127 research outputs found

    Kleinian groups and the rank problem

    Full text link
    We prove that the rank problem is decidable in the class of torsion-free word-hyperbolic Kleinian groups. We also show that every group in this class has only finitely many Nielsen equivalence classes of generating sets of a given cardinality.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol9/paper12.abs.htm

    Upper Bounds on the Rate of Low Density Stabilizer Codes for the Quantum Erasure Channel

    Full text link
    Using combinatorial arguments, we determine an upper bound on achievable rates of stabilizer codes used over the quantum erasure channel. This allows us to recover the no-cloning bound on the capacity of the quantum erasure channel, R is below 1-2p, for stabilizer codes: we also derive an improved upper bound of the form : R is below 1-2p-D(p) with a function D(p) that stays positive for 0 < p < 1/2 and for any family of stabilizer codes whose generators have weights bounded from above by a constant - low density stabilizer codes. We obtain an application to percolation theory for a family of self-dual tilings of the hyperbolic plane. We associate a family of low density stabilizer codes with appropriate finite quotients of these tilings. We then relate the probability of percolation to the probability of a decoding error for these codes on the quantum erasure channel. The application of our upper bound on achievable rates of low density stabilizer codes gives rise to an upper bound on the critical probability for these tilings.Comment: 32 page

    Improved Classical and Quantum Algorithms for the Shortest Vector Problem via Bounded Distance Decoding

    Get PDF
    The most important computational problem on lattices is the Shortest Vector Problem (SVP). In this paper, we present new algorithms that improve the state-of-the-art for provable classical/quantum algorithms for SVP. We present the following results. \bullet A new algorithm for SVP that provides a smooth tradeoff between time complexity and memory requirement. For any positive integer 4qn4\leq q\leq \sqrt{n}, our algorithm takes q13n+o(n)q^{13n+o(n)} time and requires poly(n)q16n/q2poly(n)\cdot q^{16n/q^2} memory. This tradeoff which ranges from enumeration (q=nq=\sqrt{n}) to sieving (qq constant), is a consequence of a new time-memory tradeoff for Discrete Gaussian sampling above the smoothing parameter. \bullet A quantum algorithm for SVP that runs in time 20.953n+o(n)2^{0.953n+o(n)} and requires 20.5n+o(n)2^{0.5n+o(n)} classical memory and poly(n) qubits. In Quantum Random Access Memory (QRAM) model this algorithm takes only 20.873n+o(n)2^{0.873n+o(n)} time and requires a QRAM of size 20.1604n+o(n)2^{0.1604n+o(n)}, poly(n) qubits and 20.5n2^{0.5n} classical space. This improves over the previously fastest classical (which is also the fastest quantum) algorithm due to [ADRS15] that has a time and space complexity 2n+o(n)2^{n+o(n)}. \bullet A classical algorithm for SVP that runs in time 21.741n+o(n)2^{1.741n+o(n)} time and 20.5n+o(n)2^{0.5n+o(n)} space. This improves over an algorithm of [CCL18] that has the same space complexity. The time complexity of our classical and quantum algorithms are obtained using a known upper bound on a quantity related to the lattice kissing number which is 20.402n2^{0.402n}. We conjecture that for most lattices this quantity is a 2o(n)2^{o(n)}. Assuming that this is the case, our classical algorithm runs in time 21.292n+o(n)2^{1.292n+o(n)}, our quantum algorithm runs in time 20.750n+o(n)2^{0.750n+o(n)} and our quantum algorithm in QRAM model runs in time 20.667n+o(n)2^{0.667n+o(n)}.Comment: Faster Quantum Algorithm for SVP in QRAM, 43 pages, 4 figure

    Generic-case complexity, decision problems in group theory and random walks

    Get PDF
    We give a precise definition of ``generic-case complexity'' and show that for a very large class of finitely generated groups the classical decision problems of group theory - the word, conjugacy and membership problems - all have linear-time generic-case complexity. We prove such theorems by using the theory of random walks on regular graphs.Comment: Revised versio

    Orbit decidability and the conjugacy problem for some extensions of groups

    No full text
    Given a short exact sequence of groups with certain conditions, 1 ? F ? G ? H ? 1, weprove that G has solvable conjugacy problem if and only if the corresponding action subgroupA 6 Aut(F) is orbit decidable. From this, we deduce that the conjugacy problem is solvable,among others, for all groups of the form Z2?Fm, F2?Fm, Fn?Z, and Zn?A Fm with virtually solvable action group A 6 GLn(Z). Also, we give an easy way of constructing groups of the form Z4?Fn and F3?Fn with unsolvable conjugacy problem. On the way, we solve the twisted conjugacy problem for virtually surface and virtually polycyclic groups, and give an example of a group with solvable conjugacy problem but unsolvable twisted conjugacy problem. As an application, an alternative solution to the conjugacy problem in Aut(F2) is given

    Hardness of decoding quantum stabilizer codes

    Full text link
    In this article we address the computational hardness of optimally decoding a quantum stabilizer code. Much like classical linear codes, errors are detected by measuring certain check operators which yield an error syndrome, and the decoding problem consists of determining the most likely recovery given the syndrome. The corresponding classical problem is known to be NP-complete, and a similar decoding problem for quantum codes is also known to be NP-complete. However, this decoding strategy is not optimal in the quantum setting as it does not take into account error degeneracy, which causes distinct errors to have the same effect on the code. Here, we show that optimal decoding of stabilizer codes is computationally much harder than optimal decoding of classical linear codes, it is #P
    corecore