194,958 research outputs found

    Baxter operator formalism for Macdonald polynomials

    Get PDF
    We develop basic constructions of the Baxter operator formalism for the Macdonald polynomials associated with root systems of type A. Precisely we construct a dual pair of mutually commuting Baxter operators such that the Macdonald polynomials are their common eigenfunctions. The dual pair of Baxter operators is closely related to the dual pair of recursive operators for Macdonald polynomials leading to various families of their integral representations. We also construct the Baxter operator formalism for the q-deformed gl(l+1)-Whittaker functions and the Jack polynomials obtained by degenerations of the Macdonald polynomials associated with the type A_l root system. This note provides a generalization of our previous results on the Baxter operator formalism for the Whittaker functions. It was demonstrated previously that Baxter operator formalism for the Whittaker functions has deep connections with representation theory. In particular the Baxter operators should be considered as elements of appropriate spherical Hecke algebras and their eigenvalues are identified with local Archimedean L-factors associated with admissible representations of reductive groups over R. We expect that the Baxter operator formalism for the Macdonald polynomials has an interpretation in representation theory of higher-dimensional arithmetic fields.Comment: 22 pages, typos are fixe

    Transmutations and spectral parameter power series in eigenvalue problems

    Full text link
    We give an overview of recent developments in Sturm-Liouville theory concerning operators of transmutation (transformation) and spectral parameter power series (SPPS). The possibility to write down the dispersion (characteristic) equations corresponding to a variety of spectral problems related to Sturm-Liouville equations in an analytic form is an attractive feature of the SPPS method. It is based on a computation of certain systems of recursive integrals. Considered as families of functions these systems are complete in the L2L_{2}-space and result to be the images of the nonnegative integer powers of the independent variable under the action of a corresponding transmutation operator. This recently revealed property of the Delsarte transmutations opens the way to apply the transmutation operator even when its integral kernel is unknown and gives the possibility to obtain further interesting properties concerning the Darboux transformed Schr\"{o}dinger operators. We introduce the systems of recursive integrals and the SPPS approach, explain some of its applications to spectral problems with numerical illustrations, give the definition and basic properties of transmutation operators, introduce a parametrized family of transmutation operators, study their mapping properties and construct the transmutation operators for Darboux transformed Schr\"{o}dinger operators.Comment: 30 pages, 4 figures. arXiv admin note: text overlap with arXiv:1111.444

    Quantum Turing Machines Computations and Measurements

    Full text link
    Contrary to the classical case, the relation between quantum programming languages and quantum Turing Machines (QTM) has not being fully investigated. In particular, there are features of QTMs that have not been exploited, a notable example being the intrinsic infinite nature of any quantum computation. In this paper we propose a definition of QTM, which extends and unifies the notions of Deutsch and Bernstein and Vazirani. In particular, we allow both arbitrary quantum input, and meaningful superpositions of computations, where some of them are "terminated" with an "output", while others are not. For some infinite computations an "output" is obtained as a limit of finite portions of the computation. We propose a natural and robust observation protocol for our QTMs, that does not modify the probability of the possible outcomes of the machines. Finally, we use QTMs to define a class of quantum computable functions---any such function is a mapping from a general quantum state to a probability distribution of natural numbers. We expect that our class of functions, when restricted to classical input-output, will be not different from the set of the recursive functions.Comment: arXiv admin note: substantial text overlap with arXiv:1504.02817 To appear on MDPI Applied Sciences, 202

    On Modal Logics of Partial Recursive Functions

    Full text link
    The classical propositional logic is known to be sound and complete with respect to the set semantics that interprets connectives as set operations. The paper extends propositional language by a new binary modality that corresponds to partial recursive function type constructor under the above interpretation. The cases of deterministic and non-deterministic functions are considered and for both of them semantically complete modal logics are described and decidability of these logics is established
    corecore