functions (Fig. 4lb): Fm(t) = cos (7r;(t + 1)).2 In the 

stationary state (after the process of adaptation) we will have the transfer functions of 

2 Discrete analogue of Cosine Basis of functions is used for well kn~wn Discrete Cosi~e 
Transform (DCT) and has already found wide applications in signal and Image processmg, m 
particular for JPEG algorithm of image compression. 
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3.2 Synthesiser of orthogonal functions 

the Synthesiser as Fm(sin(7rt/2)) = Tm(sin(7rt/2)), where Tm(x) is the m-th degree 

Chebyshev polynomial of the first kind from the argument x(t) = sl'n(-t /,) I If . h 
II i - . . \\ e t en 

fix the coefficients am we will get the device with the fixed transfer function T m (x), 

where x ( t) is an arbitrary input signal on the input f of the Synthesiser. 

Analogously it is possible to create the device with Legendre polynomials' trans­

fer functions Fm(x) = Pm (x) (Fig. 41a). In this case in the adaptive phase it is neces­

sary to apply the sawtooth waveform signal f(t) =SAW(t) to the input f and a constant 

signal (e.g. g(t) = 1) to input g. The description of Legendre, Chebyshev, etc. polyno­

mials as well as some other orthogonal functions is available in [42]. 

3.2.5 Experiment 

A breadboard of the Synthesiser of orthogonal signals (implementing the scheme 

shown in Fig. 39) has been created. The scheme was realised on the basis of analogue 

microchips: analogue multipliers AD734AQ (Analog Devices) and operational ampli­

fiers OP27E (Analog Devices). The voltage range of signals of the Synthesiser is from 

-lOV up to 10V. The power supply voltages are ±15V. The only difference of the 

breadboard's scheme from the scheme shown in Fig. 39 was some additional normalis­

ing amplifiers in every cascade of the system (not shown in Fig. 39). The breadboard 

device doesn't contain circuits of self-calibration. Typical offsets of analogue multipli­

ers AD734 are bx, by, bz rv 0.3% (where offsets bx, by, bz are defined as constants 

from an equation that approximately describes the transfer function of analogue mul­

tiplier: z = bz + (x - bX) x (y - by), x and yare inputs of a multiplier and z is an 

output). The inverting integrators of the Synthesiser are created on the basis of the stan­

dard scheme comprising operational amplifier, capacitor in the feedback and resistor. 

The aim of the experiment was an investigation of different properties (noise, 

speed, precision, etc.) of the Synthesiser. In particular it was interesting to investi­

gate experimentally the process of adjustment of coefficients ai· It was revealed that the 

process of convergence is very fast: approximately 300 cycles (that is 300 periods ofpe­

riodical input signals) and stable, and is in good agreement with the results of computer 

modelling shown in Fig. 40. 

fi . 1 . e wa\'c) used in ex-The frequencies of basic signals (saw-wave orm SIgna or sml . 

d 'd h f h' hest frcquency periments were < 100 kHz (approximately 1 MHz ban WI t 0 Ig 
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3.2 Synthesiser of orthogonal functions 

1,0 (a) 
1,0 (b) 

-1- f(t)=sin(7tt/2) 

a,s -2- f(t)=Saw(t) 
a,s 

0,0 0,0 
-1 -1 

-{l,S -{l,S 

-1,0 -1,0 

Figure 43 .. Using s~gna~s displayed on ~gure a) as the basic function J(t) for the synthesis of 
orthogonal sIg~als ~Ill gIve the same ult~ate value~ ai as using of signals displayed on figure 
b), correspondmg dIrectly to the mathematIcal descnptIon of the device. 

generated signals e.g. 8th order Legendre polynomial). The frequency was restricted 

to avoid the dynamical behavior of elements such as finite slew rate as well as signals 

phase shift in OP-amp and multipliers. 

It should be noted that the sinusoidal signal and a saw-wave signal (see Fig. 43a) 

(but not the signals shown in Fig. 43b) were used in the experiments as a basic function 

f (t) for synthesis of the orthogonal bases shown in Fig. 41. (It is easy to show that in 

both cases of f(t) defined as shown in Fig. 43a and Fig. 43b, the coefficients ai that are 

established after the process of adaptation have the same values). 

The signals shown in Fig. 41 from a) to e) have been synthesised experimentally. 
1 

The inner product coefficients Cij _ f Fi(t)Fj(t)dt (where i and j are some in-
-1 

teger numbers from 0 to 7) for the Smoothed Cosine basis (see Fig. 41d and Fig. 44) 

synthesised by the experimental breadboard (the data shown in the Fig. 44 were im­

ported from an oscilloscope) are shown in Table 2. It can be seen that the degree of mu­

tual signals' orthogonality is decreasing with increasing degree of the basis Fi · This 

phenomenon is connected with the fact that nonidealities of elements from previous 

cascades of the Synthesiser are accumulating and influence the subsequent cascades.
3 

It should be noted here that after the adapting phase (as a result of which the 

coefficients ai reach the stationary values) the output signals of the Synthesiser Fi (t) 

are some stationary nonlinear functions of input signals f (t) and 9 (t) (due to there not 

being any time or frequency dependent elements infeedforward circuits (such as e.g. 

3 Taking into consideration normalising coefficients of functions, we will see that the non ide­
alities as well as a noise of previous cascades of the system are not only affecting subsequent 
cascades but that this influence increases with the cascade number, , 
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3.2 Synthesiser of orthogonal functions 

Table 2. The inner product matrix of the synthesised Smoothed Cosine functions' 
Basis shown in Fig. 44. 

Fo FI F2 F3 F4 F5 F6 F7 
Fo 3.3692 -0.0028 -0.0062 -0.0101 -0.0199 -0.0015 -0.0037 -0.0139 

FI -0.0028 3.5898 0.0061 0.0060 0.0097 0.0121 0.0148 0.0040 

F2 -0.0062 0.0061 3.5791 0.0209 0.0072 0.0202 -0.0017 0.0094 

F3 -0.0101 0.0060 0.0209 3.8883 0.0340 0.0137 0.0357 0.0058 

F4 -0.0199 0.0097 0.0072 0.0340 3.7625 0.0522 -0.0001 0.0129 

F5 -0.0015 0.0121 0.0202 0.0137 0.0522 3.7105 0.0608 -0.0146 

F6 -0.0037 0.0148 -0.0017 0.0357 -0.0001 0.0608 3.4168 -0.0325 

F7 -0.0139 0.0040 0.0094 0.0058 0.0129 -0.0146 -0.0325 3.5902 
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. Figure 44. Smoothed Cosine functions generated by the breadboard of the analogue Synthe­
SIser of orthogonal signals. f(t) and g(t) are input signals; SCO- 7 are output signals. 

filters, integrators, etc.), but only analogue multipliers and summators, see Fig. 39). 

Therefore if at some moment we will change the period of applying signals f (t) and 

g(t) i.e. if we will change signals f(t) and g(t) respectively to f(at) and g(at) where a 

is some constant, we will instantly have signals Fi (at) on the outputs of the Synthesiser 

and these signals will be stationary during the time. 

In the future researches we are going to concentrate our attention on problems of 

stability and speed of convergence of the Synthesiser, whereas in this work we just have 

done a general description of principles of functioning as well as a description of the 

proof-of-concept breadboard function. 

3.2.6 Conclusions 

As a result of this work it is possible to make several conclusions: 

• It is possible to produce on the basis of analogue elements a plurality of mutually 

orthogonal signals such as Legendre Polynomials, Chebyshev Polynomials, 

Cosine Basis of Functions, Smoothed Cosine Basis, etc. 
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3.2 Synthesiser of orthogonal functions 

• The recurrent equations (3.30), where ai are defined by integral equations (3.31) 

allow to produce a basis of orthogonal functions Pi (x) if the functions f (x) and 

g(x) applied at the inputs of the synthesiser are respectively odd and even 

• The condition Eq.(3.31 could be realised by means of the simple feedback shown 

in the Fig. 39(a). 

• The process of the synthesis of orthogonal functions is fast and very stable. 

• In the case of high precision and high orthogonality requirements, a scheme of an 

Analogue Synthesiser of orthogonal signals must include some additional units 

for offset zeroing and normalising in addition to the scheme shown in Fig. 39. 

• In the case not the highest requirements of precision and orthogonality it is 

possible to create the Synthesiser with not-adapting but with pre-set (in analogue 

or digital memory) coefficients ai. In this case the Synthesiser will be a little 

simpler and will not demand a special phase of adaptation but will be less precise 

as well as more sensitive to temperature variation and to degradation of elements 

over time. 

• The maximal frequencies of function of the Synthesiser implemented on the basis 

of up-to-date analogue VLSI technology working are supposed to be several 

hundreds megahertz. But in addition to the problem of off-sets compensation in 

a high frequency range, the problem of an inter-cascade delay of signals must be 

solved. 

Such a Synthesiser of orthogonal signals should be useful in telecommunication 

systems. For example - Smoothed Cosine functions (Fig. 41d) as well as function shown 

in Fig. 4le are well-localised in both time and frequency and may be used for exam­

ple for megahertz range modem creation, as well as in code division multiple access 

(CDMA) digital wireless communication systems (combining binary Walsh functions 

and orthonormal functions localised in time allows us to create different complex bases 

with a sufficient number of well-localised in frequency and mutually orthogonal func-

tions). 

The Synthesiser may be useful also for creation of fast-training approximators or 

interpolators of one or multi-variable functions (e.g. for an analogue implementation of 

Chebyshev polynomials-based (CPB) neural networks that were theoretically described 
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3.2 Synthesiser of orthogonal functions 

in [43]). An analogue device for the fast functions' approximation on the basis of 

Legendre polynomials is described in [44]. 

It is possible also to use devices based on orthogonal functions as an alternative 

to Volterra polynomial neural networks (or filters) (described e.g. in [45]). Orthog­

onal function - based devices will much faster in adaptive mode in comparison with 

conventional Volterra's networks. 
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3.3 Suppressor of acousto-optic nonlinear distortions 

As mentioned earlier, adaptive polynomial systems are most efficient for approx­

imation of weakly nonlinear functions. Thus the problem of nonlinear distortion com­

pensation is one of the widest areas of application for adaptive polynomial systems. 

Such systems normally must be not only highly linear, but also - highly precise. That's 

why the adaptivity of the system could be crucial since the precision characteristics of 

analogue elements are very sensitive to temperature as well as to long-term degradation. 

Analogue polynomial adaptive systems could find application in cases of high 

frequency systems. An example of such a system is the Volterra filter (see [46]). Such 

filters could be used for modeling of nonlinear dynamic systems as well as for nonlinear 

distortion compensation (e.g. in powerful amplifiers for radio stations). 

Let us consider here the promising application of adaptive polynomial analogue 

system for the suppression of intermodulations in Acousto-optical (AO) systems. AO 

systems are widely used for information processing (AO spectrum analysers of RF­

signals as well as AO adjustable filters higher than 100MHz bandwidth, etc.) as well 

as for laser light manipulation (AO scanners, deflectors, modulators). One of the main 

parameters of such systems is the dynamic range. 

The typical dependence of the efficiency of AO interaction fa as a function of 

strain u is shown in Figure 45. In this case the intensity of the incident light is fo = 1, 

the level of noise is 10-8 . The dynamic range in this case will be the maximal difference 

between the curve of signal intensity fa and the curve of intermodulations f abc , which 

relates to three-tone intermodulations of 3rd order. 

The dashed curves relate to a normal (non compensated) AO cell. We can see 

that the suppression of AO intermodulations could considerably (up to two orders of 

magnitude) increase the dynamic range of AO systems. 

The intermodulation effects in AO systems are described by others in [47]. In 

[48] and [49] we suggested a new technique of AO intermodulations suppression. This 

technique is based on the strong nonlinearity of the photoelasticity effect in resonant 

materials. This allows us to create a new material (based on mixture of non-resonant 

photoelastic material containing resonant non-linear impurities), which, if used for an 

AO cell creation, will be free of intermodulations of 3rd order. This will allow us 

.. d f magnitude In spite of the to Increase the dynamIC range by more than one or er 0 . 
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, Figure 45 .. Typical dependen~e of the e~cienc?, of A? interaction fa and of the intensity of 
mtermodulatlOns fabc as a. funct1~n of ~traIn u. It IS possIble to see that the dynamic range D is 
about two orders ofmagmtude hIgher In the case of suppressed intermodulations (solid lines), 

importance of the parameter - dynamic range - it is not a trivial problem to synthesise a 

new material with appropriate properties. This problem is not solved yet. 

On the other hand the same goal (the suppression of nonlinear distortions of 3rd 

and higher orders) could be reached by means of electrical signal modification. Indeed, 

by means of bringing pre-distortions into the electrical signal, it is possible to suppress 

the intermodulations. 

Let us consider how this could be done in the case of "thin" AO gratings (when 

h « };2 Re yIEo), where h is the width of sound beam, k and K are the wave numbers 

of light and sound waves, respectively). The consideration yields to the amplitude of 

the propagated light E ~ Eo exp(iJE(y, t)kh. 

If x(t) is the input signal, after the 3rd order polynomial modification the elec-

trical signal on the piezoelectrical transducer will be u(t) = x(t) + ax2 (t) + xr
3
(t). 

The dielectric permittivity c(y, t) could be expanded in a series of strain u(y): c( y, t) = 

cO+c1 u(y, t). Assuming that the input signal is a superposition of sine signals: r(y. t) = 

2::=1 xm cos(KmY - Omt + 8m) (see Figure46), Xm and Om are the amplitude and the 

frequency of the mth partial sound wave, co is the dielectric permittivity without sound, 

C1 is the linear photoelastic coefficient, on the output of the AO cell \\'C will have fl)r 

the amplitude of light: E(y) = Eo exp (ikhyEo) (1 + AI + B.r2 + C.r3 + ... ), where 
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Figure 46. AO interaction in regime of "thin" graiting. 
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The coefficients A, Band C correspond to 1 st, 2nd and 3rd order AO processes 

( distinguished by the numbers of diffraction orders). Following the Floke theorem of 

the superposition (see [48]) we can obtain for the related E components of diffraction 

orders: 

3C 
E(2a-b) = gEOXaXbXe exp (i (khFo + 8a - 8b + 8e))· 

Thus, both the 3-tone (E(a-b+e)) and 2-tone (E(2a-b)) intermodulations of third 

order are proportional to the same coefficient C, which is defined by the Eq.(3.35). The 

zeroing of this coefficient will suppress all the intermodulations of 3rd order, thus will 

increase the dynamic range by more than one order of magnitude. 

In Figure 45 the solid lines are related to AO systems with suppressed interrnod-

ulations of 3rd order. 

The coefficient C, as we can see from Eq.(3.35), could be zeroed by selection of 

proper parameters a and/or x. The principle of the compensator function is shown in 

Figure 47. The input signal goes through a nonlinear (polynomial) adaptiye unit which 

adds the non-linear pre-distortions in order to suppress the intennodulations. 

104 



3.3 Suppressor of acousto-optic nonlinear distortions 
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Figure 47. This scheme shows the principle of function of the adaptive polynomial unit 
suppressing the AO nonlinearities of 3rd and higher order. ' 

To compensate for 3rd order nonlinear distortions (AO intermodulations) on the 

self-calibration stage of the AO device, the test signal, consisting of two sine signals 

x = sin(ht) + sin(12t) is applied to the input of the system (input signal in Figure 47). 

The intermodulation signal with frequency (212 - h), result in the nonlinearity of AO 

interaction, will be spatially resolvable (see Figure 47). This parameter could be used 

as a "parameter of quality" for adjustment of the polynomial transfer function (see 

Figure 48). By zeroing of this "parameter of quality" we will suppress all the 3rd order 

nonlinearities of the AO cell. 

It should be noted that the suppression of AO intermodulation in practice will 

not give as good result as in theory. The reason is that there are other contributions to 

the nonlinearities of the systems as well as the nonlinearity of AO interaction. Every 

amplifier, modulator, as well as the piezo-electrical transducer are contributing both 

to the nonlinearity and to phase distortions of AO systems. To suppress not only the 

nonlinear distortions but also phase distortions, the scheme shown in Figure 49 was 

suggested. 

The perturbation-based system, used in the system, implements the following 

procedure: subsequently one after another each degree of freedom ll'l is 
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Adaptive System 
(Perturbation Based) 

PD 

Quality Parameter 

Figure 48. Scheme of the adaptive polynomial suppressor of AO nonlinearities. 
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Adaptive System 
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Figure 49. Scheme of the adaptive polynomial suppressor of AO nonlinearities for the case 
of the phase-distorted signal. 
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Figure 50. An example of implementation of the perturbation-based adaptive unit. This 
scheme is optimising the Wi coefficients aiming to minimise (or maximise) the "quality" pa­
rameter. 

1) getting some small increment: Wi (k) = Wi (k - 1) + ~; 
2) if the "parameter of quality" improves, the new value of the current degree of freedom 

is fixed: Wi(k) = Wi(k); 

if not - the current degree of freedom is changed to Wi(k) = Wi(k) - 2~. 

An example of implementation of the perturbation-based adaptive unit is shown in 

Figure 50. This scheme optimises the Wi coefficients aiming to minimise the "quality" 

parameter. The of AO distortion Suppressor should be implemented on the basis of 

analogue technology because the sound normally used for AO interaction is very high 

frequency (hundreds of megahertz) (thus the" feedforward part of the system should be 

analogue). Besides, the adaptive unit of the system also should be analogue to maximise 

its precision (since digitizing inevitably will affect the precision). On the other hand the 

results of such optimisation could be stored into a digital memory. 
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3.4 A new technique for indirect identification of 
extracellular electrode position 

It is a well known fact that the electrical signal, taken by extracellular recording 

(ECR) technique from a neural cell, strongly depends on the position of the electrode 

in relation to the cell body (see Figure 51). 

The signal is not only becoming weacker with increasing distance between the 

electrode and the cell, but it also changes its shape, especially when the electrode is 

moved along the axon. This phenomenon could be explained by the complex dynamics 

of diffusion of different carriers of electrical charge, which are ejecting into the medium 

during the neural cell firing. The delay of signal propagation along the axon is also 

contributing to the complex shape of the signal. 

Here we are describing the artificial neural network (ANN) based model of the 

system: neural cell + electrolytic medium. The proposed technique is based on ex­

perimental data (where extracellular electrical signals have been recorded in different 

positions with respect to the neuron). All data used at the stage of the model creation 

supposed to be noisy. 

~~\ 

~ 
0.2 mv} 

1 ms 3 

. 11 1 al measurements strongly Figure 51. Shape of the neural sIgnal recorded by extrace u ar neur 
depends on the position of the electrode. 
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3.4 A new technique for indirect identification of extracellular elect d .. ro e pOSItIOn 

Once the model has been created the signal related to some new position of elec­

trode can be predicted. This also lets us identify the position of the electrode on the 

basis of analysis of the shape of the neural signal. 

We can not see at the moment how the results of the work could be directly used 

in practice because the model strongly depends on the geometry of the particular sys­

tem (neuron+medium). On the other hand the proposed technique (and mathematical 

apparatus) could be part of an advanced procedure of Blind Signal Separation (BSS) of 

neural signals received by one electrode from two or more neurons. 

N ow we will discuss only the task of definition of the electrode position on the 

basis of analysis of signal shape (the reversed task of prediction of signal shape in some 

particular place will not be considered). 

3.4.1 Formal task statement 

Let us suggest that some amount of neural signals di were taken (recorded) from 

an area around a neuron at positions of electrodes Xi, Yi (for the sake of simplicity let's 

consider 2D geometry). Here i is the number of measurements (i < N). 

Our task will be the creation of a signal processing procedure which will let us 

define the position of the electrode (XN, YN) by means of analysis of the shape of signal 

dN taken during a new measurement. 

The setup of the proposed system is shown in Figure 52. 

Initially we have the electrode signal as a function of time. The task of the pre­

processing system is: 

1) identification of the neural signal; 

2) noise filtration; 

3) separation of critical parameters of signal (information "compression"); 

On the output of the pre-processing unit we will have a set of discrete parameters 

Wi , which are the coefficients of decomposition of the neural firing signal. 

The next stage is the Neural Network based analysis of decomposition coeffi­

cients Wi. The task of the neural network is to establish the implicit relation betv.'een 

. . ' t . sition in space in relation the decomposItIOn coefficIents and the output parame ers. po 
. ;\ fh . dsignald(t)inrelationto to neural cell (x, Y), and the tIme delay of wt 0 t e receIve 

. . t Th task is complicated by the spIke detector response whIch occur at the moment o. e 
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3.4 A new technique for indirect identification of extracellular electrode position 
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Figure 52. Setup of the electrode's position identification system 
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3.4 A new technique for indirect identification of extracellular electrode position 

fact that the received signal d(t) is noisy and therefore there is a big ambiguity (i.e. 

error) in time when the spike-detector could respond to firing of the neuron. 

3.4.2 Pre-processing System 

General Principles The scheme of the pre-processing system is shown in Fig­

ure 53. The pre-processing system performs the decomposition of the neuronal signal 

into series of ortho-normal functions Pi: 

(36) 

where 

l
iI 

Wi = d(t) . Fi(t)dt. 
to 

The next stage of signal processing (the ANN based identification system) will be 

dealing only with the coefficients of decomposition Wi. We don't need to approximate 

precisely the input signal d(t), therefore we could truncate the series and use just sev-

d(t) 

I 
I I -r-

Bank of localised 
orthogonal functions 

Figure 53. Scheme of the pre-processing unit 

111 



3.4 A new technique for indirect identification of extracell I 1 .. u ar e ectrode posItIOn 

o 50 100 150 200 250 300 350 400 

Figure 54. Localised orthogonal functions used for the pre-processing of neuronal signals. 

eral coefficients of the decomposition. This will allow us to decrease the infonnation 

characterising the spike. On the other hand, the proper selection of an ortho-nonnal ba­

sis of functions will let us minimise the influence of noise of the input signal on the 

infonnation processing. 

The criteria which should be fulfilled at the stage of basis function selection are: 

- basis functions should be ortho-normal; 

- basis functions should be finite; 

- the power distribution of the basis functions Fl ( t) should confonn to a typical shape 

of the neuronal signal d(t). 

Implementation The spike detector is reacting to the neuronal signal's emer­

gence and launches the orthogonal signal Fi(t) generation. In Figure 54 the orthogonal 

functions that were used for neuronal signal approximation are shown. To synthesise 

this basis of functions the technique described in section 3.2 was used. This technique 

lets to synthesise a variety of orthogonal bases, so that we can select the appropriate 

basis in accordance with the above-mentioned criteria. In Figure 55 the scheme of the 

Synthesiser of Orthogonal Functions is shown. To synthesise signals shown in Fig­

ure 54, the Gauss function and the Sine function were applied to the inputs g( t) and 

f ( t) respectively. 
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g(t) .- '-Fo(t) 

fit) .- .-F1Il) 

.-Fp) 

>---+-FJ(t) 

.-F4(t) 

>---+-Fs(t) 

Figure 55. Scheme of the synthesiser of orthogonal functions 
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W1 ·W10 
W1 ·W lO W1 ·W10 

·9.62 ·8.08 -1.23 

8.26 26.15 ·1.62 

10.83 18.46 0.25 

·0.95 -1.43 1.94 

0.34 3.13 0.26 

4.28 10.58 0.42 

1.54 3.29 0.61 

·0.31 0.29 0.63 

1.86 3.96 0.26 

1.51 4.26 0.78 

Figure 56. Recorded (noisy) data d(t) and approximation curves (smooth). Here lri ~e 
the decomposition coefficients, characterising the approximating functions in accordance WIth 

Eq.(3.36). 
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Figure 57. Scheme of the neural network used for electrode position identification. 

Examples of approximated functions d(t) are shown in Figure 56. Here the 

recorded signals are noisy whereas the approximating signals are smooth. The cor­

responding decomposition coefficients WI - WlO are also shown in Figure 56. 

3.4.3 Neural Network 

The Artificial Neural Network (ANN) unit of the signal processing system is ded­

icated to establish the interrelation between the decomposition coefficients II T1 - ll'lO 

on its input and (1) the location of electrode in space (x and y) and (2) the time delay 

!:It of the centre of spike in relation to the moment of the spike detector reaction to on 

its output (see Figure 57). 

To establish this interrelation the set of N measurements d(n)(t) (where n could 

be from 1 to N) taken at locations (x(n), y(n)) is used. The corresponding decomposition 

coefficients Wi(n) are applied to inputs of the ANN, whereas the expected outputs Xd· 

Yd and /).td are applied to the output of the ANN. 

The task of the neural network during the learning stage is to get the proper re-

sponse (x(n) "" x~n), y(n) ~ y~n), /).t(n) ~ /)'t~n)) to input signals n-i(n). 

The dynamics of learning of the ANN is shown in Figure 58. 
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Figure 58. Learning curve E(t) - solid line and the testing curve Etest(t) - dashed line. 

Once the interrelation is established (after the learning stage), we can assume that 

if we apply a new set of M measurements d(m)(t) after pre-processing and ANN on the 

output of neural network we will have the predicted locations (x(m), y(m)) of the elec­

trode. In Figure 59 the white circles symbolise the predicted locations of the electrode. 

The dark circles are the actual positions of the electrode. The lines are connecting the 

predicted and actual positions of the electrode. Some of the dark circles are connected 

with several white circles, which means that there were several measurements with dif­

ferent time delay (~t) but with the same position of the electrode (x~m). y~m)). 

In Figure 58 the solid line is the "learning curve" which is the dependence of the 

Root Mean Square (RMS) Error E as a function of the learning time, where 

The dashed line in Figure 58 is the dependence of the Testing Error Etest as a function 

of learning time, where 

1 M 

Etest - M L 
m = 1 

. . '. lthough onl\' It could be seen that the testing curve IS followmg the learnmg cun t: a -

the N -set of measurements is involved in the procedure of learning. Nevertheless the 

. . . . I" th d'ctl'on of electrode POl;itlOO InterrelatIOn establIshed dunng ANN earnmg gIves e pre 1 
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3.4 A new technique for indirect identification of extracellular elect d .. ro e POSltlOn 

for the M -set of measurements. The errors of both N -set of measurements E and test 

measurements Etest are caused by noise of measurements as well as by the inaccuracy 

of the model. 

We have tried several neural architectures with different number of layers and 

different number of neurons in each layer in order to define the best parameters. The 

activation function of the hidden neurons was sigmoid. The output neurons had linear 

activation function. In Figure 57 the optimal architecture is shown. It has 10 inputs, 10 

hidden neurons and 3 outputs. If we increase the number of layers it will diminish the 

error E but will increase the test error Etest (the so called effect of overlearning). Ifwe 

increase the number of neurons in the hidden layer of 2-layer ANN, it will not consid­

erably increase the accuracy of the interrelation but will overcomplicate the ANN. 

It should be stressed that the parameter of quality of the ANN in this case is not 

the minimum of E in result of learning, but the minimum of Etest . It is very impor­

tant that the system is not only approximating the learning data, but also providing an 

adequate (smooth) multidimensional interpolation of implicit functions. Such kind of 

interpolation seems to be appropriate in this case, because the dependence of electrical 

potential as a function of position of the electrode is cased by diffusion of carriers of 

charge, and therefore could be expected to be smooth. 

It should be noted here that we are not considering the proposed system as a new 

useful instrument for neurophysiologists (since the model of the system we were using 

is oversimplified and it is difficult to imagine a situation when this kind of system could 

be useful in practice). On the other hand the above problem in our opinion is very 

attractive for ANN specialists, since this case is a good example where the inefficiency 

of other approaches, such as analytical approach as well as the standard computational 

mathematics methods, to describe complex dynamical systems becomes obvious. So, 

ANN not only gives us new highly efficient computational architectures (suitable for 

real-time applications), but also a powerful mathematical apparatus for modelling of 

complex non-linear dynamic systems. 
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Figure 59. Positions of the electrode: actual (dark circles) and predicted (white circles) by 
ANN (on the basis of neuronal signal analysis) . 
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3.5 Real-time analogue video-filter (homomorphic 
filtering) 

It is a well known fact that the eye performs a complex nonlinear transform of an 

image. The question is however: what exactly is the kind of transform . Thi que tion 

has yet not been answered. Nevertheless there are many algorithms for image tran for­

mation including mimicking a human eye and increasing the contrast of an image. Such 

algorithms are called image enhancement algorithms. 

There are different approaches to the problem of image enhancement. The two 

most traditional approaches are Homomorphic Filtering and Histogram Equali sation 

(see [38].) 

Homomorphic Filtering In this case the algorithm is "equalising" the average 

luminance across the image. So that if some region is too dark (or too bright) the algo­

rithm is making it brighter (darker). The block-scheme of the Homomorphi c Filtering 

algorithm is shown in Figure 60 and its function is described by y = exp (HPF(log (l' ))), 

where x is an input image, y is an output image, HPF(.) is an operator of high-pass 2D 

spatial filtering. 

Histogram Equalisation This algorithm analyses the number of pixe ls with dif­

ferent levels of brightness. On the basis of this statistical information, the algorithm 

constructs a non-linear transfer function, which makes the di stribution of pixe ls over 

different levels of brightness more uniform. 

Other Algorithms We can see that the Homomorphic Filtering algorithm works 

in the spatial domain (that is, the algorithm performs a local linear stretch ofbrightne : 

if we consider some region, which is smaller than the cut-off spati al frequency of the 20 

filter, its brightness after the transform will be y = a * x, where a is a constant related to 

this region, x is an initial brightness). In contrast, the Histogram Equali sation algorithm 

Input 
image Log High-Pass 2D Filler Exp 

Figure 60. Block-scheme of the Homomorphic Filtering algorithm 

11 8 

Output 
trrage 



3.5 Real-time analogue video-filter (homomorphic filtering ) 

works in the brightness domain : y = 8 (x), where 8 (.) is some non linear function, 

which normally monotonically increases from 0 to 1 ifmin (x ) = O. max (x) = l. 

There are many other algorithms of image enhancement (see e.g. [50]). All of 

these algorithms are compressing the dynamic range of an image . Our eyes are ob­

viously also compressing the dynamic range since the dynamic range of images, per­

ceived by eyes (more than 1000: 1) is apparently wider than the dynamic range of nerves, 

delivering the image-signal from eye to brain (which is about 100: 1). The hardware im­

plementations of image enhancement algorithms are mostly digital. 

Carver Mead's analogue VLSI Artificial Retina (see section 2.3. 1) had made a 

great impact in the development of science and technology of neuromorphic systems. 

The artificial retina enhances the contrast of an image as well as compresses the dy­

namic range of an image. In fact the Silicon Retina [6] implements a simplest vers ion 

of the homomorphic filtering. 

The advantage of analogue implementations of image enhancement algorithms 

is that they are free of additional noise caused by digitising (which is the initi al stage 

of any digital image processing procedure). Therefore analogue systems of image en­

hancement might be smaller, less power consuming and cheaper than digital equiva­

lents. 

Analogue implementation of homomorphic filtering As far as the Sil icon 

Retina is concerned, its irrationality is quite obvious (as was mentioned in the Intro­

duction), since the picture transmitted by normal video is changing relative ly slowly 

(slower that 50 Hz,) whereas transistors can operate much faster (more than I GHz). 

The real-time analogue image enhancement system suggested in this section much more 

efficiently uses the potential of transistors. The proposed system performs a slightly 

modified version of the Homomorphic Filtering (in comparison with the version de­

scribed above). The block-scheme of the algorithm, which was used for creation of the 

Input 
image 

IL. 

High-Pass 20 Filter ! 

. h' F'lt ' Igorithm which was u:cd Figure 61. Block-scheme of the modIfied Homomorp IC I enng a 
for the analogue image enhancement system. 
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3.5 Real-time analogue video-filter (homomorphic filtering) 
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Figure 62. Scheme of analogue 20 spatial low-pass and high-pass video filter. 

analogue image enhancement system is shown in Figure 61.The main unit of thi s sys­

tem is a high-pass 2D spatial filter. In Figure 62 the electrical scheme of the ana logue 

2D spatial low-pass and high-pass video filter is shown. 

The filter consists of: 

1. the sync. selector - the unit extracting the Synchro-Signals from the video signal; 

2. the sweep-signal generators, x (t) is a horizontal sweep and y(t ) is a vertical sweep; 

3. synthesisers of orthogonal functions (Legendre polynomials) PO- N(x), and PO- N( Y) 

(described in section 3.2); 

4. composer of 2D orthogonal basis of functions <I>o-N2 (x 1 y) 

5. adaptive unit, which performs the quasi-real-time polynomial 2D approximation of 

the reference image d(x, y) , and thus gives us the low-pass filtered image f Cr. y). The 

subtraction of the low-pass image from the initial image gives us the hi gh-pas 20 

spatial filtered image g(x, y). 

In Figure 63 the function of Homomorphic Filtering is illustrated ( image (a) -

before, (b) after filtering). We can see that the dark area of the image become brighter, 
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(a) 

(b) 

Figure 63. Example of the homomorphic filtering, where (a) is an input image, (b) i" an 
output image. 
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3.5 Real-time analogue video-filter (homomorphic filtering) 

Figure 64. Result of low pass filtering of the initial image. 

thus more details have become visible. On the other hand the contrast of the face of 

the man shown in the picture has decreased. We can see also some artefacts, which 

are typical for homomorphic filtering: the ear is too bright and there are some other 

problems in the intermediate area between dark and bright parts of the initial image. In 

Figure 64 the result oflow pass filtering of the input image is shown. It should be noted 

that very often it could be reasonable to make the "strength" ofthe algorithm adjustabl e. 

This means that the average brightness of different regions of a picture should not be 

completely equalised, but the brighter parts of the image after the transfonn should 

remain brighter than the darker ones. Mathematically this could be realised by the 

following formula : 

y = (0: - l )x + o:HPF (log(x)), 

where 0: is a strength of the transform. In Figure 65 the result of Homomorphic Filtering 

with the strength 0: = 0. 5 is shown. The high/low-pass 2D filter described above could 

be considered as a quasi-real-time video processing system. In fact it could take \'eral 

frames for the convergence of the system and establishment of the 1 I"l coefficient . 
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3.5 Real-time analogue video-filter (homomorphic filtering) 

Figure 65. 50% "mixture" of the input image and low-pass filtered logarithm of the input 
Image . 

Since nonnally an image is changing quite slightly over several frames , the speed of the 

convergence of the filter shown in Figure 62 is fast enough to follow the changes. 

On the other hand a small modification of the system makes the system a real-time 

image processing device. The changes are : 

I. the 2D basis of orthogonal functions should be nonnalised: Jx Jy <p;J(x, y )dl'dy = 

.( h .(' h k d I .( {I, if i = j 
Uij, were Uij·IS t e Kronec er eta: Ui j = 0, if i i- j , 

2. the adaptive unit of the system should contain the sample-and-hold amplifier . 

The modified 2D video-filter is shown in Figure 66. 

Such a system transfonns the subsequent frame on the basis of infonnation taken 

from the previous one. Thus the low-pass filtered video signal is delayed by ju t one 

frame . 

The analogue Homomorphic Filter could be implemented a a maiL low power 

" ld b d . ' (d ling with nonunifom1\v consummg ChIP and cou e use e.g. m securIty cameras ea -

illuminated scenes). 
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Figure 66. Scheme of "one-step" analogue 2D spatial low-pass and high-pass video fil ter. 

The analogue implementation of low-pass and high-pass 2D filters could be used 

also as a building block for more complex real-time analogue image enhancement sys-

terns. 

124 



3.6 Adaptive polynomial compensator of geometrical 
distortions of CRT-monitors 

Many imaging systems (in particular cathode-ray tube (CRT) display) gi\·e ri 

to geometrical distortions of the image. Different mechanisms contribut to the di tor­

tions, including the nonlinearities of the electrical circuits as we ll as peculiarities and 

imperfections of the CRT construction. 

Several kinds of the geometrical distortions are shown in the following table: 

.J 

Woo = 0.1 WOl =0.1 "11'02 = 0.1 

W lO = 1.1 'l1h1 =0.1 l.L' 12 = 0.1 

W 20 = 0.1 W 21 = 0. 1 /l'n = 0.1 

. . d . . hown in Fi aure 6 Tbe example of the geometrIcally dlstorte Image IS s 0 
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3.6 Adaptive polynomial compensator of geometrical distortI'o fCRT . ns 0 -IDOrutors 

The geometrical distortions are normally weak and hence could b . e approximated 
by polynomials: 

X' (x) + (x) + (x) (x) (x) 2 ( ) 
Woo wlO X WOl Y + wll xy + w 20 X + W2~ x 2y (3.37a) 

+w(x) x 2y2 + w(x) xy2 + W(X)y2 + 
22 12 02 .. 

y' (y) (y) (y) (y) (y) 2 ( ) 
Woo + WlO X + WOl Y + Wll xy + W20 X + U12~ x 2y (3.37b) 

+W~~) x 2
y2 + wi~) xy2 + W~~) y2 + .. 

where x and yare the coordinates of an ideal image, e.g. the (533, 543)th pixel relates 

to x = 533 and y = 543, x' and y' are coordinates of a distorted image w(~) and w(Y) 
'lJ lJ 

are constants describing the nonlinear distortions. 

In the above table the different geometrical distortions of x-coordinate: x' = 

f(x, y), y' = yare shown. Here we assume that wi~) = 1 and all w~) = 0, except the 

coefficients placed below each picture. 

Normally geometrical distortions are suppressed at the stage of CRT display (or 

TV-set) manufacture. Due however to the long-term degradation as well as the temper­

ature sensitivity of analogue elements, residual distortions still could be considerable. 

The geometrical distortions (e.g. horizontal) of a display can be visualised by the 

following technique: 

1) a film with a grating, consisting of vertical strips, is placed in front of the display. 

This mask represents y. 

2) the image consisting of vertical strips is displayed on the screen, representing y'. 

The result image shown in Figure 68. Here the dark and bright areas are related to 

the match and mismatch of the strips of grating and the vertical lines pictured by the 

display. The discrepancy (y' and y) between neighboring dark and bright areas is about 

I mm. The maximal discrepancy between the "ideal" and real image for this particular 

display is about 4 mm. 

For normal computer users nonlinear geometrical distortions of such a small de­

gree is not a problem. However if the user is a computer designer, or in some specific 

cases when a display is used for measurements of distances, higher precision could be 

d . b . (d" t th current conditions of the eSlra Ie. In such cases an adaptIve system a uustmg a e 

system, such as temperature) could be necessary. 
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3,6 Adaptive polynomial compensator of geometrical distortions of CRT-monitor 

Here we will describe the adaptive polynomial suppressor of geometrical di tor­

tions of CRT displays (or other imaging systems which could have such kind of di tor­

tions), 

There are two approaches to the problem of geometrical di stortion suppression: 

the bilinear correction and the polynomial correction (see [3 8]), Since the geometrica l 

distortions are weak, the polynomial approach (see the above equations) seems to be 

more rational. 

, d' rt d 'maae Figure 67 , An example of the geometncally 15to e 1 b' 
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......... -. , 

Figure 68. The grating (consisting of vertical strips) could be used for measuring the geo­
metrical distortions of a display. Here the bright and dark areas are related to the match and 
mjsmatch of the strips of the grating and the vertical lines pictured by the di splay. 

128 



3.6 Adaptive polynomial compensator of geometrical distortions of CRT ' 
-mOllltors 

3.6.1 Description of the system. 

The suppressor of geometrical distortions consists of 

1) an optical unit, generating the "parameter of quality" 8, which is used by 

2) an electronic unit for generation of pre distortions of the "swipe" signals (see Fig­

ure 69). 

3) an electronic system, forming a test image shown by a display during the procedure 

of adaptation. 

The "parameter of quality" is generated by the optical unit including: 

1. lens 

2. mask with uniformly distributed in space small holes 

3. photodiode and integrator 

The maximisation of the "parameter of quality" will allow us to reach the goal: 

the suppression of the geometrical distortion by means of the following procedure. 

3.6.2 The function of the system. 

The system is shown in Figure 69. It implements the equation (3.37a) describing 

the polynomial corrected horizontal sweep signal x' (a similar system could be used for 

the vertical sweep signal y' correction). 

The optical system, which gives us the "parameter of quality", implements the 

following equation: 8 = L:~~=1 I( i, j), where 8 is an integrated signal taken from 

the photodiode, I(i,j) is an intensity of light going through (i,j)th hole of the mask. 

The mask is placed in position where the image of display is focused, thus the I (i, j) is 

proportional to an intensity of related point on the display. This intensity is related to the 

intensity of the central part of the (i, j)th spot on the screen Io(i, j) = 10 in accordance 

with the formula: I (i, j) = 10 exp ( _ (X-Xij )2~(Y-Yij )2). This means that the "training 

image", displayed on the screen, consists of uniformly spatially distributed white spots 

with the Gaussian distribution of the intensity on the black background. The parameter 

r is the size of spots, which is defined from the condition: 

",~M1 '-I I( i, j) 
r = 4. w; :J AI . 10 . 

(3~ ) 

So the dynamics of the display correction is the following. In the initial state. 

When the weights of the system are zero and the geometrical distortions are not sup-
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3.6 Adaptive polynomial compensator of geometrical distortions ofeRI ' -morutors 

pressed, the test picture on the screen consists of white spots of big size, After the start 

of the process of correction, the system alternately adjusting its degrees of freed om, 

which corresponds to the altering of polynomial coefficients. 

During the process of the system's adjustment, the parameter of quality of the 

system is increasing, which means that the more and more bright parts of the spots are 

projected on the holes of the mask. This means that the geometrical distortions of th~ 

display are decreasing. To maximise the signal-to-noise ratio, during the adaptation of 

the system the sizes of spots decrease in accordance with equation 3.38. 

The dynamics of the display adjustment is shown in Figure 70 (note that in this 

figure the "test image" is negative; in a real system it should be white spots and black 

background). In the initial stage of adjustment the geometrical distortions are substan­

tial. We can see that during the adaptation, along with decreasing of the geometrical 

distortions, the sizes of spots are also decreasing. 

It should be noted that the system shown in Figure 69 is implementing the equa­

tion 3.37a indirectly. Instead, it uses the Legendre polynomial 2D function basis for 

the geometrical distortion approximation and suppression. The orthogonality of the 

Legendre polynomial 2D function basis gives a huge gain in speed of adaptation (see 

Figure 71). The minimal time necessary for the Legendre polynomial-based system 

adaptation is about a half a minute, whereas in the case of the power-type functions, 

the adaptation time could be estimated as at least 15 min. An another advantage of the 

Legendre-based system is its higher noise tolerance and stability of convergence, The 

dynamics of the process of the geometrical distortion suppression is illustrated also in 

Figure 72. 

3.6.3 Implementation. 

The described system is rather complex (it contains a lot of multipliers), Both 

hybrid analogue/digital and analogue implementations of the nonlinear sweep-signal 

correction system (shown in Figure 69) are possible. In the case of a hybrid system 

however the bilinear correction could be more suitable (since the bilinear transform 

I . d' ' 'son with the polynomial cou d be easyer implemented ill analogue omam III compan -

, fth b'linear transform seem~ transform, whereas the system defimng the parameters 0 e 1 

to be difficult to implement in analogue domain). 
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Figure 69, The suppressor of geometrical distortions consists of 
I) an optical unit, generating the "parameter of quality" 8 (the upper image) \\'hich is u ' cd by 
2) an electronic unit generating the predistortions of the "swipe" signal (the lower Image) 
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Figure 70. The dynamics of display adjustment. In the initial stage of adjustment the geomet­
rical distortions are substantial. During the adaptation, along with decrease of the geometncal 
distortions, the sizes of the spots are also decreasing. 
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Figure 71. Comparison of the convergence curves for the cases of a) power type and b) 

Legendre polynomial bases of functions used for geometrical distortion suppression . 
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3.6 Adaptive polynomial compensator of geometrical distortions ofeRT-monitors 

The Legendre polynomials for analogue implementation of the polynomial Cor­

rection system could be synthesised in the analogue domain by means of the system 

described in section 3.2. 

On the other hand the basic functions could be power type functions, but they 

should be perturbed in such way that the output signal would have a Legengre-polynomial 

increment. This implies that during a perturbation step not one but several coefficients 

of the correcting polynomial Wi are to be changed. 

The results of the adaptation could be stored into a digital memory. 

The perturbation unit should be implemented in analogue to avoid the noise of 

digitising and to maximise the precision of the system (an example of a perturbation­

based analogue multiparameter adaptation system is shown in Figure 50). 

The system seems quite complex, but it has a very important advantage: the adap­

tivity. Thus if the parameters of the display have degraded over time for some reason 

(temperature or long term degradation), the correction system will be able to suppress 

the distortions. We believe that in case of analogue implementation of the system it 

could be a special, not too expensive microchip. 

The technique described above could be used also for a display calibration (for 

luminescence spatial non-uniformity suppression). 
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3.7 Analogue parallel-learning MLP neural network 

It is a well known fact that natural neural systems are using analogue (not di a-
~ 

ital) mechanisms/processes (nonlinear physical, chemical, electrochemical, biological 

phenomena) for information processing (see e.g. [9]) . This gives an enonnous gain in 

compactness and in power consumption of the natural neural networks in compari on 

with artificial digital systems of information processing. This fact is one of the main 

motivations for research toward developing neuromorphic systems. 

Normally neural networks (both natural and artificial) consist of a feedfof\vard 

part (the inputs of neural networks (e.g. signals from receptors of natural NN) are 

applied to inputs of feedforward networks) and feedback part, which has the function 

of modification of the feedforward network (normally the instantaneous error is on the 

inputs of the feedback network). In Figure 73 the scheme of the Multilayer Perceptron 

ANN is shown. The arrows directed from left to right are symbolising the feedforward 

network, whereas the arrows directed from right to left are symbo li sing the learning 

system. 

In Figure 74 the schemes of analogue neurons (from input, hidden and output 

layers) constituting the backpropagation learning ANN (shown in Figure 73) are rep­

resented. The multipliers A, Band D, the upper summator, integrators and nonlinear 

Sample signal 
~ 

o 
c 
~ 

u 
c 

Figure 73. Scheme of the Multilayer Perceptron ANN with backpropagation learning. 
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3.7 Analogue parallel-learning MLP neural net\vork 

elements f I( 8 j) are related to the learning system, whereas the analogue multipliers X. 

lower summators and nonlinear elements f(8j) are related to the feedforward network. 

In most cases the feedforward part of ANN could be imprecise, whereas the back­

ward part of the ANN must be extremely precise (generally speaking the necessary pre­

cision of analogue ANN depends on the task the ANN must solve as well as on a par­

ticular neural architecture. Typical necessary precision is about 10-6 , see e.g. [51], see 

also the subsection 3.7.1). The offsets of different elements of neurons are symbolised 

in Figure 74 as signs EB. 

It is interesting that noise is undesirable in the feedforward network (after learn­

ing) whereas the noise of the feedback network could be even useful during the learning 

of ANN. It should be noted here that the question of tolerance of the feedforward net­

work to imprecision of its elements is not trivial: in subsection 3.7.2 the influence of 

different offsets of elements of a feedforward network is analysed (the learning system 

is assumed to be ideal). 

It is known that any analogue element is imprecise (because of mismatches of 

characteristics of semiconductor elements, e.g. it is impossible to make two absolutely 

equivalent transistors). The question is: how it is possible to create a high precision 

system on the basis of imprecise elements? Such systems could be created, but 

l. they must contain a special subsystem for correction of imprecise elements (let's 

call it self-correction system); 

2. a special phase of the ANN function, the self-correction phase, is necessary 

(during this phase the imprecisions of the learning system must be suppressed). 

If we take a look at natural neural networks, they obviously have such a kind of 

self-correction system and procedure. The procedure of self-correction of natural neural 

networks might be taking place during sleep. 

As for artificial systems, until now most ANN didn't contain on-chip (or on-

board) analogue parallel learning systems. 

I I MLP ANNs with perturbation­We should mention here, however, the pure y ana ogue 

d . h . I weight perturbation based learning systems. Such systems are base on elt er sena 

(see [52] and [53]) or on the combined outputs and weights perturbation technique 
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3.7 Analogue parallel-learning MLP neural network 
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Figure 74. Schemes of analogue neurons (from input, hidden and output layers) constituting 

the backpropagation learning ANN. 
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3.7 Analogue parallel-learning MLP neural network 

(described in [51 D· Such perturbation-based systems are very tolerant of analogue 

nonidealities. On the other hand they are much slower at learning (e.g. the serial 

weight perturbation-based system is N times (N is the number of interconnections, i.e. 

synapses) slower than the fully parallel backpropagation learning system). In the case 

of complex neural networks (with e.g. N = 104
) such a drawback of perturbation-based 

analogue ANNs could make them useless. 

That's why the problem of purely analogue parallel-learning ANN is very inter­

esting and important. 

The problem of creation of high precision ANN based on imprecise elements is 

not trivial. The trivial self-correction system, based on self-correction of separate ele­

ments, such as differential amplifiers, integrators, analogue multipliers, etc. (let's call 

such system a "local" self-correction system), doesn't give the maximal possible preci­

sion. Indeed it could be many times worse than in case of other self-correction systems. 

Besides, in some cases (when the interconnections bring in additional off-sets) it can 

not be used at all. Furthermore "global" self-correction systems (including several el­

ements and interconnections into the off-sets zeroing circuits) are much simpler than 

"local" ones. A more detailed analysis of "local" self-correction systems is in subsec­

tion 3.7.3. 

In this work two kinds of "global" self-correction systems are presented: 

1. The self-correction system of the first kind (described in the subsection 3.7.4) allows 

the proper learning of ANN after the self-correction procedure as long as parameters 

of system (like offsets) or correcting constants (supposed to be held by capacitors) are 

unchanged. The weights however are allowed to vary. This means that the learning of 

ANN doesn't affect the precision characteristics of learning system. 

2. The self-correction system of the second kind (described in subsection 3.7.5) is 

considerably simpler than the system of the first-kind. On the other hand, the learning 

system corrected by this self-correction system is vulnerable to changes of parameters 

of ANN. That is, the learning system, adjusted by the self-correction system of the 

second kind, is highly precise only for current particular weights of AjVN. Nevertheless 

'f h fling of AN:'\: with this such a system could be successfully used I t e process 0 earn ' 

system of self-correction is alternating with the self-correction procedure. In practice, 

. . I n' 'th one or several c\cles thiS could be e.g. one or several cycles of learnmg a terna ng WI -

of self-correction. 
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(input) 

3.7 Analogue parallel-learning MLP neural network 

d (sample signal) 

Instantaneous error 

X3 

(output) 

Figure 75. Neural architecture used in the simulations 

All the above-mentioned neural architectures were modeled on the computer. It 

should be noted here that nonlinear distortions of elements of the learning system, as 

well as the signal propagation delay, were not taken into account by the computer 

models. 

The ANN with the self-correction system of the second kind was implemented in 

a proof-of-concept breadboard. 

General Neural Architecture and the Neural Task. Let us describe the neural 

architecture and the neural task which were used in the simulations of different self­

correction schemes. The neural network has one input, three neurons in the first (input) 

layer, four neurons in the second (hidden) layer and one output neuron. All neurons 

have hyperbolic tangent transfer function, except the output neuron, which has a linear 

transfer function (see Figure 75). 

The internal architectures of neurons are shown in Figure 74. For the case of ideal 

ANN we will have: 

. Th' t t eous error signal q = (here the bold symbols mean vectors or matnxes). e IllS an an c, 

, I 'ng system function in d - .f3, where d is the sample signal. The backpropagatlOn earnl 
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Figure 76. Upper plot: error curve for the ideal ANN. Lower plot: sample signal (dashed 
line), the output signal (solid line) and the instantaneous error signal multiplied by 10. 

the case a/ideal ANN is described by the following equations (see Figure 74): 
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3.7 Analogue parallel-learning MLP neural network 

I
t+.6.t 

~ W~ = 0: t al dt; 

where a is a parameter of speed of learning. The task for the ANN is the approximation 

of a smooth function: 

d(x) = sin(7x + 1) cos(1.5x) 

in the range -1 < x < 1. Here we assume that x is a periodical signal with period !:It 

and with linear dependence as a function of time t within each period. 

For such a case the convergence curve is shown in the upper plot of Figure 76. 

The result of learning of the ANN is shown in the lower plot of Figure 76. 

The self-correction systems, which will be described in the following subsections, 

are directly related to possible continuous analogue implementations of ANN. Never­

theless, the obtained results could be generalised to the cases of pulse-encoding based 

analogue ANN. 

3.7.1 Purely Analogue ANN without Self-correction System 

It is well-known that the learning systems of supervised neural networks (like 

Multilayer Perceptron ANN with backpropagation learning) must be very precise (see 

e.g. [51]). 

If the learning system is not precise, normally as a result of learning the neural 

network doesn't converge to the global minimum of error. The behayior of A~l< with 

such imprecise learning systems is normally the following: at the beginning of learning 
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3.7 Analogue parallel-learning MLP neural network 

the error is decreasing in approximately the same way as it is in the case with an ideal 

learning system, but after a while at some stage the error starts to grow. In Figure 77 a 

typical example of the learning curve is shown. It is possible to see that at some stage 

the system could even become unstable (see the burst on the learning curve). 

The result of learning of such systems normally is unacceptable (see the lower 

graphs in Figure 77). However the results could be in some cases acceptable if the 

learning was stopped at the point of minimal error (see e.g. [51]). 

Let us describe the model, which was used for simulation of such systems. Let us 

first represent the ideal neuron in terms of its particular components: 

Xj = f (~WijXi + w,o) ; 

aj = f'(Sj) 2: Wjkak; 
k 

I
t+.6.t 

~WJ~ = a t aJ·dt,· WO = W~ + ~Tlr~. J J J ' 

(39) 

(40) 

(41 ) 

Let us consider now the nonideal neuron. The nonideality of neurons we will 

describe by adding offsets to analogue multipliers A (Ax, Ay, A;:), B (Bx, By, Bz), 

D (Dx, Dy, Dz) and X (Xx, Xy, X z) (the offsets of integrators were supposed to be 

included in the related offsets of multipliers connected to these integrators), see Fig 78. 

The nonlinear distortions of elements as well as time delays were not included into 

the model. 

Xj = f ( ~ ((Wij + X~ij)) (Xi + xiij)) + X~ij)) + HjO) ; (42) 

aj = (f'(Sj) + A~')) (2: ((Wjk + B~jk)) (ak + Bj,ik)) + B~jk)) + ..1Y)) T .1°\ 
k (43) 
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Figure 77. Upper plot: error curve for the nonideal ANN (offsets are about 10-
3

). Lower 
plot: sample signal (dashed line) and the output signal (solid line). 

The results of simulation of the system described by the above equations with 

randomly distributed offsets (average offset 10-3
) are shown in Figure 77. 
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Feedforward Network 
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Figure 78. Backpropagation neuron with parts marked related to learning system and to 
feedforward network. 

3.7.2 ANN with imperfect (analogue) feedforward network and 
perfect (digital) learning system 

It is widely accepted that, unlike the learning system, the feedforward network of 

ANN could be imprecise (i.e. could contain offsets and nonlinear distortions). 

Such systems (with ideal learning system and nonideal feedforward network) 

were modeled and the above statement was confirmed. During the simulation (based on 

the above-mentioned neural architecture Ix3x4xl and neural task) the offsets of feed­

forward network (Xx, X y , X z) (see Figure 78) were larger than 10-2 and this didn't 

affect either the stability and speed of convergency, or the final error approximation 

(the offsets to analogue multipliers A (Ax, A y , Az), B (Exl E y , Ez) and D (DXl DYl DJ 

related to the learning system were assumed to be equal to zero). 

The question of ANN's tolerance of feedfonvard network nonidealities is of grt:at 

importance since it determines whether the creation of analogue ANN, with off-chip 

learning as well as with on-chip digital learning system, is possible or not. In fact this 

question is not trivial. 
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3.7 Analogue parallel-learning MLP neural network 

Ifwe considere the nonideal feedforward network (see Eq. 3.42): 

Xj = f ( ~ ((Wi; + X~ij)) (Xi + X£ij )) + Xiij)) + Wj
D) 

f (~ (WijXi + WijX£i
j
) + X~ij) Xi + X~ij) X£ij ) + xiij )) + \I"J) . 

ld h h ff: X
(ij) d X(ij) . 

we cou see t at teo sets x an z are not affectmg the characteristics of A~;\ 

since their influence will be easily suppressed by the bias weights l ~ 7. The questions 

arise in connection with the offsets X~ij), since they are responsible for the term X~ij) Xi. 

Mathematical analysis shows that it is very difficult to describe the influence of 

offsets X~ij) to the behavior of ANN. It is relatively easy to prove that the offsets X~ij) 

are not affecting the neurons of the input ANN layer. As for the hidden and output layer, 

their vulnerability to such offsets needs to be described (the author is unaware of any 

such works in the literature). 

The speculative analysis of the influence of such offsets shows that ifLi x~lj) :r l f'.J 

1, it could degrade the properties of ANN. On the other hand it is easy to prove that the 

global minimum of the mean square error of ANN Eo (where the mean square error 

[, Jilt (Lk g~(t)) dt) doesn't depend on the offsets X~ij) in a linear approximation: 

Eolx(i j )_" = Eolx(iiLO' 
y -u 0-+0 y-

This means that the global minimum of error EO(X~ij)) (in case of ANN with non ideal 

feedforward network) as a function of parameters X~ij) has a global minimum in pa­

rameters X~ij) space, and this minimum is at X~ij) = o. 

3.7.3 ANN with Trivial Self-correction System ("local" 
self-correction) 

The trivial self-correction system implies the independent and individual self­

correction of all active elements of ANN (analogue multipliers and summators) that 

ought to be precise. Let's call such self-correction systems "local". 

The basic element of self-correction systems is a Voltage-to-Current convertor. In 

Figure 79 inverting (a) and non-inverting (b) converters of voltage-to-current are shown, 

. f th rt s are switched tel the zero In the self-correction mode the mputs 0 e conve er 
. ' • Co dback In the stead\" state. 

level, whereas the outputs are SWItched mto correctmg lee· -
. . d If' ,'11 put a capacitl)r (with 

the current doesn't flow and the converter IS adJuste. \\ e \\ 1 
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3.7 Analogue parallel-learning MLP neural network 
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Figure 79. Inverting (a) and non-inverting (b) converters of voltage-to-current. 

other contact grounded) on the output of such converters, we will get a self-correcting 

integrator. 

The procedure of correction of analogue multipliers is well-known: 

• first stage: both x and y inputs are connected to ground. By means of the 

correcting input Zo of the multiplier one can achieve the zero output ;: of the 

multiplier. The Zo established must be fixed; 

• second stage: x input is connected to the ground, whereas the y input is 

connected to a reference voltage V+ (let's say 1 V). By means of the correcting 

input Xo of the multiplier one can achieve the zero output z of the multiplier. The 

established Xo must be fixed; 

• third stage: y input is connected to the ground, whereas the x input is connected 

to a reference voltage V+. By means of the correcting input Yo of the multiplier 

one can achieve the zero output z of the multiplier. The established Yo must be 

fixed. 

If necessary, such a procedure could be repeated several times, thus the offsets of 

the multiplier could be strongly enough suppressed (see Figure 80b). The schematic l)f 

the self-correction multiplier is shown in Figure 80a. We can see that any actiyc element 

of ANN could be adjusted separately. The question is whether it is maximal possible 

precision or not. It can be easily shown that it is not. 
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Figure 80. (a) electrical scheme and (b) diagram explaining the procedure of correction of 
analogue multiplier. 
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Figure 81: The signal b on the output of summator of this part of the learning system is 
accummulatmg the remanent errors of the preceding analogue multipliers 6k. 

First of all, the above described systems, even after the self-correction procedure, 

are not ideal. Still there are some remaining errors caused e.g. by the capacitance of 

switches. Figure 81 illustrates such a drawback of the "local" self-correction system 

as a not maximal possible precision of the learning system. The offset 8a of the signal 

a (which is 8a a - aQ, where ao is a signal a in case of ideal learning system) 

is accumulating several nonidealities of multipliers shown in the right hand side of 

Figure 81, in particular by their z-offsets: 81,82,83, in accordance with the formula: 

Since the function f' (s) could be "'-' 1, and taking into account that the remanent er­

rors of multiplier A and multipliers of the preceding neurons are the same, we can see 

that, in case of a large number of interconnections, the contribution of offsets from the 

preceding neurons could be much bigger than the remanent errors 8a and 8b of the mul­

tiplier A. For example if the number of interconnections k is 100, in case of randomly 

distributed offsets, the contribution from the preceding neurons could be larger by the 

order of magnitude than the remanent error of multiplier A (see Figure 81). 

Another drawback of the "local" self-correction system is that it i~ not tolerant of 

. loguc impkmen-
the off-sets contributed by interconnections. In case of contmuous ana ~ 
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tation of the learning system such offsets could be small (e g if I'nco t' " 
" 11 rma IOn IS m the 

charge current), whereas in the case of frequency-encoded signals the I'nt ' , erconnectlOns 

could contribute substantial offsets. In such cases the "local" self correct' , - Ion system IS 

useless. 

The final argument against the "local" self-correction system is its complexity: 

there is no point to adjust independently the offsets 81 ) 82 ) 83 in the above example, 

since they are accumulating on the output of the summator and could be in principle 

suppressed by the proper adjusting of the correcting signal Ax of the multiplier A, 

Since such procedures include several elements and interconnections into the cor­

recting circuit, let's call such systems "global" self-correction systems. 

3.7.4 ANN with Self-correction System of the First Type 

In this and the next subsections the "global" self-correction systems will be pre­

sented. The suggested systems are tolerant of offsets from analogue multipliers and 

integrators, as well as from those contributed by interconnections. 

There are two possible approaches to the problem of creation of parallel learning 

analogue ANN. 

The first approach implies that after the self-correction procedure the learning 

system becomes precise and is capable of learning as long as the correcting parameters 

of the system are steady. Thus, the Self-correction System of the First Type is based 

on architectures, in which the parameters (correcting coefficients) do not depend on the 

weights of the ANN, hence are not affected in the result of learning of the ANN (when 

the weights are changing). 

The second approach, in contrast, is based on a very simple analogue parallel­

learning system, in which the parameters (correcting coefficients) do depend on the 

weights of the ANN. The suggested system, nevertheless, provides stable learning, em­

ploying the fact that the learning procedure of ANN normally is \'ery slow (hence the 

weights are changing very slightly after a learning cycle) , thus the procedure of \eam­

. . F I 't could be onc mg could be alternating with a self-correctIOn procedure. or examp e, 1 

. . ' h veral c\'cles of self-correction, or several cycles of leammg are alternatmg WIt one or se . 
. ' ( '1 h If rrection procedure oc-The Idea is that after several cycles of learnmg untI t e se -co 

, ..' h 'd decrea--e of the error, Such 
curs) the learnmg system st11lls precise enoug to proV} ea· 
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3.7 Analogue parallel-learning MLP neural network 

Figure 82. Schematic of ANN with Self-correction System of the First Type, First Kind 
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3.7 Analogue parallel-learning MLP neural network 

an assumption allows us to suggest a very simple and precise analogue parallel-learning 

system, which is described in the next subsection. 

As it was shown in subsection 3.7.2, ANNs are not vulnerable to imprecision of 

multipliers X. Let us consider the influence of other multipliers of the ANN: A, Band 

D. 

We will consider two kinds of the self-correction system of the first type: 

The first kind: with fully corrected multipliers D and A and uncorrected mUltiplier B 

(see Figure 82); 

The second kind: with fully corrected multiplier A (Ax, Ay, Az), corrected output's 

offset of multipliers D: Dz (see Figure 84) and uncorrected multiplier B. 

The first type, first kind: Self-correction system of the first type with fully 

corrected multipliers D and A, uncorrected multiplier B (see Figure 82). Let us 

consider the equation for the convergence of ANN with the imperfect backpropagation 

learning system described in subsection 3.7.1 (see Eq. 3.43). If we assumed that the 

multipliers A and D were adjusted (e.g. by a procedure, described in 3.7.3), we will 

have: 

aj f'(Sj) (~((W;k + B~jk)) (ak + B~k)) + B~;k))) = (3.45) 

f'(Sj) (~ (Wjkak + B~jk)ak + W;kB~;k) + B~jk) B~jk) + B~jk))) . 

I
t+~t 

~Wij=a t (ajxi)dt; 

To make the learning system equivalent to the ideal one we need to eliminate (suppress) 

the following tenns ofEq. 3.45: 

W . B(jk) + B(jk) B(jk) + B(jk) ---+ O. 
Jk x Y x z 

Such a goal could be achieved by means of the RC circuits, shown in Figure 82. 

If the time-constant of such RC circuit is less than the time-constant of the integrators. 

shown in the scheme, the signal on the output of these circuits will free both from 
. .' Uk) . 

t t · B(jk)B(jk) + B(Jk) and from the slowly changmg term n jkBx . Smce cons an s. y x z 

nonnally the learning process is very slow, such an additional transform of the learning 

signal will not affect the shape of learning signal aj (t). 
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Figure 83. Upper plot: error curve for the nonideal ANN with Self-correction System of 
the First Type. Lower plot: sample signal (dashed line), the output signal (solid line) and the 
instantaneous error signal multiplied by 10. 
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3.7 Analogue parallel-learning MLP neural network 

As for the terms B~jk) ak (see Eq. 3.45), it is easy to show, that these terms are not 

strongly affecting the learning system (since the influence is equivalent to the influence 

of offsets X~ij)). 

Therefore, the use of such self-correction system allows: 

1. to avoid the necessity of correction of multipliers B; 

2. to avoid the effect of accumulation of remanent errors of B multipliers, mentioned 

in subsection 3.7.3, thus to provide higher precision than the "local" self-correction 

system could provide. 

The results of simulation of analogue ANN with such a self-correction system is 

shown in Figure 83. 

The first type, second kind: Self-correction system of the first type with fully 

corrected multiplier A (Ax, A y , Az), corrected output offset of multipliers D: Dz 

(see Figure 84) and uncorrected multipliers Band X. Let us consider the equation for 

the convergence of ANN with the imperfect backpropagation learning system described 

in subsection 3.7.1 (see Eq. 3.43). If we assumed that the multipliers A were adjusted 

(e.g. by a procedure, described in 3.7.3), we will have: 

The integrators, shown in Figure 84, should be corrected, in particular: 

t+~t r+t:,.t 
~WJ = Ct /, (aj + D~) + d~)) dt = Ct Jt ajdt. (46) 

The use of RC circuits in the learning network, in a similar way as in the previous 

subsubsection, allows us to suppress the nonidealities of the B multipliers and to get for 

th . l' - f'( .) '" W· a A similar trick - an RC-circuit (see Figure 84) e aj sIgna. aj - SJ 0k Jk k· 

allows us to avoid the harmful influence of Dy offsets of multipliers D: D~lj)l'i -t O. In 
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this case we have: 

I
t+~t 

6 W ij = a (ajXi + ajD~ij) + D(ij) D(ij) + D(ij) + d(ij ») dt 
t Y x z z . 

t+~t (ij) . 
The tenn a It aj Dx dt ---7 0 because of the adjustment of the integrator, fonning 

the weights Wl (see Eq.3.46). By means of adjustment of the output offset d~ij) of D 

1 · l' D(ij ) ( h' h' h mu tip lers z or, w lC IS t e same, the input offsets of integrators) one can achieve 

the zeroing of other offsets, since they are constants in time: 

D(ij) D(ij) + D(ij) + d(ij) ---7 0 
Y X z z . 

Finally we have: 6 W ij = a Itt+~t ajxidt (here Xi is a signal on the output of the 

RC-circuit). 

It is a very interesting question whether such neural network (with RC -circuits 

in the feedforward network) gives the correct results or not. Both the mathematical 

analysis and the computer simulations demonstrate very fast and stable convergence of 

this type of ANN (in comparison with ideal ANN)! It is possible to prove also that such 

modification of ANN has the same global minimum of error as an ideal ANN (with the 

same architecture, i.e. with the same number of neurons, interconnections and the same 

transfer functions). 

3.7.5 Self-correction System of the Second Type 

Let us consider now the Self-correction System of the Second Type, which im­

plies that at any time the corrected (by this system) learning system is precisely provid­

ing the learning (the weights' modification) only for the current set of weights. That 

is, if in result of learning (which has followed after the self-correction procedure) the 

weights changed considerably it will affect the precision of the learning system. 

The ideal learning system (for MLP ANN with backpropagation learning) pro­

vides weight modification in accordance with 6 Wij = -a a~ij , where a is a speed-of­

learning coefficient, £ is a mean-square-error. This, in particular, means, that if the ::ero 

signal is applied to the instantaneous error 9 input of the backward network (learning 

system) of the backpropagation-based system, all the weights must stay unchanged. 

This property of ideal ANN was used in Self-correction System of the Second 

Type. The regime of the function of ANN, based on such a self-correction system, is the 

following: the learning process (when the weights are modified) is alternating with the 
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" 
", 

" 

Figure 84. Schematic of ANN with Self-correction System of the First Type, Second Kind. 
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self-correction procedure (when the nonidealities of the learning system are suppressed) 

(for example - 10 cycles of learning alternating with 5 cycles of self-correction). 

In the self-correction stage: 

- the weights are fixed; 

- the input signal is the same as during the learning procedure; 

- the zero signal is applied on the instantaneous error 9 input; 

- the voltage-to-current converters, responsible for the setup of the weights, are commu-

tated to their correcting inputs (see Figure 85). The steady-state values dij , established 

as a result of the self-correction cycles (which actually provide the above mentioned 

necessary condition of the ideal learning system: ~ W ij = 0, if g=O) are to be fixed in 

the correcting capacitors. 

Let us prove that the ANN, based on such a self-correction procedure, will tend to 

converge to the same global minimum of error as the ideal ANN with the same neural 

architecture. (As for the speed and the stability of the convergence, it is a subject for 

additional research). 

For the learning system during the learning stage we have: 

(learn) _ d _ (out), aout - k x k , 

al',arn) = (1'( Sj) + A~)) (~ ( (Wjk + B~jk)) (a~,arn) + B~jk)) + BYk)) + A~)) + A~l; 
(47) 

L\.Wij = a It+l>.t (( a),earn) + D~ij)) (Xi + D~ij)) + Diij) + dij ) dt, (48) 

W ij = W ij + ~Wij; 

Xj = f (~( (Wij + x~ij)) (Xi + X£i
j
)) + X;ij)) + Wj

D
) • 

At the self-correction stage we are applying the same signals Xj on inputs of 

. I' t (se) - 0 The error signal ANN and the zero signal on the mput of the earnmg sys em aout - . 

propagation will be described by the equation 

a;se) = (f' (Sj) + AV)) (I: ( (Wjk + B~k)) (a~") + BY
k)) + B;jk)) +\Y)) + \(1); 

k (49) 
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The dynamics of the correcting parameters diJ· are described by the ~ollow' . 
11 mg equatIOn: 

I
t+.6t 

6.dij = a t ( (aye) + D~ij)) (Xi + D~ij)) + D;ij) + dij ) dt, (50) 

dij = dij + tldij ; 

If the self-correction is fast enough (which is a normal situation, since the learn­

ing, usually, is very slow: tl Wij « Wij ), we will have the steady state of correcting 

parameters dij, i.e. tldij = O. Substituting the expression for tldij (Eq. 3.50), which 

are equal to zero, into Eq. 3.48 we will have: 

I
t+.6t 

f:l W ij = O! t ( ayearn) - aJSC
)) (Xi + D~ij)) dt. 

UT • d . bl ~ (learn) (sc) vve can mtro uce a new vana e aj - aj - aj . Hence for the .3.1l'lj we will have: 

(51 ) 

Similarly, for tl Wo we will have: 

I
t+.6t 

tl W j
O 

= O! t ajdt. (52) 

Let us analyse now equation 3.51, and assuming that ANN state is near the steady-

state, this means that tl Wij , tl Wl -+ O. (The question is whether or not the steady-
t->oo 

state error of imperfect ANN with the suggested self-correction system will be the same 

as in case of ideal ANN with the same architecture?) Taking into consideration equation 

3.52, we will have 

(53) 

For the variable aj - ayearn) - aJsc
), taking into account the Equations 3.47 and 

3.49, we will have: 

aj (1'( Sj) + AV)) (~ (Wjk + B~jk)) (ak'earn) - ak,e)) ) (3.54) 

(I' (Sj) + AV)) (~ (Wjk + B~jk)) lik) . 

If the offsets AV)=O, then the equation (3.54) could be rewritten as 

aj = f'(Sj) (~(Wjk + B~jk)) lik) . (55) 
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3.7 Analogue parallel-learning MLP neural network 

Ifwe will introduce the new variables: Wjk = Wjk + B~jk), we will have finally: 

(56) 

F or the feedforward network we will have: 

Xj = f (~ (( Wjk - B~jk) + X~ij)) (Xi + X~ij)) + X~ij)) + 1I}) . 
As was stated in subsection 3.7.2, the offsets of the feedforward network weakly influ­

ence the dynamics and final error of ANN. 

As for the learning system, the comparison of equations (3.56), (3.53) and (3.52) 

with equations (3.39), (3.40) and (3.41) respectively, allows us to conclude that the 

suggested system converge to the same global minimum as the ideal ANN (since the 

equations describing the dynamics of the suggested system coincide with the equations 

describing the ideal ANN, where aj is an efficient back-propagating error signal whereas 

in case of ideal ANN it is aj). 

Therefore the suggested system is tolerant of each offset of multipliers X, D and 

B, as well as of offsets A~) and A~j) of multipliers A. 

The condition A~·j) = 0 essentially means that no signal should propagate in back 

direction through a particular neuron ifit is saturated (thus 1'(Sj) = 0). In our yiew it 

should not be a problem to implement such a condition in hardware, especially if we 

will take into consideration that: 

1. in a case of standard MLP ANN with sigmoidal activation function, the l' (s j) is a 

nonnegative function. 

2. the precision of the shape of function ff (Sj) could be substantially different in com­

parison with the ideal derivative of the activation function f(sj) (this is also a subject 

for additional research). 

Final notes: The considered self-correction system of the second type seems less 

attractive than e.g. the self-correction system of the first type (the one with RC -circuits 

in feedforward and in backward networks), since there is only one self-correction pro­

cedure, and this takes place before the learning (not a periodical self-correction during 

the learning as in the case of the self-correction of the second type). The situation, 

however looks different if we take into consideration the nonlinear distortions of the , 
learning system. It turns out that the self-correction system of the second type is more 
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Xi 
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Figure 85. A schematic of ANN with Self-correction System of the Second Type. 
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Figure 86. Breadboard of analogue ANN (with multilayer perceptron architectu re) with 
on-board learning 

tolerant of such kind of nonidealities of analogue systems . It looks like the additi on 

of RC -circuits both in feedforward and in backward networks of the ANN with the 

self-correction of the second type would improve the precision characteristi cs of AN . 

Another important property of suggested ANN architectures is their tolerance of 

damage or degradation of their elements. The analysis , which is not included in the 

current work, shows that the ANNs based on self-correction of the second type are more 

tolerant of damage of elements in comparison with these based on se lf-correc ti on of the 

first type . The RC -circuits both in feed forward and in backward interconnecti ons of 

ANN s also increase their tolerance of damage or degradation of the elements of ANN. 

3.7.6 Experiment 

A breadboard of analogue ANN (with multilayer perceptron architecture) with 

on-board learning was created (see Figure 86) . The breadboard is imp lement ing the 

self-correction system of the second type. 
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3.7 Analogue parallel-learning MLP neural net\vork 

F.igure 87. Example of approximation: the two signals (unresolvable on the screen of the 
OSCIlloscope) and the error function multiplied by 10. 

The main unit of the system is the analogue mUltiplier MLT04 (Analog Devices: 

http: //www.analog.com/pdflmlt04.pdt). with precision about I %. The frequency of the 

learning cycle repetition was within the range from 1 to 10kHz. 

The system is implementing the neural architecture 4x4x4x4, that is 3 layer neural 

network with 4 inputs and 4 fully interconnected neurons in each layer. Such an arch i­

tecture allows in principle to solve the task of approximation of multivariab le (up to 4 

variables) functions . In particular, the example of the approximation task, considered 

in the above subsections (1 x3x4x 1) could be realised. 

The system had demonstrated the ability to solve the task of approx imation. The 

example of approximation is shown in Figure 87. The two signals - output of the AN 

and the sample signal (W1Tesolvable on the screen of the oscilloscope) as we ll as the 

error function, multiplied by 10 are shown. 

The results of the experiment were mixed (partially encouraging, partially disap­

pointing). On one hand, the precision of the units, to be precise, was very high (better 

than 10- 7). On the other hand, the precision of approximation was not high enough 

in comparison with the ideal ANN (with the same architecture, solving the same ta k) . 

The reason seems to be the imperfection of the multipliers A (in particular, the un up­

pressed offsets AV) = 0). It turned out that the learning system is very n iti\' to the e 

offsets (and this had been underestimated) . 
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3.7.7 Conclusions 

• 

Let us briefly summarise the results of this section: 

Supervised-learning ANN (like MLP) with parallel learning must have a very 

precise learning system, whereas the feedforward network could be relatively 

imprecise (the influence of imprecision is a subject for additional research). 

• The "local" self-correction system (described in 3.7.3) is relatively complex and 

doesn't give the maximal possible precision. 

• The "Global" self-correction system is more precise than the "Local" one , 
because: 

1. it minimizes the harm caused by the residual error of elements of the learning 

system 

2. it suppresses the error contributed by the interconnections; 

• "Global" self-correction systems are also simpler than "local"; 

• The additional RC circuits added to the feedforward network of ANN with 

self-correction system (of the first type, second kind, see the Fig. 84) will 

influence on the behaviour of ANN (the learning dynamics), but ANN will 

converge to the same global minimum of error as the ideal ANN. Therefore 

such an additional (RC circuits) to the neural scheme is a subject for the further 

research even in case of standard ANN (whether RC-circuits will improve 

the learning (making it faster and more stable) or will worsen the learning 

characteristics of ANN?). 

• The additional RC circuits added to the learning network of ANN with 

self-correction system of the first type (see Fig. 82 an Fig. 84 will influence on 

the behaviour of ANN (the learning dynamics), but ANN will converge to the 

same global minimum of error as the ideal ANN. Therefore such an additional 

(RC circuits) to the neural scheme is a subject for the further research e\'en in 

case of standard ANN (whether RC-circuits will improve the learning (making 

it faster and more stable) or will worsen the learning characteristics of Ai\:-';?). 
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• All the considered self-correction procedures were analysed in assumption of 

linearity of analogue multipliers. The time delay effects also were out of scope 

of the current consideration. 

• In addition to the ability of the suggested systems to suppress the offsets, the 

"global" self-correction system-based ANN seem to be tolerant of damage 

and degradation of their elements (this question is also a subject for additional 

research). 

• Such self-correction systems are necessary for creation of the very computation­

ally powerful purely analogue ANN on the basis of Ultra Large Scale Integrity 

technologies. Such ANNs are necessary in particular for creation of systems of 

artificial intelligence. 
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4.1 Main conclusions 

• Analogue technology will playa very important role in neural science and in 

information processing technology both in the foreseeable future (creation of 

compact, low power consuming information processing systems, such as systems 

of image/sound processing) and in the long-term outlook (creation of systems of 

artificial intelligence). 

• Analogue polynomial adaptive systems could be used in different areas (for 

calibration, nonlinear information processing, etc.) in the near future. 

• The principle of orthogonality must be widely employed by analogue information 

processing systems. The suggested architecture of the Synthesiser of Orthogonal 

Functions allows the creation of complex purely analogue information processing 

systems. 

• The use of special self-correction systems and procedures is necessary for 

creation of complex high precision analogue systems of information processing 

(in particular, neural networks). Such self-correction systems and procedures 

could be simpler than the learning system. On the other hand, the procedure 

of self-correction should not be trivial (that is just self-correction of separate 

elements). 

• Another important property of analogue neural networks is their potential high 

tolerance to degradation of the elements (or parts of the system). 
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4.2 Conclusions of different sections of the Thesis 

4.2.1 Conclusions of the section "Introduction": 

Artificial systems of information processing could be much more computationally 

efficient than natural ones. The aim of my work is to contribute to the creation of com­

plex and supercomplex computational systems, in particular ANN, which, supposedly, 

will be the main components of Artificial Intelligence systems. Another aim is to sug­

gest simple and highly efficient computational systems, which could be implemented in 

the near future. 

The computational power of artificial systems could become comparable with that 

of the human brain in the foreseeable future. The creation of systems of artificial intel­

ligence however is a much greater problem since firstly the proper computational archi­

tecture has to be established and secondly, the problem of huge (-105 Gbyte) memory 

of the AI system must be solved in hardware. 

A special self-correction system is necessary for creation of highly efficient ana­

logue neuromorphic systems. 

The low power consumption of analogue ANN gives the opportunity of creating 

the multilayer integrated structure, thus of increasing the scale of integration by several 

(more than four) orders of magnitude. 

Polynomial-based adaptive analogue systems as well as adaptive systems utilis-

ing the principle of orthogonality, could be very efficient and could find commercial 

applications already in the near future. 

In many typical ANN tasks (especially in cases of complex tasks) multi-layer per-

ceptron neural architecture could be much more efficient than polynomial-based adap­

tive systems. In many cases the principle of orthogonality is not applicable. 

4.2.2 Conclusions of the section "Analogue Polynomial 
Approximator": 

. . f . tion interpolation and 
The suggested systems performmg functIOns 0 approxlma , 

. 11 db thods of computer modeline. extrapolation, were studied expenmenta Y an y me ~ 
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4.2 Conclusions of different sections of the Thesis 

The devices showed good working characteristics (corresp d' h ' on mg to t eoretlcal 

description) In my opinion they can find application in high precisio I ' n ana ogue engI-

neering for fast calibration of different devices as an adaptive nonl' I ' mear e ement capa-

ble of compensating nonlinearity of radio-engineering units, etc. 

Such systems could be pedagogically interesting as simplest adaptive neuromor­

phic systems. The Legendre polynomials' based approximator is a good demonstration 

of neuromorphic system using the principle of orthogonality. 

4.2.3 Conclusions of the section "Synthesiser of orthogonal 
functions" 

It is possible to produce on the basis of analogue elements a plurality of mutu­

ally orthogonal signals such as Legendre Polynomials, Chebyshev Polynomials, Cosine 

Basis of Functions, Smoothed Cosine Basis, etc. 

The recurrent equations (3.30), where ai are defined by integral equations (3.31) 

allow to produce a basis of orthogonal functions Pi (x) if the functions f (.r) and 9 (:r) 

applied at the inputs of the synthesiser are respectively odd and even 

The condition Eq.(3.31 could be realised by means of the simple feedback shown 

in the Fig. 39(a). 

The process of the synthesis of orthogonal functions is fast and very stable. 

In the case of high precision and high orthogonality requirements, a scheme of 

an Analogue Synthesiser of orthogonal signals must include some additional units for 

offset zeroing and normalising in addition to the scheme shown in Fig. 39. 

In the case not the highest requirements of precision and orthogonality it is possi­

ble to create the Synthesiser with not-adapting but with pre-set (in analogue or digital 

memory) coefficients ai. In this case the Synthesiser will be a little simpler and will not 

demand a special phase of adaptation but will be less precise as well as more sensitive 

to temperature variation and to degradation of elements over time. 

The maximal frequencies of function of the Synthesiser implemented on the basis 

of up-to-date analogue VLSI technology working are supposed to be se\'eral hundreds 

megahertz. But in addition to the problem of off-sets compensation in a high frequency 

range, the problem of an inter-cascade delay of signals must be soh'ed, 
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4.2 Conclusions of different sections of the Thesis 

4.2.4 Conclusions of the section "Analogue parallel-learnin MLP 
neural network" g 

Supervised-learning ANN (like MLP) with parallel learning must have a \'ery 

precise learning system, whereas the feedforward network could be relatively imprecise 

(the influence of imprecision is a subject for additional research). 

The "local" self-correction system (described in 3.7.3) is relatively complex and 

doesn't give the maximal possible precision. 

The "Global" self-correction system is more precise than the "Local" one, be-

cause: 

1. it minimizes the harm caused by the residual error of elements of the learning sys­

tem 

2. it suppresses the error contributed by the interconnections; 

"Global" self-correction systems are also simpler than "local"; 

The additional RC circuits added to thefeedforward network of ANN with self­

correction system (of the first type, second kind, see the Fig. 84) will influence on the 

behaviour of ANN (the learning dynamics), but ANN will converge to the same global 

minimum of error as the ideal ANN. Therefore such an additional (Re circuits) to 

the neural scheme is a subject for the further research even in case of standard ANN 

(whether RC-circuits will improve the learning (making it faster and more stable) or 

will worsen the learning characteristics of ANN?). 

The additional RC circuits added to the learning network of ANN with self­

correction system of the first type (see Fig. 82 an Fig. 84 will influence on the behaviour 

of ANN (the learning dynamics), but ANN will converge to the same global minimum 

of error as the ideal ANN. Therefore such an additional (RC circuits) to the neural 

scheme is a subject for the further research even in case of standard ANN (whether 

RC-circuits will improve the learning (making it faster and more stable) or will worsen 

the learning characteristics of ANN?). 

All the considered self-correction procedures were analysed in assumption of lin-

earity of analogue multipliers. The time delay effects also were out of scope of the 

current consideration. 
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4.2 Conclusions of different sections of the Thesis 

In addition to the ability of the suggested systems to suppress the offsets, the 

"global" self-correction system-based ANN seem to be tolerant of damage and degra­

dation of their elements (this question is also a subject for additional research). 

Such self-correction systems are necessary for creation of the very computation­

ally powerful purely analogue ANN on the basis of Ultra Large Scale Integrity tech­

nologies. Such ANNs are necessary in particular for creation of systems of artificial 

intelligence. 
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AppendixA. 
The Proof of Orthogonality of functions generated by the 

Synthesiser described in 3.2 

Let us suggest that f ( t) and 9 ( t) are some respectively odd d fu' an even nctIOns 
and are defined on an interval ( -1, 1). Let's define functions Fi (t) as 

Fo(t) = g(t); 

Fl ( t) = f ( t ) 9 ( t ) ; 

F2 ( t) = f ( t ) Fl ( t) + a2 Fo ( t ) ; 

where ai for i > 2 is defined from equation: 

1 J Fi(t)Fi_2(t)dt = o. 
-1 

It is possible to prove the following 

(1) 

(2) 

Proposition 1 Functions Fi (t) are mutually orthogonal on an interval (-1, 1), that 
1 

is: f Fi(t)Fj(t)dt = 0 for any i and any j: i =1= j 
-1 

Proof. Firstly, taking into consideration that the product of two odd functions is an 

even function and that the product of odd and even functions is an odd function it is 

easy to see that Fi ( t) is even function if i is even number, and Fi ( t) is odd function 

if i is odd number. So, taking into consideration that any even function is orthogonal 

to any odd function on the range (-1,1), it is necessary to prove only that every even 

function is orthogonal for every even function and that every odd function is orthogonal 

for every odd function. Besides in accordance with Eq.(A.2): Fi is orthogonal to Fj if 

j = i ± 2 (for the sake of simplicity we will write Fi , f, 9 instead of Fz(t), j (t), .Ill t)). 

Therefore, to prove the proposition it is enough to prove that at Vi : Fi is orthogonal to 

Fi - 2k where k is i > 2k > 4 (so if i is an odd number then i > 2k > 4:). 

Let's prove that F4 is orthogonal to Fo and that Fs is orthogonal to Fl' 

111 J F.Fodt = J (f Fa + a.F2) Fodt = J (F3 F, + aIF,F" \ dt = o. 
-1 -1 -1 

0) 
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Y e ynt eSlser descnbed in ~ ~ 

Here we have used the definition of Fi Eq (A 1) so' F - fF D d f 
. • , . 4 - 3 - a4r 2 an Fo = Fl. 

The last integral is equal to zero in accordance with Eq.(A.2). 

Analogously: 

111 

J FsFldt = J (f F. + aSF3) Fldt = J (F.F2 + aSF3FI) dt = o. 
-1 -1 -1 

Thus for Vi, j < 5 and i =1= j the proposition is valid. 

N ow, let's prove that if for some integer number 1 (1 > 5) and for \/ i : i < I and 

\/k : i > 2k > 4 (so if i is an odd number then i > 2k > 4) Fi is orthogonal to F
I

-
2k 

: 

1 

J Fi Fi - 2kdt = 0 
-1 

then FI+1 will be orthogonal to F 1+ 1- 2k for any k so that 1 + 1 > 2k > 4: 

1 J FI+I(t)FI+ I-2k(t)dt = o. 
-1 

The same statement it is possible to formulate as: 

(4) 

if we have a basis of first I + 1 functions Fi where I > i > 0, defined by equations 

(A.l) and (A.2) and these functions are mutually orthogonal; 

then FI+1 defined by equations (A.I) and (A.2) will orthogonal to any of the first F! 

functions (1 > i > 0). 

If we prove this statement, in accordance with the principle of mathematical in-

duction we will prove the proposition. 

Let us expand the expression for a inner product coefficients between (1 + 1) - t h 

function and (1 + 1 - 2k) - th functions (using Eq.(A.I)): 

1 1 J FI+ IFI+ I-2kdt = J (f h + aI+IF1- I) FI+I-2kdt (5) 

-1 -1 

1 1 ( FI F 1+2-"2k ) 
= J ( FI (f F1+ 1-2k) ) dt = J -aI+2-"2k F 1FI - 2k dt 

-1 +aI+1 F I-1 F I+1-2k -1 +aI+IF1- 1FI+1-2k 

It can be seen that all terms in Eq. (A. 5) are non-diagonal elements of an inner product 

matrix G
ij 

of functions Fi (I > i > 0). Taking into considaration the orthogonality of 

Fi (I > i > 0) basis of functions (in accordance with the condition (A.4)) and hence 

Gij - J Fi(t)Fj(t)dt = 8ij we can conclude that for any k so that I + 1 > 2k 2: -1 all 
-1 

terms in Eq.(A.5) are equal zero. 
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Appendix A The Proof of Orthogonality of functions generated by the Synthesiser described in 3.2 

Special case: when 2k = I + 1 (obviously possible only in cases of odd J). In this 
1 

case the second term in last integral of Eq.(A.5) is proportional to J F
J 
FI -2kdt = 

-1 
1 

J FI F_ 1dt, where the function F-l is not defined. So, we should prove that if:~k = 
-1 

1 1 

J + 1, then J FI+1FI+1-2kdt = J FI+1 Fadt = 0: 
-1 -1 

111 

J FI+1Fodt = J (f Fr + aI+1F1- 1) Fodt = J (FIFI + aI+1F1-1Fo) dt. (6) 

-1 -1 -1 

Here were used Eq.(A.l): F1 = fg = f Fa. It is easy to see that all tenus in the 

last integral of Eq.(A.6) are equal to zero in accordance with the precondition (A.4). 
1 

Therefore for any k so that I + 1 > 2k > 4: J FI+1FI+1-2kdt = 0 • 
-1 
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