60 research outputs found

    An Exact Algorithm for the Generalized List TT-Coloring Problem

    Full text link
    The generalized list TT-coloring is a common generalization of many graph coloring models, including classical coloring, L(p,q)L(p,q)-labeling, channel assignment and TT-coloring. Every vertex from the input graph has a list of permitted labels. Moreover, every edge has a set of forbidden differences. We ask for such a labeling of vertices of the input graph with natural numbers, in which every vertex gets a label from its list of permitted labels and the difference of labels of the endpoints of each edge does not belong to the set of forbidden differences of this edge. In this paper we present an exact algorithm solving this problem, running in time O((τ+2)n)\mathcal{O}^*((\tau+2)^n), where τ\tau is the maximum forbidden difference over all edges of the input graph and nn is the number of its vertices. Moreover, we show how to improve this bound if the input graph has some special structure, e.g. a bounded maximum degree, no big induced stars or a perfect matching

    An exact algorithm for graph coloring with polynomial memory

    Get PDF
    In this paper, we give an algorithm that computes the chromatic number of a graph in O(5.283n) time and polynomial memory

    On the Number of Maximal Bipartite Subgraphs of a Graph

    Get PDF
    We show new lower and upper bounds on the number of maximal induced bipartite subgraphs of graphs with n vertices. We present an infinite family of graphs having 105^{n/10} ~= 1.5926^n such subgraphs, which improves an earlier lower bound by Schiermeyer (1996). We show an upper bound of n . 12^{n/4} ~= n . 1.8613^n and give an algorithm that lists all maximal induced bipartite subgraphs in time proportional to this bound. This is used in an algorithm for checking 4-colourability of a graph running within the same time bound

    Coloring, location and domination of corona graphs

    Get PDF
    A vertex coloring of a graph GG is an assignment of colors to the vertices of GG such that every two adjacent vertices of GG have different colors. A coloring related property of a graphs is also an assignment of colors or labels to the vertices of a graph, in which the process of labeling is done according to an extra condition. A set SS of vertices of a graph GG is a dominating set in GG if every vertex outside of SS is adjacent to at least one vertex belonging to SS. A domination parameter of GG is related to those structures of a graph satisfying some domination property together with other conditions on the vertices of GG. In this article we study several mathematical properties related to coloring, domination and location of corona graphs. We investigate the distance-kk colorings of corona graphs. Particularly, we obtain tight bounds for the distance-2 chromatic number and distance-3 chromatic number of corona graphs, throughout some relationships between the distance-kk chromatic number of corona graphs and the distance-kk chromatic number of its factors. Moreover, we give the exact value of the distance-kk chromatic number of the corona of a path and an arbitrary graph. On the other hand, we obtain bounds for the Roman dominating number and the locating-domination number of corona graphs. We give closed formulaes for the kk-domination number, the distance-kk domination number, the independence domination number, the domatic number and the idomatic number of corona graphs.Comment: 18 page

    Lower Bounds for the Graph Homomorphism Problem

    Full text link
    The graph homomorphism problem (HOM) asks whether the vertices of a given nn-vertex graph GG can be mapped to the vertices of a given hh-vertex graph HH such that each edge of GG is mapped to an edge of HH. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 22-CSP problem. In this paper, we prove several lower bound for HOM under the Exponential Time Hypothesis (ETH) assumption. The main result is a lower bound 2Ω(nloghloglogh)2^{\Omega\left( \frac{n \log h}{\log \log h}\right)}. This rules out the existence of a single-exponential algorithm and shows that the trivial upper bound 2O(nlogh)2^{{\mathcal O}(n\log{h})} is almost asymptotically tight. We also investigate what properties of graphs GG and HH make it difficult to solve HOM(G,H)(G,H). An easy observation is that an O(hn){\mathcal O}(h^n) upper bound can be improved to O(hvc(G)){\mathcal O}(h^{\operatorname{vc}(G)}) where vc(G)\operatorname{vc}(G) is the minimum size of a vertex cover of GG. The second lower bound hΩ(vc(G))h^{\Omega(\operatorname{vc}(G))} shows that the upper bound is asymptotically tight. As to the properties of the "right-hand side" graph HH, it is known that HOM(G,H)(G,H) can be solved in time (f(Δ(H)))n(f(\Delta(H)))^n and (f(tw(H)))n(f(\operatorname{tw}(H)))^n where Δ(H)\Delta(H) is the maximum degree of HH and tw(H)\operatorname{tw}(H) is the treewidth of HH. This gives single-exponential algorithms for graphs of bounded maximum degree or bounded treewidth. Since the chromatic number χ(H)\chi(H) does not exceed tw(H)\operatorname{tw}(H) and Δ(H)+1\Delta(H)+1, it is natural to ask whether similar upper bounds with respect to χ(H)\chi(H) can be obtained. We provide a negative answer to this question by establishing a lower bound (f(χ(H)))n(f(\chi(H)))^n for any function ff. We also observe that similar lower bounds can be obtained for locally injective homomorphisms.Comment: 19 page

    Faster Graph Coloring in Polynomial Space

    Full text link
    We present a polynomial-space algorithm that computes the number independent sets of any input graph in time O(1.1387n)O(1.1387^n) for graphs with maximum degree 3 and in time O(1.2355n)O(1.2355^n) for general graphs, where n is the number of vertices. Together with the inclusion-exclusion approach of Bj\"orklund, Husfeldt, and Koivisto [SIAM J. Comput. 2009], this leads to a faster polynomial-space algorithm for the graph coloring problem with running time O(2.2355n)O(2.2355^n). As a byproduct, we also obtain an exponential-space O(1.2330n)O(1.2330^n) time algorithm for counting independent sets. Our main algorithm counts independent sets in graphs with maximum degree 3 and no vertex with three neighbors of degree 3. This polynomial-space algorithm is analyzed using the recently introduced Separate, Measure and Conquer approach [Gaspers & Sorkin, ICALP 2015]. Using Wahlstr\"om's compound measure approach, this improvement in running time for small degree graphs is then bootstrapped to larger degrees, giving the improvement for general graphs. Combining both approaches leads to some inflexibility in choosing vertices to branch on for the small-degree cases, which we counter by structural graph properties
    corecore