594 research outputs found

    Intelligent Hardware-Software Processing of High-Frequency Scanning Data

    Get PDF
    The constant emission of polluting gases is causing an urgent need for timely detection of harmful gas mixtures in the atmosphere. A method and algorithm of the determining spectral composition of gas with a gas analyzer using an artificial neural network (ANN) were suggested in the article. A small closed gas dynamic system was designed and used as an experimental bench for collecting and quantifying gas concentrations for testing the proposed method. This device was based on AS7265x and BMP180 sensors connected in parallel to a 3.3 V compatible Arduino Uno board via QWIIC. Experimental tests were conducted with air from the laboratory room, carbon dioxide (CO2), and a mixture of pure oxygen (O2) with nitrogen (N2) in a 9:1 ratio. Three ANNs with one input, one hidden and one output layer were built. The ANN had 5, 10, and 20 hidden neurons, respectively. The dataset was divided into three parts: 70% for training, 15% for validation, and 15% for testing. The mean square error (MSE) error and regression were analyzed during training. Training, testing, and validation error analysis were performed to find the optimal iteration, and the MSE versus training iteration was plotted. The best indicators of training and construction were shown by the ANN with 5 (five) hidden layers, and 16 iterations are enough to train, test and verify this neural network. To test the obtained neural network, the program code was written in the MATLAB. The proposed scheme of the gas analyzer is operable and has a high accuracy of gas detection with a given error of 3%. The results of the study can be used in the development of an industrial gas analyzer for the detection of harmful gas mixtures

    Gas Detection and Identification Using Multimodal Artificial Intelligence Based Sensor Fusion

    Get PDF
    With the rapid industrialization and technological advancements, innovative engineering technologies which are cost effective, faster and easier to implement are essential. One such area of concern is the rising number of accidents happening due to gas leaks at coal mines, chemical industries, home appliances etc. In this paper we propose a novel approach to detect and identify the gaseous emissions using the multimodal AI fusion techniques. Most of the gases and their fumes are colorless, odorless, and tasteless, thereby challenging our normal human senses. Sensing based on a single sensor may not be accurate, and sensor fusion is essential for robust and reliable detection in several real-world applications. We manually collected 6400 gas samples (1600 samples per class for four classes) using two specific sensors: the 7-semiconductor gas sensors array, and a thermal camera. The early fusion method of multimodal AI, is applied The network architecture consists of a feature extraction module for individual modality, which is then fused using a merged layer followed by a dense layer, which provides a single output for identifying the gas. We obtained the testing accuracy of 96% (for fused model) as opposed to individual model accuracies of 82% (based on Gas Sensor data using LSTM) and 93% (based on thermal images data using CNN model). Results demonstrate that the fusion of multiple sensors and modalities outperforms the outcome of a single sensor.Comment: 14 Pages, 9 Figure

    Machine Learning and Its Application to Reacting Flows

    Get PDF
    This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world’s total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and “greener” combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation

    Machine Learning and Its Application to Reacting Flows

    Get PDF
    This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world’s total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and “greener” combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation

    Physics-constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios

    Get PDF
    Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using collected data. These deep learning-based compensation algorithms resulted in comparable detection performance to established methods while accelerating the image processing chain by 8X

    Deep learning analysis of plasma emissions: A potential system for monitoring methane and hydrogen in the pyrolysis processes

    Get PDF
    The estimation of methane and hydrogen production as output from a pyrolysis reaction is paramount to monitor the process and optimize its parameters. In this study, we propose a novel experimental approach for monitoring methane pyrolysis reactions aimed at hydrogen production by quantifying methane and hydrogen output from the system. While we appreciate the complexity of molecular outputs from methane hydrolysis process, our primary approach is a simplified model considering detection of hydrogen and methane only which involves three steps: continuous gas sampling, feeding of the sample into an argon plasma, and employing deep learning model to estimate of the methane and hydrogen concentration from the plasma spectral emission. While our model exhibits promising performance, there is still significant room for improvement in accuracy, especially regarding hydrogen quantification in the presence of methane and other hydrogen bearing molecules. These findings present exciting prospects, and we will discuss future steps necessary to advance this concept, which is currently in its early stages of development

    Machine learning for advancing low-temperature plasma modeling and simulation

    Full text link
    Machine learning has had an enormous impact in many scientific disciplines. Also in the field of low-temperature plasma modeling and simulation it has attracted significant interest within the past years. Whereas its application should be carefully assessed in general, many aspects of plasma modeling and simulation have benefited substantially from recent developments within the field of machine learning and data-driven modeling. In this survey, we approach two main objectives: (a) We review the state-of-the-art focusing on approaches to low-temperature plasma modeling and simulation. By dividing our survey into plasma physics, plasma chemistry, plasma-surface interactions, and plasma process control, we aim to extensively discuss relevant examples from literature. (b) We provide a perspective of potential advances to plasma science and technology. We specifically elaborate on advances possibly enabled by adaptation from other scientific disciplines. We argue that not only the known unknowns, but also unknown unknowns may be discovered due to the inherent propensity of data-driven methods to spotlight hidden patterns in data

    Fault Diagnosis Of Sensor And Actuator Faults In Multi-Zone Hvac Systems

    Get PDF
    Globally, the buildings sector accounts for 30% of the energy consumption and more than 55% of the electricity demand. Specifically, the Heating, Ventilation, and Air Conditioning (HVAC) system is the most extensively operated component and it is responsible alone for 40% of the final building energy usage. HVAC systems are used to provide healthy and comfortable indoor conditions, and their main objective is to maintain the thermal comfort of occupants with minimum energy usage. HVAC systems include a considerable number of sensors, controlled actuators, and other components. They are at risk of malfunctioning or failure resulting in reduced efficiency, potential interference with the execution of supervision schemes, and equipment deterioration. Hence, Fault Diagnosis (FD) of HVAC systems is essential to improve their reliability, efficiency, and performance, and to provide preventive maintenance. In this thesis work, two neural network-based methods are proposed for sensor and actuator faults in a 3-zone HVAC system. For sensor faults, an online semi-supervised sensor data validation and fault diagnosis method using an Auto-Associative Neural Network (AANN) is developed. The method is based on the implementation of Nonlinear Principal Component Analysis (NPCA) using a Back-Propagation Neural Network (BPNN) and it demonstrates notable capability in sensor fault and inaccuracy correction, measurement noise reduction, missing sensor data replacement, and in both single and multiple sensor faults diagnosis. In addition, a novel on-line supervised multi-model approach for actuator fault diagnosis using Convolutional Neural Networks (CNNs) is developed for single actuator faults. It is based a data transformation in which the 1-dimensional data are configured into a 2-dimensional representation without the use of advanced signal processing techniques. The CNN-based actuator fault diagnosis approach demonstrates improved performance capability compared with the commonly used Machine Learning-based algorithms (i.e., Support Vector Machine and standard Neural Networks). The presented schemes are compared with other commonly used HVAC fault diagnosis methods for benchmarking and they are proven to be superior, effective, accurate, and reliable. The proposed approaches can be applied to large-scale buildings with additional zones
    • …
    corecore