55 research outputs found

    New Hybrid Sensorless Speed of a Non-Salient Pole PMSG Coupled to Wind turbine Using a Modified Switching Algorithm

    Get PDF
    ©2019 ISA. Published by Elsevier Ltd. All rights reserved. his manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/The paper focuses on the design of position and speed observers for the rotor of a non-salient pole permanent magnet synchronous generator (NSPPMSG) coupled to a wind turbine. With the random nature of wind speed this observer is required to provide a position and speed estimates over a wide speed range. The proposed hybrid structure combines two observers and a switching algorithm to select the appropriate observer based on a modified weighting coefficients method. The first observer is a higher-order sliding mode observer (HOSMO) based on modified super twisting algorithm (STA) with correction term and operates in the medium and nominal wind speed ranges. The second observer is used in the low speed range and is based on the rotor flux estimation and the control by injecting a direct reference current different to zero. The stability of each observer has been successfully assessed using an appropriate Lyapunov function. The simulation results obtained show the effectiveness and performance of the proposed observer and control scheme.Peer reviewe

    Microgrids/Nanogrids Implementation, Planning, and Operation

    Get PDF
    Today’s power system is facing the challenges of increasing global demand for electricity, high-reliability requirements, the need for clean energy and environmental protection, and planning restrictions. To move towards a green and smart electric power system, centralized generation facilities are being transformed into smaller and more distributed ones. As a result, the microgrid concept is emerging, where a microgrid can operate as a single controllable system and can be viewed as a group of distributed energy loads and resources, which can include many renewable energy sources and energy storage systems. The energy management of a large number of distributed energy resources is required for the reliable operation of the microgrid. Microgrids and nanogrids can allow for better integration of distributed energy storage capacity and renewable energy sources into the power grid, therefore increasing its efficiency and resilience to natural and technical disruptive events. Microgrid networking with optimal energy management will lead to a sort of smart grid with numerous benefits such as reduced cost and enhanced reliability and resiliency. They include small-scale renewable energy harvesters and fixed energy storage units typically installed in commercial and residential buildings. In this challenging context, the objective of this book is to address and disseminate state-of-the-art research and development results on the implementation, planning, and operation of microgrids/nanogrids, where energy management is one of the core issues

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems

    Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems

    Get PDF
    The electrical power system is undergoing a revolution enabled by advances in telecommunications, computer hardware and software, measurement, metering systems, IoT, and power electronics. Furthermore, the increasing integration of intermittent renewable energy sources, energy storage devices, and electric vehicles and the drive for energy efficiency have pushed power systems to modernise and adopt new technologies. The resulting smart grid is characterised, in part, by a bi-directional flow of energy and information. The evolution of the power grid, as well as its interconnection with energy storage systems and renewable energy sources, has created new opportunities for optimising not only their techno-economic aspects at the planning stages but also their control and operation. However, new challenges emerge in the optimization of these systems due to their complexity and nonlinear dynamic behaviour as well as the uncertainties involved.This volume is a selection of 20 papers carefully made by the editors from the MDPI topic “Optimisation, Optimal Control and Nonlinear Dynamics in Electrical Power, Energy Storage and Renewable Energy Systems”, which was closed in April 2022. The selected papers address the above challenges and exemplify the significant benefits that optimisation and nonlinear control techniques can bring to modern power and energy systems

    Advanced Modeling and Research in Hybrid Microgrid Control and Optimization

    Get PDF
    This book presents the latest solutions in fuel cell (FC) and renewable energy implementation in mobile and stationary applications. The implementation of advanced energy management and optimization strategies are detailed for fuel cell and renewable microgrids, and for the multi-FC stack architecture of FC/electric vehicles to enhance the reliability of these systems and to reduce the costs related to energy production and maintenance. Cyber-security methods based on blockchain technology to increase the resilience of FC renewable hybrid microgrids are also presented. Therefore, this book is for all readers interested in these challenging directions of research

    Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications

    Get PDF
    This article contains a review of essential control techniques for maximum power point tracking (MPPT) to be applied in photovoltaic (PV) panel systems. These devices are distinguished by their capability to transform solar energy into electricity without emissions. Nevertheless, the efficiency can be enhanced provided that a suitable MPPT algorithm is well designed to obtain the maximum performance. From the analyzed MPPT algorithms, four different types were chosen for an experimental evaluation over a commercial PV system linked to a boost converter. As the reference that corresponds to the maximum power is depended on the irradiation and temperature, an artificial neural network (ANN) was used as a reference generator where a high accuracy was achieved based on real data. This was used as a tool for the implementation of sliding mode controller (SMC), fuzzy logic controller (FLC) and model predictive control (MPC). The outcomes allowed different conclusions where each controller has different advantages and disadvantages depending on the various factors related to hardware and software.This research was funded by the Basque Government through the project EKOHEGAZ (ELKARTEK KK-2021/00092), by the Diputación Foral de Álava (DFA), through the project CONAVANTER, and by the UPV/EHU, through the project GIU20/063

    Power Electronics in Renewable Energy Systems

    Get PDF

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts-Volume II

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications, such as hybrid and microgrid power systems based on the Energy Internet, Blockchain technology, and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers
    corecore