209 research outputs found

    Exhaustive generation of kk-critical H\mathcal H-free graphs

    Full text link
    We describe an algorithm for generating all kk-critical H\mathcal H-free graphs, based on a method of Ho\`{a}ng et al. Using this algorithm, we prove that there are only finitely many 44-critical (P7,Ck)(P_7,C_k)-free graphs, for both k=4k=4 and k=5k=5. We also show that there are only finitely many 44-critical graphs (P8,C4)(P_8,C_4)-free graphs. For each case of these cases we also give the complete lists of critical graphs and vertex-critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 33-colorability problem in the respective classes. Moreover, we prove that for every tt, the class of 4-critical planar PtP_t-free graphs is finite. We also determine all 27 4-critical planar (P7,C6)(P_7,C_6)-free graphs. We also prove that every P10P_{10}-free graph of girth at least five is 3-colorable, and determine the smallest 4-chromatic P12P_{12}-free graph of girth five. Moreover, we show that every P13P_{13}-free graph of girth at least six and every P16P_{16}-free graph of girth at least seven is 3-colorable. This strengthens results of Golovach et al.Comment: 17 pages, improved girth results. arXiv admin note: text overlap with arXiv:1504.0697

    List coloring in the absence of a linear forest.

    Get PDF
    The k-Coloring problem is to decide whether a graph can be colored with at most k colors such that no two adjacent vertices receive the same color. The Listk-Coloring problem requires in addition that every vertex u must receive a color from some given set L(u)⊆{1,…,k}. Let Pn denote the path on n vertices, and G+H and rH the disjoint union of two graphs G and H and r copies of H, respectively. For any two fixed integers k and r, we show that Listk-Coloring can be solved in polynomial time for graphs with no induced rP1+P5, hereby extending the result of Hoàng, Kamiński, Lozin, Sawada and Shu for graphs with no induced P5. Our result is tight; we prove that for any graph H that is a supergraph of P1+P5 with at least 5 edges, already List 5-Coloring is NP-complete for graphs with no induced H

    Approximately coloring graphs without long induced paths

    Get PDF
    It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on tt vertices, for fixed tt. We propose an algorithm that, given a 3-colorable graph without an induced path on tt vertices, computes a coloring with max{5,2t122}\max\{5,2\lceil{\frac{t-1}{2}}\rceil-2\} many colors. If the input graph is triangle-free, we only need max{4,t12+1}\max\{4,\lceil{\frac{t-1}{2}}\rceil+1\} many colors. The running time of our algorithm is O((3t2+t2)m+n)O((3^{t-2}+t^2)m+n) if the input graph has nn vertices and mm edges

    The inapproximability for the (0,1)-additive number

    Full text link
    An {\it additive labeling} of a graph GG is a function :V(G)N \ell :V(G) \rightarrow\mathbb{N}, such that for every two adjacent vertices v v and u u of G G , wv(w)wu(w) \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) (xy x \sim y means that x x is joined to yy). The {\it additive number} of G G , denoted by η(G)\eta(G), is the minimum number kk such that G G has a additive labeling :V(G)Nk \ell :V(G) \rightarrow \mathbb{N}_k. The {\it additive choosability} of a graph GG, denoted by η(G)\eta_{\ell}(G) , is the smallest number kk such that GG has an additive labeling for any assignment of lists of size kk to the vertices of GG, such that the label of each vertex belongs to its own list. Seamone (2012) \cite{a80} conjectured that for every graph GG, η(G)=η(G)\eta(G)= \eta_{\ell}(G). We give a negative answer to this conjecture and we show that for every kk there is a graph GG such that η(G)η(G)k \eta_{\ell}(G)- \eta(G) \geq k. A {\it (0,1)(0,1)-additive labeling} of a graph GG is a function :V(G){0,1} \ell :V(G) \rightarrow\{0,1\}, such that for every two adjacent vertices v v and u u of G G , wv(w)wu(w) \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) . A graph may lack any (0,1)(0,1)-additive labeling. We show that it is NP \mathbf{NP} -complete to decide whether a (0,1)(0,1)-additive labeling exists for some families of graphs such as perfect graphs and planar triangle-free graphs. For a graph GG with some (0,1)(0,1)-additive labelings, the (0,1)(0,1)-additive number of GG is defined as σ1(G)=minΓvV(G)(v) \sigma_{1} (G) = \min_{\ell \in \Gamma}\sum_{v\in V(G)}\ell(v) where Γ\Gamma is the set of (0,1)(0,1)-additive labelings of GG. We prove that given a planar graph that admits a (0,1)(0,1)-additive labeling, for all ε>0 \varepsilon >0 , approximating the (0,1)(0,1)-additive number within n1ε n^{1-\varepsilon} is NP \mathbf{NP} -hard.Comment: 14 pages, 3 figures, Discrete Mathematics & Theoretical Computer Scienc

    Complexity of Coloring Graphs without Paths and Cycles

    Full text link
    Let PtP_t and CC_\ell denote a path on tt vertices and a cycle on \ell vertices, respectively. In this paper we study the kk-coloring problem for (Pt,C)(P_t,C_\ell)-free graphs. Maffray and Morel, and Bruce, Hoang and Sawada, have proved that 3-colorability of P5P_5-free graphs has a finite forbidden induced subgraphs characterization, while Hoang, Moore, Recoskie, Sawada, and Vatshelle have shown that kk-colorability of P5P_5-free graphs for k4k \geq 4 does not. These authors have also shown, aided by a computer search, that 4-colorability of (P5,C5)(P_5,C_5)-free graphs does have a finite forbidden induced subgraph characterization. We prove that for any kk, the kk-colorability of (P6,C4)(P_6,C_4)-free graphs has a finite forbidden induced subgraph characterization. We provide the full lists of forbidden induced subgraphs for k=3k=3 and k=4k=4. As an application, we obtain certifying polynomial time algorithms for 3-coloring and 4-coloring (P6,C4)(P_6,C_4)-free graphs. (Polynomial time algorithms have been previously obtained by Golovach, Paulusma, and Song, but those algorithms are not certifying); To complement these results we show that in most other cases the kk-coloring problem for (Pt,C)(P_t,C_\ell)-free graphs is NP-complete. Specifically, for =5\ell=5 we show that kk-coloring is NP-complete for (Pt,C5)(P_t,C_5)-free graphs when k4k \ge 4 and t7t \ge 7; for 6\ell \ge 6 we show that kk-coloring is NP-complete for (Pt,C)(P_t,C_\ell)-free graphs when k5k \ge 5, t6t \ge 6; and additionally, for =7\ell=7, we show that kk-coloring is also NP-complete for (Pt,C7)(P_t,C_7)-free graphs if k=4k = 4 and t9t\ge 9. This is the first systematic study of the complexity of the kk-coloring problem for (Pt,C)(P_t,C_\ell)-free graphs. We almost completely classify the complexity for the cases when k4,4k \geq 4, \ell \geq 4, and identify the last three open cases
    corecore