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Abstract: With the rapid industrialization and technological advancements, innovative engineering
technologies which are cost effective, faster and easier to implement are essential. One such area
of concern is the rising number of accidents happening due to gas leaks at coal mines, chemical
industries, home appliances etc. In this paper we propose a novel approach to detect and identify the
gaseous emissions using the multimodal AI fusion techniques. Most of the gases and their fumes are
colorless, odorless, and tasteless, thereby challenging our normal human senses. Sensing based on a
single sensor may not be accurate, and sensor fusion is essential for robust and reliable detection in
several real-world applications. We manually collected 6400 gas samples (1600 samples per class for
four classes) using two specific sensors: the 7-semiconductor gas sensors array, and a thermal camera.
The early fusion method of multimodal AI, is applied The network architecture consists of a feature
extraction module for individual modality, which is then fused using a merged layer followed by a
dense layer, which provides a single output for identifying the gas. We obtained the testing accuracy
of 96% (for fused model) as opposed to individual model accuracies of 82% (based on Gas Sensor
data using LSTM) and 93% (based on thermal images data using CNN model). Results demonstrate
that the fusion of multiple sensors and modalities outperforms the outcome of a single sensor.

Keywords: convolutional neural network; early fusion; gas detection; long-short term memory;
multimodal data

1. Introduction

Engineering innovation refers to the solving the social and industrial problems via
use of the innovative engineering technologies and approaches. With the rise of industri-
alization and bridging of socio-economic gap between different strata of society, use of
chemicals has been on rise. Assistive technology is the technological domain consisting
of systems having either software or hardware alone or both designed to enhance and
maintain human capabilities in situations that require special attention. Different solutions
in assistive technology range from unmanned vehicles-based surveillance applications
to healthcare applications like automated wheelchairs, pose estimates, etc. In this work,
we propose an assistive technology solution for a very relevant problem of gas detection
and identification for domestic, industrial, and outside environments.

Industrial hazards can cause chemical and/or radioactive damage to the surround-
ing environment. With the rapid developments in the industrialization and automated
chemical plants, gas leakage is a common issue. Explosions, fires, spills, leaks, and waste
emissions are some of the consequences of industrial accidents [1,2]. Residential cooking
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and carelessness in disposing of wastes generate unnecessary fumes, are the significant
reasons of fume leakages. An article presented in the media revealed that burning wood,
biomass, and dung led to 326,000 of the estimated 645,000 premature deaths from outdoor
air pollution, which constitutes about 50% of the total deaths due to outdoor pollution [3].
Harmful gases such as Liquid Petroleum Gas (LPG), Compressed Natural Gas (CNG),
Methane, Propane, and other flammable and toxic gases, if not used carefully and ade-
quately, may lead to accidents and, in some cases, disastrous consequences. A gas leak is
an unintended crack, hole, or porosity in a joint or machinery, which excludes different
fluids and gases, allowing the escape of a closed medium. In any plant or industrial setup,
a gas leak test is a quality control step that must be performed before a device is set up.
As a precautionary measure, gas sensors are set up near the leakage prone equipment.
However, the sensors are not able to detect gas in a mixed gas environment. Sensors are
also prone to and limited to their operating characteristics.

Human intervention is not always possible in leakage situations, primarily due to the
hazardous nature of gases. Smoke emissions during leakages give rise to unclear vision
problems, fire and smoke leakages demand the immediate evacuation of persons with
mobile disability. Breathing these dangerous fumes may lead to dizziness, unconsciousness,
and mass disaster if not treated properly. In the case of gas leakage in chemical factories,
it can cause explosions. Therefore, detecting gas leakages and explosions within a short
period is of utmost importance. Early detection of gas leakage with higher accuracy and
reliability using the state-of-art techniques is an essentially required assistive technology
solution. Detecting a particular gas or different gases in the mixture of gases is also chal-
lenging and requires technological attention. Existing methods of mixed gas detection
methods include a way of using a Colorimetric Tape [4]. In this method, a dry material
of tape reacts with the gas being emitted and leaves a special stain for different gases
under consideration. The more the gas concentration, the darker the stain on the tape [5].
Gas Chromatography is another methodology that separates mixtures of gases based
on differences in boiling points, polarity, and vapor pressure [6]. This method has high
separation efficiency but requires a large apparatus and workforce to operate [7]. Other
than the chemical methods of gas detection and the advancements in interdisciplinary
technologies, various Artificial Intelligence (AI) based techniques are also reported in the
literature. Different machine learning algorithms such as Logistic Regression, Random For-
est, and Support Vector Machines (SVM) are proposed in the literature for gas detection [8].
However, these methods require multiple hyperparameters tuning and statistical calcula-
tion for accurate and robust gas classification. It increases the processing time, the power
used, and computations [9]. Adbul Majeed [10] provided a methodology that selected top
weighted features from complex datasets for improving the time complexity as well as
accuracy of the machine learning models.

Khalaf [11] proposed an electronic nose system of classification and concentration
estimation that uses least square regression. An array of eight different gas sensors is used
to identify gases’ concentration in [12]. In this work, Deep convolutional neural networks
are employed for the application of gas classification. It was shown that the deep learning
algorithms can learn features from the measurements from gas sensors in a better way and
can achieve higher classification accuracy. Bilgera et al. [13] presented a fusion of different
AI models for Gas Source Localization to determine the point of leakage in a ground using
six various gas sensors. Pan et al. [14] presented a deep learning approach consisting of a
hybrid framework comprised of the Convolutional Neural Network (CNN) and Long short-
term memory (LSTM) to extract sequential information from transient response curves.
Fast Gas Recognition algorithm based on hybrid CNN and Recurrent Neural Network
(RNN) is presented in [9]. It was shown that the fusion model outperforms Support
Vector Machine (SVM), Random Forest, k−nearest neighbors. Liu et al. [15] described two
network structures, Deep Belief Networks and Stacked Autoencoders, to extract abstract
gas features from E-nose. Then the Softmax classifiers are constructed using these features.
These reported approaches use sequential methods based on the gas sensor data directly.
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However, there are several issues with using only a gas sensors-based detection and
identification approach. The primary reason is that the proportion of gas in air is very low
in some cases, and the gases are not identifiable with standard gas sensors. This generates
false negatives or false positives and hence hampers the detection accuracy of the system.
Additionally, low-cost sensors are typically less sensitive and may not provide accurate
measurements. Another method observed for gas detection is the use of thermal imaging.
When a gas is leaked, the surrounding temperature increases compared with the normal
conditions. The increase in temperature can be characterized and analyzed by thermal
imaging cameras. This concept can be utilized to detect leakages [16,17] . The system for
Methane and Ethane gas leak detection using a thermal camera is proposed in [18]. Jadin
and Ghazali [19] presented a method for detecting gas leak using infrared image analysis.
The system was designed by the technique of image processing, which are data acquisition,
image preprocessing, image processing, feature extraction, and classification.

Single modality sensing methods may not achieve the system’s required accuracy and
robustness as such systems are limited to sensor characteristics. Individual sensors are
limited to temporal and spatial characteristics [20]. A thermal imaging system can identify
the presence of gas but fails to identify its type. Hence, a concept of multimodal/multi-
sensor data fusion came into existence. Data fusion combines information from multiple
sources to obtain the better output compared to any individual modality taken alone [20].
Kalman filter proposed in [21] is one of the most widely used sensor fusion algorithms
in robotics applications like position and orientation estimation, guided vehicles, etc.
However, it requires the input data from two sensors in a similar format. In the situation
under consideration, the gas sensor data is a scalar value whereas input from thermal
image is a two-dimensional vector. Hence, Kalman filter cannot be used in this application
of fusion 1D and 2D vectors. With the advancement and flexibility of AI frameworks, a
combination of different AI algorithms can be used to extract important features in an
efficient and improved manner and improve classification accuracy [22–24]. This paper
presented an AI-based methodology that employs the Deep Learning (DL) frameworks for
performing a fusion of multimodality data from multiple sources to detect and classify the
gasses. The system is equipped with various gas detecting sensors, and a thermal imaging
camera and sensor fusion is performed using the DL algorithms.

The focus of the proposed method is to extract features using two different deep
learning paradigms and apply an early fusion method to fuse these features to train a
classifier for detecting and subsequently identifying the gas. The proposed method can be
used to detect a particular gas in a mixed environment of gases. It does not require a manual
operator to operate and is a more robust solution as it incorporates the measurements from
multiple gas sensors and thermal imaging cameras. In case one modality is generating
false negatives, the fusion with other modality can help identify the correct outcome
more effectively. On the other hand, if one modality is giving false positives, the other
modality helps to bring down the combined accuracy of fused output, thereby providing
accurate predictions.

The main contributions of the paper can be listed as follows:

1. an innovative multimodal AI-based framework for the fusion of two separate modali-
ties for robust and more reliable gas detection1 is proposed and presented

2. the use of early fusion of the outputs of deep learning architectures CNN and LSTM
is demonstrated for Gas Detection and identification of the leaked gases

In summary, the main contributions of this work are twofold. Firstly, multimodal
AI-based framework for the fusion for gas detection and identification is presented in
this paper. This framework is faster, easier to deply and generic. Secondly, the use of
early fusion of the of outputs from CNN and LSTM is demonstrated for Gas Detection
and identification of the leaked gases. The vanilla architectures are considered for the
implementation of CNN and LSTM frameworks. Having advanced frameworks like
AlexNet [25], ResNet [26] will add to the computational complexity of the system due to
very deep architectural frameworks. the use of CNN facilitates faster processing and is also
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suitable for the deployment in real-time systems. The results show that false positives and
negatives in the fused output are lower than the individual modalities. The experimental
setup is designed to collect the real-time data using a gas sensor array and thermal camera,
to preprocess the collected data and validate the developed framework. Our approach is
highly generic and can be extended to a number of other applications involving multiple
sensors and their data fusion. Innovation lies in the development of state-of-the-art AI
techniques for solving a highly relevant social and industrial issue of identifying gas leakage
and controlling it in time to reduce loss of property and human lives in extreme cases.

The paper is organized as: Section 2 provides a brief overview of AI-based mul-
timodal fusion methods. The frameworks for data collection and preprocessing along
with the proposed system architecture are presented in Section 3. Section 4 provides a
detailed discussion on obtained results, and Section 5 concludes the paper by mentioning
future scope.

2. Theoretical Background

Fusing the data from multiple sensors makes the system more robust and reliable
than the single sensor-based systems. There are various methods of sensor fusion using
AI paradigms proposed in the literature. This section briefly discusses these methods as a
precursor to our system framework and experimentation setup.

2.1. Methodologies for Multimodal Data Fusion

A modality refers to something that can be experienced in the environment. It is a
type of information that can be felt and is stored. Some examples could be–text infor-
mation, image information, smell, taste, auditory, video, and touch. Multimodal Sensor
Fusion refers to combining sensor data from different sources to produce more consistent,
accurate, and useful information than individual sensors to reduce false positives and false
negatives. The fusion architectures can be of three types: early fusion, late fusion, and hy-
brid fusion [27,28]. Early fusion combines the raw data or the features extracted from the
raw data [29]. This is a suitable technique when there exists a high correlation between
modalities. The feature extracting algorithms are applied to the individual modalities
and then fused together using the process of concatenation to get the final feature vector.
A classifier model is trained using this feature vector, and final predictions are made. In this
method, the fusion is performed before the classification, which allows the interaction
of features at a low level. In late fusion, the decisions are taken based on the individual
modalities separately. Predictions from individual modalities are then combined the using
statistical method like mean, mode, median, etc. As it is a combination of decisions, it is
also known as Decision Fusion Technique. This technique is preferred when there exists a
time relationship between the modalities. Hybrid fusion combines the advantages of early
and late fusion for better fusion of features as well as decisions.

2.2. Convolutional Neural Network

Each Thermal image consists of non-linear features and are stored digitally in RGB
format. Simple Neural Networks are not able to generalize complex patterns in images.
Convolutional Neural Networks (CNN) learns to recognize differences and patterns in
images. CNN [30] consists of - Convolution, Max Pooling, Flattening, and ANN layers.
The primary purpose of convolution is to find features in an image using a feature detector
and put them into a feature map.

2.3. Recurrent Neural Network

Recurrent Neural Networks (RNN) [31] consists of an essential memory element
due to which the present output depends not only on current input but also on previous
input. However, as the input sequence size increases, the problem of vanishing gradient
is observed during backpropagation. This problem makes RNN unsuitable for applica-
tions requiring long-term dependencies. To overcome this, advanced versions of RNNs
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known as Long Short-Term Memory (LSTM), consisting of gates and memory elements,
were introduced. These gates help regulate and extract information from the input and
pass on gradients to the next node enabling the new sequence to be trained as equivalent
as the earlier sequence and prioritize learning [32]. Also, LSTMs are more effective than
conventional RNN [33].

Sensor measurements are a continuous stream of data, and hence LSTM framework
is applicable for extracting the features from the sensor measurements. The thermal
camera provides images, and CNN is an appropriate choice for feature extraction. The two
considered modalities are having different characteristics and do not have any time-level
correlation. Hence, in our proposed framework, we have employed early fusion of features
extracted by the LSTM model from gas sensors and by the CNN model from the thermal
images data. The further section provides the details of the pipeline for data collection
using the specified sensors, preprocessing the collected data, and developing the fusion
frameworks for the proposed work.

3. Framework for System Design and Experimentation

The system consists of gas sensors and a thermal camera for identifying the gas
concentrations and thermal images of the type of gases. The block diagram indicating the
data collection process is presented in Figure 1. Figure 2 provides the structure and steps
followed for training the network and Figure 3 indicates the testing phase. The detailed
description for the processes indicated in these figures is provided in further sections.

3.1. Gas Sensors

Gas Sensors detect the presence of gas by converting the chemical information to
electrical information. Metal Oxide Semiconductor (MQ) gas sensors are appropriate as
they are compact, have fast response speed, and long service life [34,35]. Each sensor
consists of a heating element that produces the analog output voltage proportional to the
gas concentration. The performance of Gas sensor depends on various sensor characteristics
like sensitivity, selectivity, detection limit, response time, etc. [36]. Different gas sensors
namely MQ2, MQ3, MQ5, MQ6, MQ7, MQ8 and MQ135 are used in the present work.
These sensors are sensitive to various gases like Methane, Butane, LPG, Alcohol, Smoke,
Natural Gas, Carbon Monoxide, Air Quality etc. (Table 1).

Gas Fumes

MQ2 MQ3 MQ5 MQ6 MQ7 MQ8 MQ135 Thermal 

Camera

Microcontroller

Storage

R1           R2         R3        R4    R5          R6         R7

Numerical Values corresponding to gas concentration

image

Figure 1. Process of Data Collection.
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Storage

R1      R2      R3      R4      R5      R6     R7     Class Label      image

LSTM Framework

CNN Framework

Augmentation 

(Rotation & 

tilting)

Features Features

Concatenation

Neural Network

Class Prediction

0: No Gas

1: Perfume

2: Smoke

3: Perfume + smoke

Compare with 

Actual Class

Weights Update

Figure 2. Network Training Process.

Gas Fumes

MQ2 MQ3 MQ5 MQ6 MQ7 MQ8 MQ135 Thermal 

Camera

R1           R2         R3        R4    R5          R6         R7

Numerical Values corresponding to gas concentration

image

LSTM Framework CNN Framework

Features Features

Concatenation

Neural Network

Class Prediction

0: No Gas

1: Perfume

2: Smoke

3: Perfume + smoke

image

Figure 3. Network Testing Process.
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Table 1. Gas sensors and sensetive gases.

Sensor Sensitive Gas

MQ2 Methane, Butane, LPG, Smoke
MQ3 Alcohol, Ethanol, Smoke
MQ5 Natural Gas, LPG
MQ6 LPG, Butane Gas
MQ7 Carbon Monoxide
MQ8 Hydrogen Gas
MQ135 Air Quality (Benzene, Smoke)

3.2. Thermal Camera

Thermal camera is a device that measures the temperature variations using the infrared
light. Every pixel on a camera image sensor is an infrared temperature sensor and gets
a temperature of all points at the same time. The images are generated according to
temperature format and displays images in the form of RGB. Unlike normal imaging
cameras, thermal camera is not constrained by dark surroundings and can work with any
environment regardless of its shape and texture [37]. Seek Thermal Camera, used in this
work, is a compact thermal camera consisting of 206 × 156 Thermal Sensor, a 36-degree
field of view, measurement of temperature range −40 °C to 330 °C, framerate <9 Hz, and
32,136 Thermal Pixels to be able to see a thermal image easily.

The gas sensors and thermal camera are used simultaneously to collect data for
training and testing of the developed fusion model. The next part of the paper describes
the data collection and its preprocessing in detail.

3.3. Data Collection and Preprocessing

To the best of the authors’ knowledge, no data consisting of thermal images and
gas sensors for the representation of gas has yet been collected and available in the open
domain for direct use. Hence, in this work, data of the sensors and thermal imaging camera
is collected manually for model training and validation purposes.

The experimental data is collected through an array of 7 gas sensors as well as using
the Seek Thermal Camera. The gas sensors were placed at 1 mm apart.

In the experimentation, two specific gas sources are identified, namely, the gases
originating from perfumes and gases emitted by incense sticks. The experimentation setup
and workflow for the data collection is shown in Figure 4.

Figure 4. Experimental Setup for data collection.

Sensor readings and thermal images are recorded for each of these two gas sources
were collected at a time interval of 2 s continuously for one and a half hours. In this time,
gas was sprayed with an interval of 15 s for the first 30 min, with 30 s intervals for the
next 30 min and 45 s intervals for the next 30 min. A few representative samples for three
classes (no gas, perfume, and smoke) with the thermal image and corresponding gas array
data are shown in Table 2. The sensors provide the analog voltage equivalent to the gas
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concentration. The analog value is converted to the 10-bit digital value using an analog
to digital converter. These 10 bits of digital values are shown for representation purposes
in Table 1. Each sensor is sensitive to more than one gas, and hence sensors are calibrated
appropriately. A data set in total consists of 6400 samples where 1600 samples belong to
perfume, 1600 samples belong smoke, 1600 samples belong to mixture of perfume and
smoke and 1600 samples belong to neutral environment (No gas).

Table 2. Data samples for thermal image and their corresponding gas array obtained for 3 classes.

No Gas Perfume (Alcohol) Smoke

Thermal Image

Gas Sensor
Measurements

558 516 376 336 665
450 415

808 520 515 485 692 754
513

550 343 371 400
572 583 304

Thermal Image

Gas Sensor
Measurements

791 520 510 455 690
733 533

800 521 508 481 686 746
505

537 354 337 374
562 547 279

3.4. Data Preprocessing

Deep learning models require a large amount of training data for appropriate and
efficient operation. Due to the availability of limited data, data augmentation techniques
are used, which helped to increase the dataset size. The diversity of limited thermal images
is increased using data augmentation techniques such as rescaling and resizing. The Figure 5
shows the ground truth image (Figure 5a) and all images generated using rotation and
tilting operations (Figure 5b).

(a) (b)

Figure 5. Ground Truth image (a) and augmented images (b).

3.5. Feature Extraction from Thermal Images Using CNN

A total of 6400 thermal images and corresponding 6400 labels (No Gas, Alcohol,
Smoke, mixture of Alcohol and Smoke) are considered in this experimentation. A train-test
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split of 80:20 was done such that out of total images, 4096 are used for training and 1024
samples are used for Validation whereas 1280 images are used for testing purposes.

In the process of development of the CNN model, multiple experimentations were
carried out with different architectures, and various hyperparameter tuning approaches
were applied. It was found that three convolution-pooling layer architecture followed
by a dropout layer (dropout of 0.25) is providing the best accuracy and recall. Model
is optimized with different optimizers and the best performing optimizer is selected for
further processes. An ADAM optimizer with a 0.001 learning rate with a decay of 1 × 10−3

and L1-L2 regularization (0.005) in the first two Conv-Max Pool pairs are applied to avoid
overfitting of the model. The model is trained for 300 epochs, which resulted in the testing
accuracy of 93%.

3.6. Feature Extraction from Gas Sensor Measurements Using LSTM

Sensor measurements are sequential and hence sequence model namely LSTM Net-
work is used for extracting the features from these measurements. The architecture of the
LSTM model consists of the input layer followed by a single LSTM layer with 5 cells. LSTM
layer is regularized with L2 regularization. The LSTM layers are followed by the classifier
layer with the Softmax activation function.

This LSTM network was trained on different optimizers with a fixed learning rate of
0.001 to find the best optimizer. Through the trial and error, it was observed that Adam
optimizer was fitting to the model the best and also converging quickly. Hence Adam
optimizer is selected for analysis and experimentation work. It can be observed that Adam
optimizer fits and converges quickly. The model is trained for 300 epochs, and we obtained
the testing accuracy of 83%.

3.7. Multimodal Fusion of Image and Sequence Data

In this phase of the work, the features extracted from the thermal images and gas
sensor measurements fused for accurate decision making. The proposed architectures of
the image and sequence data fusion model are presented in Figure 6 (early fusion) and
Figure 7 (late fusion). The focus of the work was to build a fused classifier that consists
of both gas sensor sequence array and thermal images. In the fusion process, LSTM and
CNN’s output must be in the same feature space before fusion can be performed.

The fusion model is optimized with an Adam optimizer with a 0.001 learning rate
and 1 × 10−3 decay. Regularization (0.005) is applied for avoiding overfitting of the fusion
model. The model is trained for 300 epochs, which resulted in the testing accuracy of 96%.

Gas Sensor Array 

Sequence Data

Thermal Image 

Preprocessing

Preprocessing

LSTM

CNN

Feature 

Vector

Feature 

Vector

Concatenation Classifier
Fused

Output

Figure 6. Framework for the proposed Early fusion model.
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Gas Sensor Array 

Sequence Data

Thermal Image 

Preprocessing

Preprocessing

LSTM

CNN

Feature 

Vector

Feature 

Vector

Maximum/ 

Average

Fused

Output

Classifier

Classifier

Figure 7. Framework for the proposed Late fusion model.

Late fusion model is also implemented for the fusion of gas sensors array data with
the thermal image. Late fusion being the decision level fusion, the predictions of from indi-
vidual models namely LSTM model and CNN model are obtained individually. Then the
Late fusion process is applied in two ways. In first trial, maximum of the predictions from
individual results is taken as final fusion value. Hereafter, this is referred as Max fusion.
In another trial, arithmetic average of the individual model predictions is considered as
final fusion, referred as Average fusion.

The presented models of early and late fusion are implemented and validated with the
dataset available. The next section describes the results obtained and comparison between
the fusion models.

4. Results and Discussion

The multimodal AI-based fusion model for gas detection and is presented in this work.
Two modalities, namely, thermal images and gas sensor measurements, are considered in
this work of gas detection. The CNN architecture is applied for extracting features from
the thermal images, whereas, LSTM framework is used for extracting features from the
sequences of gas sensor measurements. The implementation of the proposed model in
done using the Python 3 using Keras framwork on TensorFlow platform. Open source
Google Colab GPU is used for training and testing of the proposed model. It is based
on Intel Xeon Processor with 13 GB RAM. The CNN model starts converging at around
the 20th epoch, whereas LSTM reaches convergence at around the 90th epoch. It was
observed that the fused model stabilizes at around the 20th epoch itself. The accuracy
of the gas sensor array is comparatively lower since the outcome of one sensor (out of
7 sensors considered) is typically not very accurate due to the mixing of gases in the air.
The thermal camera-based model individually performs comparatively better; however,
in the air, the thermal signature of gaseous emissions may be generated due to multiple
gases or multiple sources of exhausts, and having a gas sensor to validate the type of gas is
extremely helpful in identification. It was noticed and observed that the individual models
are underperforming compared to the fusion models. In the fusion models, the individual
modalities either collaborate or oppose the outcomes of the individual modality, thereby
making the system more reliable and accurate. By performing regularization techniques on
individual models, namely CNN and LSTM, testing accuracy of 93% with Thermal Images
and 82% for Gas Sequences is achieved. However, the early fusion of features from both
CNN and LSTM has provided the testing accuracy of 96%, which is greater than individual
models accuracies. In the case of late fusion (max fusion and average fusion) the accuracy
was observed to be around 96%.

Table 3 shows the individual training and testing accuracy, loss, precision, recall,
and F1 scores for all four classes considered in this study. The accuracy comparison for
the individual models is shown in Figure 8. It can be observed that the fusion models
outperform the individual models as the predictions in the individual models are based on
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both the modality data. It can also be noticed that the accuracy of early fusion is slightly
higher than the late fusion models as in this case the fusion happens at the feature level
which allows the interaction amongst the modalities. The confusion matrices are also
plotted for all the frameworks and are shown in Figure 9.

Table 3. Quantitative comparison of the individual models with fused models.

Training
Accuracy

Testing
Accuracy

Class Precision Recall F1

LSTM
Model only 85 % 82 %

No Gas 0.99 0.99 0.99

Perfume 0.63 0.85 0.73

Smoke 0.75 0.47 0.58

Mixture 0.99 1.00 1.00

CNN
Model only 95 % 93 %

No Gas 1.00 1.00 1.00

Perfume 0.89 0.88 0.89

Smoke 0.88 0.89 0.89

Mixture 0.97 0.98 0.97

Early
Fusion Model 97 % 96 %

No Gas 0.1.00 1.00 1.00

Perfume 0.93 0.93 0.93

Smoke 0.92 0.92 0.92

Mixture 1.0 1.0 1.0

The fusion model is trained for 300 epochs, and accuracy and loss curves are analyzed
and provides better performance than individual models.

93%

82%

96% 96% 96%

CNN LSTM Early Fusion Max Fusion Average Fusion

ACCURACY COMPARISON

Figure 8. Accuracy comparison of different models.

It is evident from the confusion matrices that the false positives and false negatives
obtained from the fusion models are considerably lower than the individual models. Hence
it can be concluded that the fusion models are outperforming the individual models. Also,
the higher testing accuracy of the fusion models demonstrates that the resultant fusion
system is more robust and reliable than individual models and performs the task of gas
identification and classification with superiority. Analytically, false positives and false
negatives appear due to various aspects of the model and data. Primary reason could be the
mixing of gases to an extent which makes it difficult for the model to clearly classify. The
majority of the false predictions are arriving because of moderate probability of predicting
a class. A model can be trained rigorously using the more and varied data samples to solve
the false prediction due to boundary line probabilities.
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Figure 9. Confusion matrices (a) CNN, (b) LSTM, (c) Early fusion, (d) Max Fusion, and (e) Average
Fusion predictions over a test set of 1280 samples.

5. Conclusions

In this work, a multimodal AI-based fusion framework for reliable identification and
detection of gases is developed. We considered four classes (2 individual gases, alcohol
vapor obtained from perfume and smoke from incense sticks, 1 as mixture of these gases
and 1 no gas) for data collection using sensors, namely, thermal camera for capturing
the thermal signature of the gases and array of gas sensors (7 numbers) for detection
of specific gases. The data collected is unique and has 5200 samples of both Thermal
Images and Gas Sensor Sequence of vector size (1 × 7) Sensors. Both these modalities
were fused using Early and Late Fusion Techniques. In summary, the contribution of this
work is in bringing in innovative engineering tools for solving a real world problem by
developing a more reliable gas detection method involving two modalities and fusing them.
The multimodal model outperforms the individual models by supporting or opposing the
individual modalities. In case if one modality fails, the other modality can work alone
until repair takes place. This is essential in high-risk applications such as leak detection in
chemical plants, identification of explosives, etc. The proposed architecture is based on the
deep learning frameworks and hence require large number of data samples for appropriate
training of the network. The complex data samples involving different combinations of
multiple gases in data sample will lead to the robust training of the network. Also, to
have efficient and effective operation, a dedicated hardware processing module is essential.
The future course of action will focus on the collection of datasets comprising of multiple
gases and their combinations in different environmental conditions.
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