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An exact algorithm for graph coloring with polynomial
memory

Hans L. Bodlaender∗ Dieter Kratsch†

Abstract

In this paper, we give an algorithm that computes the chromatic number of a
graph in O(5.283n) time and polynomial memory.

1 Introduction

During the last years the interest in designing and analysing exact exponential-time al-
gorithms for NP-hard problems has been growing significantly. Despite many other ap-
proaches to attack NP-hard problems these algorithms really aim at coping with NP-
hardness, i.e. they compute an exact solution for all possible inputs. When dealing with
intractable problems, exact algorithms are not expected to have polynomial running time.

See the surveys by Woeginger [6, 7] for an introduction to the area of exponential time
algorithms.

Exponential worst case running time implies that such algorithms cannot solve inputs
of large size in reasonable time. Some exponential-time algorithms use exponential mem-
ory and some need only polynomial memory. For instance, Branch & Reduce algorithms
typically use polynomial memory while dynamic programming algorithms often need ex-
ponential memory.

Clearly, having two algorithms of same running time one would prefer one using poly-
nomial memory. In fact memory requirements of an algorithm can be such an obstacle for
its use on larger inputs, that polynomial memory could be desirable even when paying the
price of higher running time. We refer to [7] for discussions of polynomial vs. exponen-
tial memory. This motivated us to study a polynomial memory algorithm for a classical
NP-hard problem – the graph coloring problem.

All known exponential-time algorithms to compute the chromatic number of a graph
(and an optimal coloring) need exponential memory, more precisely O∗(2n) memory, and
they all are based on a dynamic programming approach and the use of maximal independent
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sets. The first one had been published by Lawler in Information Processing Letters 30 years
ago [4]. Its running time is O∗((1 + 3

√
3)n) = O(2.4423n). This algorithm had not been

improved for 25 years. Then the combination of improved upper bounds on the number
of maximal independent sets of size at most k and changes in the way to fill the table of
subsolutions in the dynamic programming algorithm led to better algorithms. Eppstein
established an O∗((4/3 + 34/3

4
)n) = O(2.4151n) time algorithm. Finally Byskov provided

an O(2.4023n) algorithm to compute the chromatic number of a graph. Faster algorithms
exist when the number of colorings is fixed. For small fixed numbers of colors, faster
algorithms are known. The currently best known bounds for c-coloring are: O∗(1.3289n)
for c = 3 (Beigel and Eppstein [1]), O∗(1.7504n) for c = 4 (Byskov [2]), O∗(2.1020n) for
c = 5 (Byskov and Eppstein, see [3]), and O∗(2.3289n) for c = 6 (Byskov [2]). Each of
these algorithms uses polynomial memory. Byskov and Eppstein also give an algorithm
using O∗(2n) memory and O∗(2.1809n) time for 6-coloring, see [3]. We refer to the PhD
thesis of Byskov for a nice summary on exponential-time coloring algorithms [3].

As a first answer to the natural question about the best possible worst case running time
of an exact coloring algorithm using only polynomial memory, we present an O(5.283n)
time and polynomial space algorithm to compute the chromatic number of any graph.

2 Definitions

We consider undirected, simple and finite graphs G = (V, E) with vertex set V and edge
set E. A vertex subset I ⊆ V is an independent set if any two vertices x and y of I are non
adjacent. A (proper) coloring c of a graph G = (V, E) assigns a color c(v) to each vertex
v of G such that c(u) 6= c(v) if uv ∈ E. The smallest possible number of colors used by a
coloring of G is the chromatic number of G, denoted by χ(G). A coloring of G using χ(G)
colors is an optimal coloring of G. Notice that a coloring of a graph G induces a partition
of its vertex set into independent sets c = (I1, I2, . . . , Ik).

3 An exact algorithm for graph coloring

In this section, we describe our algorithm. The algorithm is based upon the following
simple lemma.

Lemma 1 Let 0 < α < 1, and let G = (V, E) be a graph with n vertices. The chromatic
number of G is the minimum of the following two terms.

• The minimum over all maximal independent sets I with |I| ≥ α · n in G of 1 +
χ(G[V − I]).

• The minimum over all sets of vertices S ⊆ V with (n − α · n)/2 ≤ |S| ≤ n/2 of
χ(G[S]) + χ(G[V − S]).
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Proof. Consider an optimal coloring c = (I1, I2, . . . , Ik) of G. Suppose there is an Ij,
j ∈ {1, 2, . . . , k}, such that |Ij| ≥ α · n. Then there is an optimal coloring of G, such that
one color class is I ′j with Ij ⊂ I ′j. Hence the chromatic number is equal to the first term.

Otherwise, in the optimal coloring c, for all j ∈ {1, 2, . . . , k}, |Ij| < α ·n. Thus there is
a subset S ⊆ V such that each color class Ij is either a subset of S or a subset of V − S
satisfying (n − α · n)/2 ≤ |S| ≤ n/2. Hence the chromatic number is equal to the second
term. ut

We use the lemma to obtain a recursive algorithm. To obtain the best time bound in
our analysis, we set α = 0.19903. The pseudo code of the algorithm is given below.

• Let n be the number of vertices of the graph. Set best = n.

• Enumerate all subsets S ⊆ V . For each such set S, do:

– If S is a maximal independent set and |S| ≥ α · n, then

∗ Recursively, compute χ(G[V − S]).

∗ Set best = min(best, 1 + χ(G[V − S]).

– If (n− α · n)/2 ≤ |S| ≤ (n + α · n), then

∗ Recursively, compute χ(G[S]).

∗ Recursively, compute χ(G[V − S]).

∗ Set best = min(best, χ(G[S]) + χ(G[V − S]).

• Return best.

From Lemma 1, it directly follows that this procedure computes χ(G). As we can
enumerate all subsets of a set in polynomial space, the other steps also can be done in
polynomial space, and recursion depth is bounded by a polynomial in n (or, more precisely,
by O(log n)), the algorithm takes polynomial space.

4 Time analysis of the algorithm

In this section, we show that the algorithm uses O∗(5.283n) time. We show this with
induction. First, we look at the steps where we recursively compute χ(G[V − S]) for a
maximal independent set S with |S| ≥ α · n. Write T (n) for the maximum time used by
the algorithm on a graph with n vertices. We use the following result.

Theorem 2 (Byskov [3]) Let 0 < β < 1. Let d ∈ N and d ≥ 1. The number of maximal
independent sets of size β · n in a graph with n vertices is O∗(d((d+1)·β−1)n · (d + 1)(1−d·β)n).

Let d = 5. Write A(β) = 56·β−1 · 61−5β · 5.2831−β. It follows that the total time spend
on computing χ(G[V − S]) for all maximal independent sets S with |S| = βn ≥ α · n is

O∗(56·β−1 · 61−5β) · T ((1− β) · n) = O∗(A(β)n)
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Lemma 3 5.283 > A(α) = maxα≤β≤1 A(β).

Proof. Direct computation shows that A(α) is slightly less than 5.283. Furthermore the
function A is monotone decreasing in the interval [0, 1]. ut

Thus, the time spend for computing the values χ(G[V −S]) for all maximal independent
sets S is bounded by

n∑
i=α·n

A(i/n)n < n · A(αn) = O∗(5.283n)

Now, we count the time spend on computing χ(G[S]) and χ(G[V − S]) for the sets S
of size between (n− α · n)/2 and n/2. Each set R with (n− α · n)/2 ≤ |R| ≤ (n + α · n)/2
will play at most twice the role of either S or V − S in one call of the procedure. Write
B(β) = (β−β · (1− β)β−1) · 5.283β.

The following lemma is folklore (see e.g. [5]).

Lemma 4 Let V be a set with n elements, and let 0 < β < 1 with β · n ∈ N. There are
O∗((β−β · (1− β)β−1)n) subsets of V of size β · n.

Thus, for (n − α · n)/2 ≤ β · n ≤ (n + α · n)/2, the total time of the computation of
χ(G[S]) and χ(G[V − S]) of sets S with |S| = β · n is bounded by

O∗((β−β · (1− β)β−1)n · T (β)) = O∗(B(β)n)

Lemma 5 5.283 > B((1 + α)/2) = max(1−α)/2≤β≤(1+α)/2 B(β).

Proof. Direct computation shows that B((1 + α)/2) is slightly smaller than 5.283.
Furthermore the function B is monotone increasing in the interval [0, 0.67] and (1+α)/2 <
0.6. ut

So, the total time bounded by the second type of recursive calls is at most

i=d(1+α)/2·ne∑
i=b(1−α)/2·nc

O∗(B(βn)) < n ·O∗(B((1 + α)/2)n) = O∗(5.283n)

As in both cases, we have the required time bound, we can conclude our main result.

Theorem 6 There is an algorithm that computes the chromatic number of a graph in
O∗(5.283n) time and polynomial memory.

With simple addition of bookkeeping, the algorithm can also find an optimal coloring
of the input graph, within same time and memory bounds.
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5 Conclusions

We have provided a first exact coloring algorithm using only polynomial memory, that has
a running time of O(5.283n). We think that our technique can also be applied to other
NP-hard graph problems, in particular partition problems.

Unfortunately our algorithm is not practical. It is an interesting question to improve it
and to obtain an O(tn) time polynomial memory coloring algorithm such that t is as close
as possible to 2.4023 (respectively the base of the running time of the best known coloring
algorithm).

Polynomial vs. exponential memory is an important issue in the design and analysis of
exact exponential-time algorithms. In general, it would be desirable to develop techniques
transforming exponential-time algorithms needing exponential space into those needing
only polynomial memory while keeping the increase of the (base of) the running time
small.
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