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Abstract

We give a precise definition of “generic-case complexity” and show that for a very large cl
finitely generated groups the classical decision problems of group theory—the word, conjuga
membership problems—all have linear-time generic-case complexity. We prove such theor
using the theory of random walks on regular graphs.
 2003 Elsevier Science (USA). All rights reserved.

1. Motivation

Algorithmic problems such as the word, conjugacy, and membership problems
played an important role in group theory since the work of Dehn in the early 19
These problems are “decision problems” which ask for a “yes-or-no” answer to a sp
question. For example, the word problem for a finitely presented group

G = 〈x1, . . . , xk | r1, . . . , rm〉
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asks, given a wordw in {x1, . . . , xk}±1, whether or not this word represents the iden
element ofG. The classical result of Novikov and of Boone [52] states that th
exists a finitely presented group with unsolvable word problem. This implies that
other problems (the conjugacy, membership, isomorphism, and order problems) a
unsolvable in the class of all finitely presented groups (see the survey papers [1,48
detailed exposition).

With the advance of modern computers interest in algorithmic mathematics shif
the realm of decidable problems with a particular emphasis on complexity of algori
and in the 1970s modern complexity theory was born. It quickly turned out that
decidable problems which one would really like to solve are too difficult to be so
in full generality on actual computers. Among different possible complexity mea
the most important for us here istime complexity.Usually, algorithms with linear, o
quadratic, or sometimes even with high degree polynomial time complexity, are v
as fast algorithms. Fortunately, several classes of infinite groups have fast algorith
their decision problems. For example, the word and conjugacy problems for any
hyperbolic group are solvable in linear and in quadratic time respectively, and the
problem for a linear group over the field of rational numbers can be solved in cubic
On the other hand, there are finitely presented groups whose word problem has arb
high time complexity. For a group with exponential time complexity of the word prob
any algorithm solving the word problem needs at least exponentially many steps (in
of the word) to halt on infinitely many inputs. This type of analysis concerns the worst
behavior of an algorithm and is now often calledworst-case complexity.

Many algorithms for solving the word problem in finitely presented groups are diffi
to analyze and their worst-case complexity is not known. For example, for the Ma
algorithm for the word problem for one-relator groups [45], we do not even kno
the complexity is bounded above by any fixed tower of exponentials. Yet anyone
has conducted computer experiments with finitely presented groups knows that t
often some kind of an easy “fast check” algorithm which quickly produces a sol
for “most” inputs of the problem. This is true even if the worst-case complexity of
particular problem is very high or the problem is unsolvable. Thus many group-the
decision problems have a very large set of inputs where the (usually negative) a
can be obtained easily and quickly. Indeed, our intuition on the subject has been f
by computer experiments and the main purpose of this paper is to explain some
phenomenon. It turns out that a precise mathematical explanation comes from the
of random walks on regular graphs.

The kind of situation which we have in mind is often analogous to the use of Dan
Simplex Algorithm for linear programming problems. This algorithm is used hundre
times daily and in practice almost always works quickly. The examples of Klee and M
[41] showing that one can make the simplex algorithm take exponential time are
special. A “generic” or “random” linear programming problem is not “special”, and
algorithm works quickly. Observations of this type led to the development ofaverage-case
complexity.There are several different approaches to the average-case complexity, b
all involve computing the expected value of the running time of an algorithm with re
to some measure on the set of inputs (for example, see [37,42]).
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To studygeneric-casecomplexity, which deals with the performance of an algorit
on “most” inputs, we first need a notion of which sets aregeneric.Let ν be a probability
distribution onX∗, or, more generally, an arbitrary additive function with values in[0,1]
defined on some subsets of the setX∗ of all finite words over a finite alphabetX. A subset
T ⊂ X∗ is calledgeneric with respect toν if ν(X∗ −T ) = 0. Then, for example, we woul
say that an algorithmΩ haspolynomial-time generic-case complexity with respect toν, if
Ω runs in polynomial time on all inputs from some subsetT of X∗ which is generic with
respect toν. Of course, we can define generic-case complexity being in any comp
classC, not only for polynomial time.

Thus “generic-case” complexity is in the spirit of but quite different from average-
complexity [37,42,60–62] in several respects. First of all, in average-case complex
decision problem considered must be decidable and one has to have a total algor
solve it. One is then interested in the expected value of the running time of the algo
On the other hand, in generic-case complexity we consider the behavior of the alg
only on a generic setT and completely ignore its behavior elsewhere. Thus we con
partial algorithms which may only halt on the setT and the total problem being consider
can have arbitrarily high worst-case complexity or even be undecidable.

The general idea of generic behavior in the context of group theory was introduc
Gromov [34,35] when he defined the class of word-hyperbolic groups. Gromov indi
that “most” finitely presented groups are word-hyperbolic. This was made preci
Ol’shanskii [50] and also by Champetier [19] who formalized the notion of a “gene
group-theoretic property. Further research on generic group-theoretic properties ha
done by Champetier [19–21], Arzhantseva [6–9], Zuk [65], Cherix with co-authors [2
and others. Recently Gromov [36] pushed his ideas about “random groups” furthe
the goal of constructing finitely presentable groups that do not admit uniform embed
into a Hilbert space.

The notion of genericity in the work cited above concerns the collection of all fin
presented groups. In this paper we shift the focus to considering generic prop
of algorithmic problems inindividual groups with respect toasymptotic density(see
Section 3).

2. Algorithms and decision problems for groups

Convention 2.1. We follow the bookComputational Complexityof Papadimitriou [51] for
our conventions on computational complexity. Recall that acomplexity classis determined
by specifying amodel of computation(which for us is always a multi-tape Turing machin
amode of computation(e.g., deterministic or non-deterministic),resourcesto be controlled
(e.g., time and space) andboundsfor each controlled resource, that is functionsf (x) such
that for each input wordw at mostf (|w|) units of the specified resource needs to
extended by an appropriate Turing machine to reach a decision.

In this paper, unless specified otherwise, when talking about a “complexity clasC”,
we assume that the resources to be controlled in the definition ofC are either time or
space. We also assume that the collection of functions bounding each resource c
of proper complexity functionsf (n) > 0 (see [51] and Section 9 below) and that for a
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functionf (n) in this collection and for any integerC � 1 the functionCf (Cn + C) + C

also belongs to this collection. Most reasonable complexity classes, such as linea
polynomial space, log-space, etc, satisfy these restrictions.

Recall that adecision problemis a subsetD of the set

(
X∗)k = X∗ × · · · × X∗

(k � 1 factors), whereX∗ is the set of all words on a finite alphabetX. (By introducing an
extra alphabet symbol “,” we could view ak-tuple of words (w1,w2, . . . ,wk) ∈ (X∗)k as a
single word in the alphabetX ∪ {, }.)

In this section we focus on three classical decision problems for a given fin
generated groupG: theword problem(WP), theconjugacy problem(CP), and thesubgroup
membership problem(MP). (Our approach is quite general and can be applied to o
group-theoretic decision problems, such as the order of an element problem.) To for
these problems precisely one needs to specify exactly how the groupG is “given.” To
do this, one chooses a finite set of generatorsA of a groupG, that is, one fixes a ma
π :A → G such thatG = 〈π(A)〉. By abuse of notation we often identify elements ofA

with their images underπ in G. PutX = A ∪ A−1. Thus every wordw ∈ X∗ represents an
elementπ(w) ∈ G.

Now we are ready to formulate the algorithmic problems abovewith respect to the give
set of generatorsA:

(WP) Given a wordw ∈ X∗ determine whether or notw represents the identity eleme
in G (symbolically,w = G1). Thus

WP(G,A) := {
w ∈ X∗ | w = G1

}
.

(CP) Given two wordsu,v ∈ X∗ determine whether they represent conjugate elem
of G or not. Thus

CP(G,A) := {
(u, v) ∈ X∗ × X∗ | π(u),π(v) are conjugate inG

}
.

(MP) Let H � G be a fixed finitely generated subgroup. Given a wordu ∈ X∗ determine
whether or notu belongs toH . Thus

MP(G,H,A) := {
w ∈ X∗ | π(w) ∈ H

}
.

Convention 2.2. We call these problems theA-versionsof the corresponding problem
aboutG to emphasize the choice of generatorsA. We use the notationD to denote a
problem about a groupG and we denote byDA theA-versionof D corresponding to the
finite generating setA of G. Thus ifD is the word problem forG, thenDA = WP(G,A).
If D is a problem about a groupG andC is a complexity class, we say thatD is solvable
for G with complexity inC if for every finite generating setA of G the languageDA is
in C.
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Of course, instead of the problems overX∗ one can consider decision problems o
over freely reduced words, that is, decision problemsD ⊂ F(A)k, where F(A) is the
free group onA. Since one can easily (in linear time) reduce a word inX∗ to its reduced
form in F(A) these two decision problems are equivalent with respect to time comp
classes. In average-case or generic-case complexity, where the measure on the set
matters, the equivalence between these two points of view needs to be verified. M
our results are unchanged if we takeF(A) rather thanX∗ as the set of inputs.

If Y is another finite set of generators forG andDY is theY -version of the decision
problemD then these two decision problem are equivalent from the point of view of w
case complexity. Indeed, every generatorx ∈ X = A ∪ A−1 can be written as a word i
F(Y ). Thus every word inX∗ can be re-written in linear time as a word inY ∗ representing
the same group element. This provides a linear-time reduction ofDA toDY , and vice versa
Thus the worst-case complexity of group-theoretic decision problems does not dep
the choice of a finite generating set and is a true group invariant. By contrast, in the a
or generic-case complexities a change in generating sets might conceivably give a d
result and we will explicitly make such an invariance a part of our definition. All of
results proved in this paper are invariant under change of a generating set.

A more complicated class of algorithmic problems can be described aswitness problems
(or “proof problems”). Unlike decision problems, a “witness problem” asks to produce
a given elementu ∈ D, an explicit justification or “proof” of the fact thatu is, indeed,
in D. For example, the “witness” version of the Word Problem for a presentation〈A | R〉,
given a wordu ∈ ncl(R), asks for an explicit expression ofu as a product of conjugates
elements fromR±1

u =
t∏

j=1

u−1
j r

εj

j uj ,

whereuj ∈ F(A), rj ∈ R, andεj = ±1.
The witness Conjugacy Problem would require producing a conjugating element fo

words known to represent conjugate elements, and the witness Membership Problem
ask to express a word in the generators of an ambient group (and known to repre
element from a subgroup) as a word in the generators of that subgroup. Although w
problems are increasingly important (for example, in group-based cryptography [3
we concentrate here on the traditional decision problems.

Suppose we have a total algorithmΩ1 solving a decision problemD and also a par
tial algorithmΩ2 solving the problem generically with low generic-case complexity. T
by runningΩ1 andΩ2 in parallel we obtain a new total algorithmΩ = Ω1 ‖ Ω2 which
solvesD with low generic-case complexity. The idea of putting these two algorithm
gether is in fact used by many practical experimenters. That is, for a particular pr
one should look both for an exact solution with minimal known worst-case complexit
for a partial “generic” solution which will work very fast on most inputs. The comp
tional group theory package “Magnus” already uses this philosophy very substantia
most problems there are attacked by several algorithms running in parallel, includin
checks” working with abelianizations and other quotients. We refer the reader to the
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of Baumslag and Miller [13] for a more detailed discussion on “Magnus.” More rece
several applications of genetic algorithms in group theory [49,57] revealed that som
sical problems that were believed to have only “too slow,” i.e., non-practical, solut
admit a very fast solution generically. This, as well as numerous computer experim
provided an important source of intuition for the present paper.

If the generic-case complexity ofΩ2 is very low and the worst-case complexity of t
total algorithmΩ1 is not too high, then the combined algorithm may have low ac
average-case complexity. The idea of using generic-case results to prove avera
results in this way seems very fruitful, and we have already been able to obtain
interesting results which will be the subject of a future paper.

3. Generic-case complexity

We have stressed that in order to measure the “largeness” of a set of words
alphabet one needs a measure or, at least, an additive positive real-value function de
some sets of words in the alphabet. For this paper we use the asymptotic density fu
suggested in the work of Borovik et al. [17] (see also [16]) and similar in spirit to conc
considered by Gromov, Ol’shanskii, and Champetier.

Definition 3.1 (Asymptotic density). LetX be a finite alphabet with at least two eleme
and let (X∗)k denote the set of allk-tuples of words onX. The length of a k-tuple
(w1, . . . ,wk) is the sum of the lengths of thewi . Let S be a subset of(X∗)k . For every
n � 0, letBn be the set of allk-tuples in(X∗)k of length at mostn.

We define theasymptotic densityρ(S) for S in (X∗)k as

ρ(S) := lim sup
n→∞

ρn(S), whereρn(S) := |S ∩ Bn|
|Bn| .

If the actual limit limn→∞ ρn(S) exists, we denotêρ(S) := ρ(S). In the case where th
limit

lim
n→∞ ρn(S) = ρ̂(S)

exists, we shall be interested in estimating the speed of convergence of the se
{ρn(S)}. To this end, ifan � 0 and limn→∞ an = 0, we will say that the convergenc
is exponentially fastif there is 0� σ < 1 and C > 0 such that for everyn � 1 we
havean � Cσn. Similarly, if limn→∞ bn = 1 (where 0� bn � 1), we will say that the
convergence isexponentially fastif 1 − bn converges to 0 exponentially fast.

Definition 3.2 (Generic sets). We say that a subsetS ⊆ (X∗)k is genericif ρ̂(S) = 1.
If in additionρn(S) converges to 1 exponentially fast, we say thatS is strongly generic.

What we have really defined is beinggeneric with respect tôρ in the sense discusse
in Section 1. Since we now fix this particular concept of being generic, we simply
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“generic” for the rest of this paper. The complement of a generic set is termed anegligible
set. We can definestrongly negligible setsin a similar manner. In the following lemma w
collect several simple but useful properties of generic and negligible sets.

Lemma 3.3. Let S,T be subsets of(X∗)k . Then the following hold:

(1) The setS is generic if and only if its complement is negligible.
(2) If S is generic andS ⊆ T thenT is generic.
(3) Finite unions and intersections of generic(negligible) sets are generic(negligible).
(4) If S is generic andT is negligible, thenS − T is generic.
(4) The collectionB of all generic and all negligible sets forms an algebra of subset

(X∗)k.

Now we can define generic-case complexity of algorithms.

Definition 3.4 (Generic and strongly generic performance of a partial algorithm).
D ⊆ (X∗)k be a decision problem and letC be a complexity class. LetΩ be a correct
partial algorithm forD, that is, wheneverΩ reaches a definite decision on whether or
a tuple in(X∗)k belongs toD, that decision is correct.

We say thatΩ solvesD with generic-case complexityC if there is a generic subse
S ⊆ (X∗)k such that for every tupleτ ∈ S the algorithmΩ terminates on the inputτ
within the complexity boundC.

If in addition the setS is strongly generic, then we say that the partial algorithmΩ

solves the problemD with generic-case complexity stronglyC.
We again point out that we completely ignore the performance ofΩ on tuples not

in S and the definition thus applies to the case whereD has arbitrarily high worst-cas
complexity or is indeed undecidable.

One can now define “generic” complexity classes of decision problems in the ob
way.

Definition 3.5 (Generic complexity classes). LetC be a complexity class. Then Gen(C)

denotes the class of all decision problemsD for which there exists a partial algorith
solving D with generic-case complexityC. Similarly, SGen(C) denotes the class of a
decision problemsD for which there exists a partial algorithm solvingD with generic-
case complexity strongly inC.

As we mentioned before, while the worst-case complexity of most group-the
decision problems does not depend on the choice of a finite generating set for a gro
not at all clear (and is probably false) that generic-case complexityper seis independen
of the chosen set of generators. In order to have a true group-theoretic invariant, w
to incorporate such independence into the following definition.

Definition 3.6 (Generic-case complexity of a decision problemD for a group G). LetG
be a finitely generated group. LetD be an algorithmic problem about the groupG. We say
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that the decision problemD for G hasgeneric-case complexity inC (strongly inC) if for
everyfinite generating setA of G there exists a partial algorithmΩ(A) which solves the
problemDA ⊂ (A ∪ A−1)∗ with generic-case complexityC (strongly inC).

4. Main results

In this section we formulate the main results of the paper. Even though our r
regarding the word problem follow from the more general theorem about the memb
problem (see Theorem B below), we state the word problem results first since most
applications which we have in mind concern the word problem.

The concept of a group being nonamenable plays an important role in our results
now the reader needs only to remember that any group which contains a free subg
rank two is nonamenable.

Theorem A. Let G be a finitely generated group. Suppose thatG has a finite index
subgroup that possesses an infinite quotient groupG for which the word problem is
solvable in the complexity classC. Then the word problem forG has generic-case
complexity in the classC. Moreover, if the groupG is nonamenable, then the generic-ca
complexity of the word problem forG is strongly inC.

There are a number of interesting immediate corollaries of the above result.

Corollary 4.1. Let G be a finitely generated group.

(1) SupposeG has a finite index subgroup that possesses an infinite word-hyper
quotientG. Then the word problem forG is generically in linear time. Moreove
if G is non-elementary, then the word problem forG is strongly generically in linear
time.

(2) SupposeG has a finite index subgroup that possesses an infinite automatic quotieG.
Then the word problem forG is generically in quadratic time. Moreover, ifG is
nonamenable, then the word problem forG is strongly generically in quadratic time.

(3) SupposeG has a finite index subgroup that possesses an infinite quotient groupG, that
is linear over a field of zero characteristic.
Then the word problem forG is generically in polynomial time. Moreover, ifG is not
virtually solvable, then the word problem forG is strongly generically in polynomia
time.

Proof. It is well known that for any word-hyperbolic group and for any finite generating
of this group, there is a set of defining relators for which Dehn’s algorithm solves the
problem in linear time in the length of the input word. Moreover, this linear-time algor
can be carried out by a multi-tape Turing machine. This was first observed by Ansh
Domanski [4] (see also [2] for a detailed description of the algorithm). Moreover, Hol
Rees [38,39] have proved that for a word-hyperbolic group the algorithm solving the
problem can be carried out by a multitapereal-timeTuring machine.
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It is also well known that any word-hyperbolic group is either virtually cyclic (in wh
case it is calledelementary)or contains a free group of rank two (in which case it is ca
non-elementary).Thus every non-elementary word-hyperbolic group is nonamen
Together with Theorem A this implies the first part of Corollary 4.1.

Similarly, the classical result of [27] shows that for an automatic group with any fi
generating set there is an algorithm which solves the word problem in quadratic
Again, by Theorem A the second part of Corollary 4.1 immediately follows.

An important result of Lipton and Zalcstein [43] states that for a finitely generated g
over a field of characteristic zero the word problem is solvable in log-space and he
polynomial time. By a famous theorem of Tits [56], a finitely generated linear group
is not virtually solvable contains a non-Abelian free subgroup and hence is noname
This, together with Theorem A, implies the third part of Corollary 4.1.✷
Example 4.2. If G is any finitely generated group with infinite abelianization thenG maps
onto the infinite cyclic group and hence by Corollary 4.1 the word problem inG is solvable
generically in linear time. This is also equivalent to being able to writeG as an HNN
extension in some way. The result thus applies to all knot groups, all Artin groups a
infinite one-relator groups.

Example 4.3. Let G be a finitely generated infinite virtually solvable group. ThenG has
a finite index subgroup that possesses an infinite virtually Abelian quotient. Hen
Corollary 4.1 the word problem inG is solvable generically in linear time.

Example 4.4. Recall that then-strand braid groupBn, wheren � 3, is given by the
presentation

Bn = 〈
a1, . . . , an−1 | aiai+1ai = ai+1aiai+1, for i = 1, . . . , n − 2,

andaiaj = ajai for |i − j | > 1
〉
.

Thepure braid groupPn corresponds to thosen-strand braids where every strand en
in the same position that it begins. ThenPn is a normal subgroup of indexn! in Bn and
Bn/Pn is isomorphic to the symmetric groupSn. While it is hard to map one braid grou
onto another, this task is easy with pure braid groups: forn � 4 the groupPn maps onto
Pn−1 by “pulling out” the last strand of a braid. Thus for everyn � 3 the groupP3 is a
quotient group ofPn. It is well known thatP3 ∼= F(a, b) × Z. Thus for eachn � 3 the
groupPn has a non-Abelian free quotientF(a, b). SincePn is of finite index inBn and
sinceF(a, b) is nonelementary word-hyperbolic, Corollary 4.1 implies that forn � 3 the
groupPn andBn have word-problems solvable with generic-case complexitystrongly in
linear time.

Example 4.5. Let G = Aut(Fn) or G = Out(Fn) wheren � 2. Then by looking at the
action of an automorphism (an outer automorphism) ofFn on the abelianization ofFn, we
see thatG maps onto the groupGL(n,Z). Since the word problem inGL(n,Z) is solvable
in quadratic time andGL(n,Z) is nonamenable (it contains a non-Abelian free subgro
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Corollary 4.1 implies that the word problem forG is solvable strongly generically i
quadratic time.

This observation raises the interesting question of determining the worst-case co
ity of the word problem forG = Aut(Fn), say with generators the elementary Niels
automorphisms. We usually think that the “obvious algorithm” of checking if the actio
an automorphismα fixes the generators is very simple, but writing out all the intermed
step could yield exponentially long words. It is not clear if there is an algorithm with b
worst-case complexity.

Example 4.6. Theorem A holds even ifG has unsolvable word problem. We consider
finitely presented Boone groupB with unsolvable word problem as described in Rotma
book [52]. One proves the word problem unsolvable by showing that equality bet
certain “special” words exactly mimics the word problem in a semigroup with undecid
word problem. We again have the situation that the complexity hinges on words of a
special form. It is easy to see that the groupB has the non-Abelian free group genera
by all the ri as the quotient group which is obtained by killing all the other genera
Thus the stronger conclusion of the theorem applies and the generic-case comple
the word problem forB is strongly linear time. This is not really surprising and is a pre
version of the statement that the groupB is “large” and the set of special words is rea
quite “sparse.”

Example 4.7. Let G be a group with a finite presentation involving at least two m
generators than relators. By the result of Baumslag and Pride [11]G has a subgrou
of finite index that can be mapped homeomorphically onto the free group of rank
Hence by Corollary 4.1G has word problem solvable strongly generically in linear tim
In particular, this applies to all one-relator group on at least three generators.

In strong contrast with worst-case complexity is the fact that generic-case comp
for a problemD for a groupG tells us nothing whatsoever about the complexity ofD

for subgroups ofG. For example, ifG is any finitely generated group, thenG is certainly
embedded in the direct productP = G × F(a, b) of G and the free groupF(a, b) of rank
two. We can apply Theorem A toP by taking the homomorphism toF(a, b) which kills
all the elements ofG. SinceF(a, b) is hyperbolic and nonamenable, Theorem A imp
that the word problem inP is strongly generically in linear time. But this says nothing
all aboutG because we just erased all information aboutG. This remark does show th
every finitely generated group can be embedded in a finitely generated group whos
problem has generic-case complexity strongly in linear time. A well-known theore
Neumann (see [44]) shows that there are continuumly many 2-generator groups, a
there are continuumly manyn-generator group for everyn � 2. Thus there are continuum
many finitely generated group whose word problem has generic-case complexity st
linear time. This is in sharp contrast with the fact that there are only countably many fi
generated groups with solvable word problem.

The following computer experiment is easy to program. LetFn be a free group o
rankn and letφ be the homomorphism fromFn to Fn−k defined by sending the firstk < n

generators ofFn to the identity. Pick a large lengthl and use a random number generato
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generate a large number of random freely reduced words of lengthl. If one calculates the
ratio of the number of wordsw with φ(w) �= 1 to the total of number of words generate
one observes exactly the phenomena predicted by the theory of random walks.

We now turn to the membership problem. It is necessary to discuss both a basic si
where the membership problem is solvable and also a basic result about undecidab
the membership problem. We first observe that ifG is any finitely generated group andH is
a subgroup of finite index, then the membership problem forH in G is decidable in linea
time. Choose a finite setA of generators ofG. TheSchreier coset graphΓ (G,H,A) is
defined as follows. The vertex setV of Γ (G,H,A) is the set of cosets{Hg | g ∈ G}.
If y ∈ A then there is an edge labeled byy from Hg to Hgy. Every edge inΓ (G,H,A)

with labela ∈ A is equipped with a formal inverse edge labeled bya−1. ThusΓ (G,H,A)

is an oriented labeled graph.
If A is finite andH has finite index inG then the graphΓ (G,H,A) is finite. We

can viewΓ (G,H,A) as the transition graph of a finite state automatonM where the
initial state and the only final state is the cosetH1 = H . By the definition of the cose
graph, for any wordw on the generators and their inverses,M acceptsw if and only
if w ∈ H . Thus the membership problem forH is indeed decidable in linear time: given
wordw ∈ (A∪A−1)∗, readw on the graph starting at the cosetH and see if one ends bac
at the cosetH . A generalized version of these ideas is currently important in geom
group theory.

Theorem B. Let G be a finitely generated group and letH � G be a finitely generate
subgroup of infinite index. LetG1 be a subgroup of finite index inG such thatH � G1 and
let φ :G1 → G be an epimorphism. Assume thatH = φ(H) is contained in a subgroupK
of infinite index inG and such that the membership problem forK in G is in the complexity
classC. Then the membership problem forH in G has generic-case complexity inC.
Moreover, if the Schreier coset graphΓ (G,K,A) is nonamenable(for some and henc
any finite generating setA of G), then the generic-case complexity of the member
problem forH in G is strongly inC.

The “strong” conclusion of Theorem B holds, for example, ifG is non-elementary
hyperbolic group andK is a quasiconvex subgroup ofG. Indeed, in this case th
coset graphΓ (G,K,A) is nonamenable by a recent result of Kapovich [40]. Since
membership problem for a quasiconvex subgroup of a hyperbolic group is solvable in
time, Theorem B implies that the membership problem forH in G is strongly generically
in linear time.

Example 4.8. An Artin group is a group with a presentation

G = 〈a1, . . . , an | uij = uji, where 1� i < j � n〉, (1)

where fori �= j

uij := aiajai · · ·︸ ︷︷ ︸
m times

.

ij
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The Coxeter groupC associated withG is the quotient group obtained by setting t
squares of the generators equal to the identity. In general, the membership proble
be unsolvable for a Coxeter group or an Artin group. A Coxeter group or an Artin g
is of extra-large typeif all mij � 4. Any Coxeter group of extra-large type with at le
three generators is a non-elementary hyperbolic group. Appel and Schupp [5] solv
membership problem for subgroups generated by subsets of the given generators
groups of extra-large type, but very little is known about the membership problem
arbitrary finitely generated subgroups. IfH is a finitely generated subgroup of an Art
group G of extra-large type such that the imageH has infinite index in the Coxete
quotientC and is quasiconvex inC then the membership problem forH in G has generic
case complexity strongly linear time. Schupp [53] showed that all group in a very exte
class of Coxeter groups are locally quasiconvex, that is, every finitely generated subg
quasiconvex. Also, in that case one can check whether or not a finitely generated su
has infinite index in quadratic time. This provides a large set of examples of fin
generated subgroups of Artin groups where the generic-case complexity of the mem
problem is strongly in linear time.

Example 4.9. A basic negative result about the membership problem is the theore
Mihailova [46] that ifPn = Fn × Fn is the direct product of two copies of the free gro
Fn of rankn � 2, then there are subgroupsH of Pn with unsolvable membership problem
(see [44]). Let

G = 〈x1, . . . , xn | r1, . . . , rm〉

be a finitely presented group with unsolvable word problem. By using the well-kn
Higman–Neumann–Neumann embedding of a finitely presented group into a 2-gen
group, we may assume thatn is any integer which is at least 2. We use the ordered
notation for elements of the direct productPn = Fn × Fn. Let H be the subgroup ofPn

with generators

(x1, x1), . . . , (xn, xn), (1, r1), . . . , (1, rm). (∗)

Since theri are defining relators forG, an easy argument shows that

(u, v) ∈ H if and only if u = v in G.

Thus deciding membership inH is equivalent to solving the word problem inG.
We point out that “genericity” is operating at three different levels when considerin

membership problem. Let us fixPn as the direct product of two free groups of rankn. Call
a subgroupH a subgroup of Mihailova typeif H has a set of generators of the form(∗)

above, which is very special. If we choose a random set of generators for a subgrou
very unlikely that they will be even close to being of Mihailova type. The remarks a
showed that membership in a Mihailova subgroupH is equivalent to the word problem
for the groupG whose defining relators are theri . So just among subgroups of Mihailov
type, if we choose therj at random we encounter the phenomenon that finitely prese
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groups on a fixed set of generators are generically hyperbolic and thus the memb
problem for the correspondingH is still actually solvable in linear time. But Theorem
still applies to a particular Mihailova subgroup chosen to have unsolvable memb
problem. Most of known explicitly constructed groups with unsolvable word problem
at least infinite cyclic quotients, even after embedding into a two-generator group. T
there is a homomorphismφ from Fn to Z which sends all theri to the identity. Letψ be the
homomorphism fromPn to Qn = Fn × Z defined byψ(u,v) = (u,φ(v)). The imageH
of H is Fn × {1} which has infinite index inQn. The membership problem forH in Qn

is clearly in linear time since to decide if(u, v) ∈ H one only has to check ifv equals the
identity. If, for example, we use the Boone groupB directly, without reducing the numbe
of generators, to construct a Mihailova subgroup, then we have a homomorphism wh
imageH is the first factor ofFk × Fk and the generic-case complexity of the members
problem forH is strongly linear time.

There is a similar theorem for the conjugacy problem.

Theorem C. Let G be a non-cyclic finitely generated group with infinite abelianizati
Then the generic-case complexity of the conjugacy problem forG is linear time.

Theorem C is applicable to a wide variety of groups, such as infinite one-relator g
braid [14,15,26] and Artin groups, knot groups, etc.

We shall see that the proof of the theorem reduces to the case of the word pr
since two words are conjugate in an Abelian group if and only if they are equal. The r
has probably noticed that a statement about strong generic-case complexity in the
nonamenable quotients is missing from the theorem. At the present writing we do no
a proof which is invariant under changing the set of generators although we believ
such a theorem is true.

A very interesting class of finitely presented groups with unsolvable conjugacy pro
is the class of residually finite groups with unsolvable conjugacy problem construct
Miller [47]. Given any finitely presented groupG with unsolvable word problem, Mille
shows how to construct a groupM(G) which is the semidirect product of two finite
generated free groups (and which is thus residually finite) where conjugacy inM(G) codes
the word problem forG. As usual, the “code words” have a special form. The gro
M(G) have large non-Abelian free quotients. We can show (although the argument
presented in this article) that the conjugacy problem of such anM(G) has generic-cas
complexity which is strongly linear time because the free quotient is obtained by s
killing some of the given generators.

We again stress some important limitations of generic case complexity.
First, just the definition of generic-case complexity does not say anything abo

speed with which a particular sequence tends to one or zero. If the quotient grouG is
infinite but not “large enough,” sayG = Z, this speed may in fact be much slower than
exponentially fast convergence which we are really aiming at. The weaker converge
all that we have for two-generator one-relator groups.

Second, there is a substantial difference between our notion of “generic perform
and the notion of “average case complexity”. In a situation like the word problem



678 I. Kapovich et al. / Journal of Algebra 264 (2003) 665–694

a total
orst-
about

and
very
many
to the

ess”
t if one
sed on

ng the

uages
rank

the set

finitely
ity,
r are
vant
sively
ruction,

word
ms to
-case

havior
ry, so

refer
ces in

in our
one-relator groups where, although its complexity is not known, we at least have
algorithm which is well understood, a future hope is to combine generic and w
case methods to obtain average-case results. In this regard the work of [16,17]
constructing explicit measures on free groups may be particularly useful.

In general, our approach simply shows that for the “decision” version of the word
the membership problem the fast “No” answer component of the set of all inputs is
large. One may be mainly interested in some infinite recursive subset of inputs and
examples may not admit algorithms with fast generic performance when restricted
subset of interest.

Finally, our results do not say anything about the generic behavior of the “witn
versions of the word, conjugacy and membership problems. Yet it appears to us tha
has in mind practical cryptographic applications, these applications have to be ba
the “witness” versions of the problems (rather than “decision” ones).

Thus we regard this paper as just the first step in the direction of understandi
generic-case and average-case behavior of various group-theoretic algorithms.

The results which we discuss in the last section of the paper (on finding lang
which arenot in given generic complexity classes) are due to Carl Jockusch and F
Stephan. For example, the set of languages over a finite alphabetA (with at least two
letters) which are generically computable has measure zero (in a precise sense) in
of all languages overA. Moreover, given any proper time-complexity functionf (n) one
can construct a language that is deterministically computable in timef 3(n) but which
cannot be generically computed in timef (n).

These general results do not, however, answer the question of existence of
generatedgroupswith decision problems of arbitrarily “high” generic-case complex
say with a word problem which is not generically solvable. All our results in this pape
proved by the “quotient method” of finding an infinite quotient group in which the rele
problems have the desired complexity. Using the existence of two disjoint recur
enumerable sets which are not recursively separable and the Adian–Rabin const
Miller III [48] constructed an example of a finitely presented groupG all of whose
nontrivial quotients have unsolvable word problem! This particular groupG therefore
completely defeats our quotient method of proof but it is probably the case that the
problem has low generic-case complexity for some different reason. Indeed, it see
be a very difficult problem to construct a finitely generated group where the generic
complexity of the word problem is provably not linear.

5. Cogrowth and simple random walks on regular graphs

The proofs of our theorems depend on already known nontrivial facts about the be
of simple random walks on regular graphs. The really hard work is done by that theo
we now turn to the results which we need.

The subject of random walks on graphs and groups is vast and very active. We
the reader to [18,33,58,63,64] for some background information and further referen
this area. We will recall several basic definitions in facts which are directly needed
arguments.
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Definition 5.1. Let Γ be ad-regular graph (whered � 2) with a base-vertexx0.
Then letan(Γ ) = an denote the number of reduced paths (i.e., paths without backtr

of lengthn from x0 to x0 in Γ . Similarly, let bn(Γ ) = bn be the number of all paths o
lengthn from x0 to x0 in Γ . Also letrn = rn(Γ ) be denote the number of reduced paths
length at mostn from x0 to x0 in Γ . Finally, letzn = zn(Γ ) denote the number of all path
of length at mostn from x0 to x0 in Γ . Thusrn = ∑n

i=0 ai andzn = ∑n
i=0 bi .

Put

α(Γ ) = α := lim sup
n→∞

n
√

an, β(Γ ) = β := lim sup
n→∞

n
√

bn, and

ν(Γ ) = ν := 1

d
β(Γ ).

We shall refer toα(Γ ) as thecogrowth rateof Γ and toν(Γ ) as thespectral radius
of Γ . The numberβ(Γ ) will be called thenon-reduced cogrowth rateof Γ .

It turns out that the definitions ofα(Γ ), β(Γ ), andν(Γ ) do not depend on the choic
of a base-pointx0 ∈ Γ and we have (see, for example, [18,64]):

Lemma 5.2. Let Γ be a connected d-regular graph with a base-vertexx0, whered � 2.
Then:

(1) The values ofα(Γ ), β(Γ ), and ν(Γ ) do not depend on the choice of a base-po
x0 ∈ Γ .

(1) 0� α(Γ ) � d − 1, 0 � β(Γ ) � d , and0 � ν(Γ ) � 1.
(2) ν = lim supn→∞ n

√
p(n) wherep(n) is the probability that a simple random walk onΓ

originating atx0 will return to x0 in n steps.

Definition 5.3. Let Γ be ad-regular graph whered � 2. We will say thatΓ is amenableif
ν(Γ ) = 1.

An important result connecting cogrowth and spectral radius was first obtaine
Grigorchuck [33] and Cohen [24] for Cayley graphs of finitely generated group and
generalized by Bartholdi [10] to the case of arbitrary regular graphs.

Theorem 5.4. Let Γ be ad-regular graph(whered � 2). Let α = α(Γ ), β = β(Γ ), and
ν = ν(Γ ). Then

ν =
{ √

d−1
d

(
α√
d−1

+
√

d−1
α

)
if α >

√
d − 1,

2
√

d−1
d

otherwise.

In particular, ν < 1 ⇐⇒ α < d − 1 ⇐⇒ β < d , that is ν = 1 ⇐⇒ α = d − 1 ⇐⇒
β = d .



680 I. Kapovich et al. / Journal of Algebra 264 (2003) 665–694

le

:

.

. 99

e also

is

nt
The above theorem indicates thatΓ is amenable if and only if it has maximal possib
cogrowth for ad-regular graph.

The following classical result is known as Stolz’ Theorem (see, for example, [55])

Lemma 5.5. Supposexn, yn are sequences of real numbers such thatyn < yn+1 for everyn
with limn→∞ yn = ∞ and such thata finite limit

lim
n→∞

xn+1 − xn

yn+1 − yn

exists. Then

lim
n→∞

xn+1 − xn

yn+1 − yn
= lim

n→∞
xn

yn
.

Lemma 5.6. Let cn � 0 and c > 1 be such thatlimn→∞(cn/cn) = 0. Put fn = ∑n
i=0 ci .

Thenlimn→∞(fn/cn) = 0.

Proof. Applying Stolz’ Theorem toxn = fn andyn = cn immediately yields Lemma 5.6✷
Our principal technical tool is:

Theorem 5.7. Let Γ be an infinite connectedd-regular graph ford � 3. Let an = an(Γ )

andrn = rn(Γ ). Then

(i) lim
n→∞

an

(d − 1)n
= lim

n→∞
bn

dn
= 0.

(ii) lim
n→∞

rn

(d − 1)n
= lim

n→∞
zn

dn
= 0.

Proof. This fact is essentially due to Bartholdi as it follows from the remark on p
in [10]. It was first obtained (in a stronger form) by Woess [63] for the case whereΓ is the
Cayley graph of a finitely generated group. Independent proofs of Theorem 5.7 hav
been obtained by Smirnova–Nagnibeda and Woess (unpublished).

We present briefly a formal argument for completeness.
Notice that (i) implies (ii) by Lemma 5.6 sincern = ∑n

i=0 −ai andzn = ∑n
i=0 bi . We

will now verify (i).
Suppose first thatα(Γ ) < d − 1 and henceβ(Γ ) < d by Theorem 5.4. Then there

N0 � 1 and 0< a < d − 1 such that for alln � N0 we havean � an. Hence forn � N0

an

(d − 1)n
� an

(d − 1)n
−→
n→∞ 0,

as required. A similar argument implies that limn→∞ bn/dd = 0. Hence the stateme
of Theorem 5.7 obviously holds. Thus we may assume thatα(Γ ) = d − 1, so that
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β(Γ ) = d andν(Γ ) = 1 by Theorem 5.4. Then the word-by-word repetition of the pr
of Lemma 3.9 in [10] implies that

lim
n→∞

an

(d − 1)n
= lim

n→∞
bn

dn
= 0.

Indeed, Lemma 3.9 of [10] proves a stronger version of Theorem 5.7 under the assu
thatΓ is also quasi-transitive. However, the only place in the proof of Lemma 3.9 in
where quasi-transitivity is used, is to conclude thatβ(Γ ) = d which is already known in
our case. ✷

In case whereΓ is nonamenable, we can say even more.

Proposition 5.8. Let Γ be a nonamenable connectedd-regular graph whered � 3 (and
henceΓ is infinite). Letan = an(Γ ), rn = rn(Γ ), bn = bn(Γ ), andzn = zn(Γ ). Then

(1) Both an

(d−1)n
→ 0 and rn

(d−1)n
→ 0 exponentially fast.

(2) Both bn

dn → 0 and zn

dn → 0 exponentially fast.

Proof. SinceΓ is nonamenable, we haveα = lim sup n
√

an < d − 1 which immediately
implies that an

(d−1)n
→ 0 exponentially fast. It also means that there aren0 � 1 and

1 < a < d − 1 such that for anyn � n0 we havenn � an. Hence forn � n0

rn = rn0−1 +
n∑

i=n0

ai � rn0−1 + an0
an−n0 − 1

a − 1
.

Thus there areA,B > 0 such that for anyn � n0 we havern � A + Ban. Since 1<

a < d − 1, this implies that rn

(d−1)n
converges to zero exponentially fast. Thus part (1

Proposition 5.8 is verified.
The nonamenability ofΓ implies β = lim sup n

√
bn < d , which implies part (2) of

Proposition 5.8 by the same argument as above.✷

6. Cogrowth in groups

Let G be a group with a fixed finite generating setA consisting ofk � 1 elements. Ifw
is a word inA ∪ A−1, we will denote byπ(w) the element ofG represented byw. We
will also denote by|w| the length of the wordw. For an elementg ∈ G denote by|g|A
the length of a shortest word inA ∪ A−1 representingg. Also, if Q is an alphabet, we wil
denote byQ∗ the set of all words inQ. For a subsetS ⊆ G we will denote bySA the set
of all words in(A ∪ A−1)∗ representing elements ofS.

Let H � G be a fixed subgroup (not necessarily normal). LetΓ = Γ (G,H,A) be the
Schreier coset graphdefined in Section 4. ThenΓ is a connected 2k-regular graph. Note
also that ifH is normal inG, thenΓ is precisely the Cayley graph of the groupG/H with
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respect to the generating setA. Thus every edge-path inΓ has a label which is a word i
the alphabetA ∪ A−1. It is easy to see that for any wordw and any vertexx of Γ there
exists a unique path inΓ with labelw and originx. Moreover, ifw is the label of a pathp
starting at the vertexx0 := H1 in Γ , thenπ(w) ∈ H if and only if the terminal vertex ofp
is also equal toH1. The graph-theoretic concepts from the previous section can no
re-stated as follows:

an(G,H,A) = #
{
w | w is a freely reduced word of lengthn in A ∪ A−1 with π(w) ∈ H

}
,

bn(G,H,A) = #
{
w | w is a word of lengthn in A ∪ A−1 with π(w) ∈ H

}
,

rn(G,H,A) = #
{
w | w is a freely reduced word of length� n in A ∪ A−1 with

π(w) ∈ H
}
, and

zn(G,H,A) = #
{
w | w is a word of length� n in A ∪ A−1 with π(w) ∈ H

}
.

Proposition 6.1. Let G be a group with a fixed finite generating setS and let Γ =
Γ (G,H,A) be the coset graph with base-vertexx0 = H1. Then:

an(G,H,A) = an(Γ ), bn(G,H,A) = bn(Γ ),

rn(G,H,A) = rn(Γ ), and zn(G,H,A) = zn(Γ ).

Proof. This fact follows directly from the definition ofΓ = Γ (G,H,A) and the fact tha
a wordw overA ∪ A−1 represents an element ofH if and only if the path inΓ staring at
H1 and labeledw terminates atH1. ✷

For this reasonα(G,H,A) := α(Γ ) is called thecogrowth rateof H in G with
respect toA and β(G,H,A) := β(Γ ) is called thenon-reduced cogrowth rate ofH
in G with respect toA. Similarly, ν(G,H,A) := ν(Γ ) is called thespectral radius ofH
in G with respect toA. As before,α(G,H,A) � 2k − 1, p(G,H,A) � 2k. Moreover,
α(G,H,A) = 2k − 1 if and only if β(G,H,A) = 2k if and only if Γ is amenable.

It is easy to see (and it is well known) that amenability ofΓ (G,H,A) does not depen
on the choice of a finite generating setA for G:

Proposition 6.2. Let G be a finitely generated group andH � G be a subgroup. Suppos
A,B are two finite generating sets forG. Put Γ = Γ (G,H,A) and Γ ′ = Γ (G,H,B).
ThenΓ is amenable if and only ifΓ ′ is amenable.

Proof. By Proposition 38 and Theorem 51 of [18], amenability is a quasi-isom
invariant for regular graphs of finite degree. Let us equipΓ and Γ ′ with simplicial
metrics d and d ′ accordingly. LetC := max{|a|B | a ∈ A} and C′ := max{|b|A | b ∈
B}. Then for any two cosetsHg1,Hg2 we haved ′(Hg1,Hg2) � C′d(Hg1,Hg2) and
d(Hg1,Hg2) � Cd ′(Hg1,Hg2). Thus the identity map Id :(V Γ,d) → (V Γ ′, d ′) is a
quasi-isometry, which implies the statement of the proposition.✷
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According to the traditional definition, a finitely generated groupG is calledamenable
if any action of G on a compact spaceY by homeomorphisms admits aG-invariant
probability measure onY . It turns out that ifA is finite generating set ofG andH � G is
normal, thenΓ = Γ (G,H,A) is amenable if and only if the quotient groupG1 = G/H

is amenable. In particularG itself is amenable if and only if its Cayley graphΓ (G,A) is
amenable.

Suppose now thatG = F = F(x1, . . . , xk) is a free group of rankk � 2. It is easy to
see that the number of vertices of then-sphere in the Cayley graph ofF with respect to
the free basisA = {x1, . . . , xk} is 2k(2k − 1)n−1 for n � 1. Hence the number of elemen
of F in then-ball around the identity is 1+ k

k−1[(2k − 1)n−1 − 1] for n � 1.

Theorem 6.3. Let F = F(x1, . . . , xk) and let H � F be a subgroup, wherek � 2. Put
A = {x1, . . . , xk}. Letan = an(F,H,A), rn = rn(F,H,A) andα = α(F,H,A). Similarly,
let bn = bn(F,H,A), zn = zn(F,H,A), andβ = β(F,H,A).

ThenΓ is a 2k-regular graph andα � 2k − 1, β � 2k. Moreover,

(1) If [F :H ] = ∞ then

lim
n→∞

an

(2k − 1)n
= lim

n→∞
rn

(2k − 1)n
= 0, and

lim
n→∞

bn

(2k)n
= lim

n→∞
zn

(2k)n
= 0.

(2) If the coset graph forF relativeH is nonamenable(and hence[F :H ] = ∞) then all
the limits in part(1) converge to zero exponentially fast.

(3) If [F :H ] < ∞ then

lim sup
n→∞

an

(2k − 1)n
> 0, lim sup

n→∞
rn

(2k − 1)n
> 0,

lim sup
n→∞

bn

(2k)n
> 0, lim sup

n→∞
zn

(2k)n
> 0.

Proof. Parts (1) and (2) of this statement follows immediately from Theorem 5.7
Proposition 5.8. We will now establish part (3) of Theorem 6.3. Note thatrn � an and
zn � bn. Thus it suffices to check that lim-sups involvingan andbn are positive. Since
[F :H ] < ∞, there is a normal subgroup of finite indexH1 � F such thatH1 � H � F .
Then an(F,H,A) � an(F,H1,A) and bn(F,H,A) � bn(F,H1,A). So it suffices to
consider the case whereH is normal of finite indexp in Γ . In this case the coset grap
Γ = Γ (F,H,A) is finite and hasp vertices. ThusΓ is amenable,α(Γ ) = 2k − 1, and
β(Γ ) = 2k. Then by the results of Woess [63] and Bartholdi [10]

lim sup
an→∞

an

(2k − 1)n
= lim sup

n→∞
bn

(2k)n
=

{ 1
p

if Γ has some odd-length circuits,
2
p

if Γ has only even-length circuits.

Thus Theorem 6.3 is proved.✷
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WhenH is a normal subgroup ofF , the first part of Theorem 6.3 is originally due
Woess [63]. One can obtain much more precise statements than Theorem 6.3, wh
denominators are replaced by powers of the cogrowth rate ofH , but Theorem 6.3 is quit
sufficient for our purposes.

7. The membership problem

We refer the reader to [2,12,25,27,28,30,31,34,54] for the background inform
on hyperbolic and automatic group and their rational subgroups. We will recall se
relevant definitions and results.

Definition 7.1. Let G be a group with a finite generating setA. Let L be a language
overA ∪ A−1 such thatπ(L) = G, whereπ is the natural map from the free semigro
on A ∪ A−1 to the groupG. Let H � G be a subgroup.

(1) The subgroupH � G is said to beL-rational if the set

LH := {
w ∈ L | π(w) ∈ H

}
is a regular language andH = π(LH ).

(2) The subgroupH � G is said to beL-quasiconvexif there existsK > 0 such that for
any initial segmentu of a wordw ∈ LH there is a wordv of length at mostK such
thatπ(uv) ∈ H .

An important observation of Gersten and Short [31] states that:

Proposition 7.2. Let G be a group with a finite generating setX and letL be a language
overX ∪X−1 such thatπ(L) = G. LetH � G be a subgroup. ThenH is L-rational if and
only if H is L-quasiconvex.

As the example of cyclic subgroups ofG = Z × Z illustrates, it is possible that
particular subgroup is rational with respect to one automatic structure onG but not the
other. However, rationality is invariant in a somewhat weaker sense:

Proposition 7.3. Let G be an automatic group with a finite generating setA and an
automatic languageL over A ∪ A−1. Let H � G be anL-rational subgroup. Then fo
any finite generating setB of G there is an automatic languageL′ over B ∪ B−1 for G

such thatH is L′-rational.
Suppose further thatG is word-hyperbolic. Then for any finite generating setB of G

and for any automatic languageL′ overB ∪ B−1 for G the subgroupH is L′-rational.

Proof. The statement regarding hyperbolic groups is well-known and reflects the fac
for word-hyperbolic groups all possible notions of quasiconvexity for subgroups coin
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The statement about automatic groups follows from the results of [27], althoug
not stated there directly. Indeed, Theorem 2.4.1 of [27] proves that givenG,A,L as in
Proposition 7.3, for any finite generating setB of G there is an automatic languageL′
for G over B ∪ B−1. The proof actually shows that any regular sub-language ofL gets
“translated” into a regular sub-language ofL′ with the same image inG. In this processLH

gets “translated” inL′
H and henceL′

H is regular, as required.✷
Because of Proposition 7.3 it is natural to adopt:

Definition 7.4 (Rational subgroup). LetG be an automatic group and letH � G be a
subgroup.

We say thatH is rational in G if there exists an automatic languageL for G such thatH
in L-rational.

If G is word-hyperbolic then a rational subgroup is also often referred to asquasiconvex.

Proposition 7.5. Let G be an automatic group and letH � G be a rational subgroup
Then:

(1) For any finite generating setA of G there is an algorithm which solves the members
problem forH in G in quadratic time.

(2) Suppose thatG is word-hyperbolic. Then for any finite generating setA of G there is
an algorithm which solves the membership problem forH is G in linear time.

Proof. Both of these statements are very well-known (see [27,29,31]), but we will ind
how the algorithm works.

To see (1) suppose thatA is a finite generating set ofG. Then there is an automatic la
guageL overA ∪ A−1 for G such thatLH is regular. Given an arbitrary wordw overA ∪
A−1, we first apply the quadratic-time algorithm of [27] to takew to a normal form inL,
that is, to findw′ ∈ L such thatw andw′ represent the same element ofG. Since an au
tomatic languageL consists of quasigeodesics [27], we have|w′| � c|w|, wherec is some
constant independent ofw. We then check whether or notw′ ∈ LH (which can be done in
time linear in terms of|w′|). The total time expanded time is clearly quadratic in|w|.

For a hyperbolic groupG and a rational subgroupH � G, the algorithm solving the
membership problem in linear time is virtually identical. First, for any finite genera
setA of G, there is a finite presentation ofG asG = 〈A|R〉 such that all Dehn-reduce
words for this presentation are quasigeodesics. (To see this one has to chooseR large
enough and use the fact that local geodesics in theΓ (G,A) are global quasigeodesic
provided the “local” parameter is chosen to be sufficiently large [2,25,32].) It is obv
that the setL of all Dehn-reduced words is regular. Moreover,H � G is rational implies
that H is a quasiconvex subset ofΓ (G,A). HenceH is L-quasiconvex since in
hyperbolic metric space a quasigeodesic and a geodesic with common endpoi
Hausdorff-close (again, see [2,25,32]). ThereforeH is L-rational by Proposition 7.2 and s
LH is a regular language. Unlike the general case of an automatic group, as we me
earlier there is alinear-timealgorithm which takes a wordw overA to its Dehn-reduced
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form w′ (see [2,4]) where|w′| � |w|. The algorithm solving the membership proble
for H in G now works exactly as in the general automatic case.✷
Theorem B. Let G be a finitely generated group and letH � G1 � G whereG1 has
finite index inG. Suppose there is an epimorphismφ :G1 → G such thatH = φ(H) is
contained in a subgroupK � G of infinite index inG such that the membership proble
for K in G is in the complexity classC. Then the membership problem forH in G has
generic-case complexity inC. Moreover, if the coset graphΓ (G,K) is nonamenable( for
some and hence any finite generating setA of G), then the generic-case complexity of t
membership problem forH in G is strongly inC.

Proof. Let A = {x1, . . . , xk} be a finite generating set forG and letB be some finite
generating set ofG1. Let π :F → G be the canonical epimorphism corresponding
the presentationG = 〈x1, . . . , xk | u1, . . . , um, . . .〉, whereF = F(x1, . . . , xk). Let K1 :=
φ−1(K) � G1 � G and letK2 := π−1(K1) � F . Note that[G1 :K1] = [G :K] = ∞ and
hence[F :K2] = ∞. Moreover, the Schreier coset graphsΓ (F,K2,A) = Γ (G,K1,A)

andΓ (G1,K1,B) = Γ (G,K,B) are quasi-isometric sinceG1 has finite index inG. Thus
Γ (F,K2,A) is nonamenable if and onlyΓ (G,K,B) is nonamenable.

Moreover,H � K1. Thus, if w ∈ (A ∪ A−1)∗ − (K2)A then π(w) ∈ G − H . Let
zn = zn(F,K2,A) and let

Cn = (2k)n+1 − 1

2k − 1

be the number of words in(A ∪ A−1)∗ of length at mostn.
Since[F :K2] = ∞, Theorem 6.3 implies that(K2)A has zero asymptotic density

(A ∪ A−1)∗, that is,

lim
n→∞

zn

Cn
= 0 and lim

n→∞
Cn − zn

Cn
= 1,

and in both cases the convergence is exponentially fast ifΓ (G,K,B) is nonamenable
Thus the set(A ∪ A−1)∗ − (K2))A is generic (and even strongly generic ifΓ (G,K,B) is
nonamenable).

Fix a finite right Schreier transversalT for G1 in G so that 1∈ T , |T | = [G :G1],
andG = ⋃

t∈T G1t . Also fix the finite Schreier coset graphΓ (G,G1,A). Recall that a
Schreier rewriting process forG1 in G consists in rewriting a wordw ∈ (A ∪ A−1)∗
to a wordvt wherev ∈ (B ∪ B−1)∗ and t ∈ T , so thatvt and w represent the sam
element ofG. Thusw represents an element ofG1 if and only if t = 1. We recall, briefly,
how the Schreier rewriting process works. For everyt ∈ T and x ∈ A ∪ A−1 we fix a
word u(t, x) ∈ (B ∪ B−1)∗ and an elements(t, x) ∈ T such thattx = u(t, x)s(t, x) in G.
Given a wordw = x1 · · ·xn ∈ (A ∪ A−1)∗, where eachxi ∈ A ∪ A−1, we rewrite it as
follows. First 1· x1 = u(1, x1)s(1, x1). If x1 · · ·xi has already been rewritten asui ti , where
ui ∈ (B ∪ B−1)∗ andti ∈ T , then

x1 · · ·xixi+1 = ui tixi+1 = uiu(ti , xi+1)s(ti , xi+1).
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Thus we putui+1 = uiu(ti, xi+1), ti+1 = s(ti , xi+1) and continue to the next step. At th
end of the process we rewritew asut , whereu is a word inB ∪ B−1 and t ∈ T . This
rewriting process requires at most a linear amount of space and time in terms o|w|.
Moreover, we have|v| � C|w|, whereC = max{|u(t, x)|: t ∈ T ,x ∈ A ∪ A−1}.

We will now construct a correct partial algorithmΩ for the membership problem ofH

in G as follows. Letw be a word in(A∪A−1)∗. Denote byg the element ofG represented
by w. First we read the wordw in the finite Schreier graphΓ (G,G1,A) starting from the
vertexG1 · 1 and simultaneously apply the Schreier rewriting process tow. If the terminal
vertex of the resulting path is different fromG1 · 1, thenπ(w) /∈ G1 and henceπ(w) /∈ H .
We declare thatw /∈ MP(G,H,A) and terminateΩ in this case.

If the resulting path ends atG1 · 1 thenπ(w) ∈ G1 and we have rewrittenw as a wordv
in (B ∪ B−1)∗. Note that|v| � C|w| whereC > 0 is some constant independent ofw.

By assumption, the membership problem forK in G is solvable with complexityC. We
apply this algorithm to the wordv. If the element̄g of G represented byv does not belong
to K, thenḡ /∈ H . Hence the elementg of G represented byw andv does not belong toH .
In this case we declare thatw /∈ MP(G,H,A) and terminateΩ .

If it turns out thatv represents an element ofK, we terminateΩ without an answer.
The algorithmΩ terminates with a correct answer for everyw /∈ (K2)A. Since the se

(A∪A−1)∗ − (K2)A is generic (and even strongly generic ifΓ (G,K,B) is nonamenable)
the statement of Theorem B holds.✷

Our theorem on the word problem is an immediate corollary.

Theorem A. Let G = 〈x1, . . . , xk|R〉 be a finitely generated non-cyclic group. Supp
thatG has a finite index subgroup that possesses an infinite quotient groupG in which the
word problem is solvable in the classC. Then the word problem forG has generic-case
complexity in the classC.

Moreover, if the groupG is nonamenable, then the generic-case complexity of the
problem forG is strongly inC.

Proof. Let G1 � G be a subgroup of finite index and letφ :G1 → G be an epimorphism
as in the statement of Theorem A. PutH = {1} � G andK = {1} � G. Thusφ(H) � K.
Moreover, the membership problem forH in G is precisely the word problem forG.
Similarly the membership problem forK in G is precisely the word problem forG. Now
the conclusion of Theorem A follows from Theorem B.✷
Remark 7.6. Theorem 6.3 shows that the statements of both Theorems A and B re
true if we define asymptotic density and genericity in terms of subsets ofF(A) (rather than
subsets of(A ∪ A−1)∗) by counting the ratios of the number of freely reduced words f
a subset over the number of all freely reduced words.

Corollary 7.7. LetG be a finitely generated group andH � G1 � G, where[G :G1] < ∞.
Let φ :G1 → G be an epimorphism withH = φ(H). Then:
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(1) SupposeG is word-hyperbolic andH � G is contained in a quasiconvex subgroupK

of infinite index inG. Then the membership problem forH in G is strongly generically
in linear time.

(2) SupposeG is automatic andH � G is contained in a rational subgroupK of infinite
index inG. Then the membership problem forH in G is generically in quadratic time
Moreover, ifΓ (G,K) is nonamenable then the membership problem forH in G is
strongly generically in quadratic time.

Proof. This follows directly from Theorem B and Proposition 7.5.✷

8. The conjugacy problem

Let F = F(x1, . . . , xk) and letA = {x1, . . . , xk} be a fixed free basis ofF , wherek � 2.

Convention 8.1. As before, we will denote byCn the number of words of length at mostn

in (A ∪ A−1)∗. Thus

Cn = (2k)n+1 − 1

2k − 1
.

Let Qn be the number of pairs(w1,w2) of words in(A ∪ A−1)∗ with |w1| + |w2| � n.

Note that if |w1| + |w2| = i � n then|w1w2| = i � n. For a fixed wordw of lengthi

there are(i + 1) ways of representingw asw = w1w2. Recall thatA ∪ A−1 consists of 2k
letters. Hence:

Qn =
n∑

i=0

(i + 1)(2k)i .

Proposition 8.2. Let H � F be a subgroup of infinite index and letS ⊆ (A ∪ A−1)∗ ×
(A ∪ A−1)∗ be the set of all pairs(w1,w2) with |w1| + |w2| � n such thatw1w

−1
2

represents an element ofH . Thenρ̂A(S) = 0.

Proof. Let bj = bj (F,H,A) be the number of all words of lengthj representing elemen
of H . Then by Theorem 6.3 limn→∞ bj/(2k)j = 0 sinceH has infinite index inF .

Suppose(w1 · w2) is a pair of words such that|w1| + |w2| = i � n and that the word
w := w1w

−1
2 represents an element ofH . For a fixed wordw of lengthi representing an

element ofH there arei + 1 ways of writingw asw = w1w
−1
1 . Hence

σn(S) =
n∑

i=0

(i + 1)bi.

Therefore
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lim
n→∞

σn(S)

Qn

= lim
n→∞

∑n
i=0(i + 1)bi∑n

i=0(i + 1)(2k)i
(by Stolz’ Theorem)

= lim
n→∞

(n + 1)bn

(n + 1)(2k)n
= lim

n→∞
bn

(2k)n
= 0,

as required. ✷
Theorem A. Let G be a non-cyclic finitely generated group with infinite abelianizati
Then the generic-case time complexity of the conjugacy problem forG is linear.

Proof. Let G be the abelianization ofG and letφ :G → G be the abelianization map. L
F = F(x1, . . . , xk), A = {x1, . . . , xk}, and letπ :F → G be the presentation epimorphis
Let H � G beH := Ker(φ ◦ π). As before, letHA be the set of all words in(A ∪ A−1)∗
representing elements ofH . Let

S := {
(w1,w2) ∈ (

A ∪ A−1)∗ × (
A ∪ A−1)∗ ∣∣ φ

(
π(w1)

) = φ
(
π(w2)

)}
= {

(w1,w2) ∈ (
A ∪ A−1)∗ × (

A ∪ A−1)∗ ∣∣ w1w
−1
2 ∈ HA

}
.

By Proposition 8.2,ρ̂A(S) = 0. If (w1,w2) /∈ S thenφ(π(w1)) �= φ(π(w2)) and hence
φ(π(w1)) is not conjugate toφ(π(w2)) in G (sinceG is Abelian). Thus if(w1,w2) /∈ S

thenπ(w1) is not conjugate toπ(w2) in G.
SinceG is finitely generated Abelian, there is an algorithmΩ which solves the word

problem forG in linear time. Hence for any pair(w1,w2) /∈ S with |w1| + |w2| � n the
algorithmΩ will terminate in time linear inn and declare thatφ(π(w1)) �= φ(π(w2)), and
henceπ(w1) is not conjugate toπ(w2) in G. ✷

9. Some general observations on generic-case complexity

As mentioned in Section 1, we are greatly indebted to Carl Jockusch and Frank S
for stimulating conversations about some general features of generic-case complex
the results in this section are due to them. First, Carl Jockusch observed that if we
reasonable measure on the set of all languages over an alphabetA with at least two letters
then the set of generically computable languages has measure zero. Second, Frank
observed that the standard Time Hierarchy Theorem of complexity theory can be mo
to separate deterministic time classes from generic complexity classes. Thus, for ex
there is a languageL in DTIME(n3) which isnot in GenTIME(n).

Fix an alphabetA with at least two letters. A languageL over A is generically
computableif there is a partial algorithmΩ such that the setS on which Ω correctly
decides membership inL hasρ̂(S) = 1. Thecanonicalor shortlexordering of the setA∗
of all words onA orders words first by length and within length, by the lexicograph
ordering induced from a linear ordering ofA. So we have a listing{w1, . . . ,wn, . . .} of



690 I. Kapovich et al. / Journal of Algebra 264 (2003) 665–694

ify a

point
ponds

hem

of

f
x

zero.

r 0
e
ically
ere

atio

f the

ith
A∗ in which all shorter words come before all longer words. We can now ident
languageL ⊆ A∗ with its characteristic functionχL where

χL(n) =
{

1 if wn ∈ L,

0 if wn /∈ L.

Since such a characteristic function is an infinite sequence(bn)n�1 of 0s and 1s, we
can regard it as the binary expansion of a real number in the unit interval[0,1]. A binary
expansion is unique except for those which are either all 0s or all 1s from some
onwards. A binary representation which has all 0s from some point onwards corres
to a finite subset ofA∗. There are only countably many finite subsets; excluding t
gives a one-to-one correspondence between the infinite subsets ofA∗ and the half-open
interval(0,1]. The standard Lebesgue measure on(0,1] then gives a measure on the set
infinite subsets ofA∗ and this is the measure which we use.

Theorem 9.1. LetA be a finite alphabet with at least two letters. Fix a linear ordering oA

and letm be the measure on the set of infinite languages overA induced by the shortle
ordering as described above.

Then the set of languages over A which are generically computable has measure

Proof. It suffices to show that ifΩ is any fixed partial algorithm whose output is eithe
or 1 then the set of languages which are generically decided byΩ has measure 0. Sinc
there are only countably many algorithms, it then follows that the set of all gener
decidable languages has measure 0. Letw be the infinite sequence of 0s and 1s wh
w(n) = 1 if Ω calculates 1 forwn ∈ A∗ andw(n) = 0 otherwise. The point is thatw is
now afixedsequence.

For an integerK � 1 denote byg(K) the number of subsets of a set withK elements
which contain at least 3K/4 elements of that set. We need only the fact that the r
of g(K) over the number 2K of all subsets of a set withK elements goes to 0 asK → ∞.
This follows easily from applying Stirling’s formula and computing the asymptotics o
binomial coefficient

(
K

3K/4

)
. This computation shows that

(
K

3K/4

)
2K

= o
(
σK

)
asK → ∞

for some number 0< σ < 1. Hence

g(K)

2K
:=

(
K

3K/4

) + (
K

3K/4+1

) + · · · + (
K
K

)
2K

� K

4

(
K

3K/4

)
2K

→
K→∞0.

For every integerj � 0 the setA∗ has exactlys(j) := (kj+1 − 1)/(k − 1) words of
length� j , wherek = #A. Thus the firsts(j) digits in the binary sequence of a languageL

determine exactly which words inA∗ of length at mostj belong toL.
Fix an arbitraryε > 0. Take an integerj1 > 0 large enough so thatg(K)/2K � ε/2 for

any integerK � s(j1). Let Q1 be the set of all infinite binary sequences which agree w
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the firsts(j1) digits ofω in at least 3s(j1)/4 positions. Note that for a fixed binary stringα

of lengths(j1) the measure of the set of all infinite binary sequences with initial segmα
is 2−s(j1). Hencem(Q1) � g(s(j1))2−s(j1) � ε/2.

Now take an integerj2 > j1 large enough so thatg(K)/2K � ε/22 for any integer
K > s(j2). Let Q2 be the set of all infinite binary sequences which agree with the
s(j2) digits ofω in at least 3s(j2)/4 positions. Again we see thatm(Q2) � ε/22. Continue
in this way, choosing at stepn an integerjn > jn−1 large enough so that for any integ
K � s(jn) we haveg(K)/2K � ε/2n. Let Qn be the set of all infinite binary sequenc
agreeing with the firsts(jn) digits ofω in at least 3s(jn)/4 positions. Thenm(Qn) � ε/2n.

PutQ = ⋃∞
n=1 Qn. Then

m(Q) �
∞∑

n=1

ε

2n
= ε.

Now suppose thatL is any language generically decided byΩ . Be our choice of the
enumeration ofA∗ and by the definition of generic computability, there exists an inte
constanti � 0 such that for anyj � i the binary sequence ofL agrees with the initia
segment ofω of lengths(j) in at least 3s(j)/4 positions. Choosen such thatjn � i. Then
χL ∈ Qn ⊆ Q by construction ofQn.

Thus we have shown that for anyε > 0 the set of all languages generically computa
by Ω can be covered by a set of measure at mostε. As required, this implies that the set
languages generically computable byΩ has measure zero.✷

The following theorem is due to Frank Stephan. Recall that we are following
definitions and notations of [51] for computational complexity. Aproper complexity
functionf is a non-decreasing function for which there is a multi-tape Turing mac
which on an inputw computes the string 1f (|w|) in O(|w| + f (|w|)) steps and use
O(f (|w|)) space besides its input. The reason for insisting on proper complexity func
is that they can be used as “clocks” when simulating Turing machines. One effec
assigns a wordγ (M) on a fixed alphabetA which codes the Turing machineM. There
is a universal Turing machineU which, for a wordγ (M)w given as an input, simulate
the machineM on the inputw. (We can assume thatw is a word in the alphabet{0,1}.)
If f is a proper complexity function, we can define a time-bounded version of the H
Problem by

H(f ) = {
γ (M)w: M acceptsw in at mostf

(|w|) steps
}
.

The following statement is Lemma 7.1 of [51] which shows that, given the code
Turing machineM, we do not need more time thanf 3(|w|) to simulateM for f (|w|) steps
on an inputw.

Lemma 9.2. H(f ) ∈ DTIME(f 3(n)).

Using the lemma we can prove
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Theorem 9.3. If f (n) � n is a proper complexity function then there is a languageL ⊆
{0,1}∗ which is computable in timef 3(n) but not generically computable in timef (n).

Proof. The idea of the proof is that for each Turing machineM we specify infinitely many
lengths devoted to “defeating” the machineM. We can do this by using ordered pairs. L
N

+ denote the set of positive integers. The standard one-to-one enumeration, often
the “pairing function”,

p :N+ × N
+ → N

+,

is given by a simple formula and its inverse functionp−1 is also easily computable
certainly in cubic time. We define the languageL as follows. If w is a word on{0,1},
let n = |w| and calculatep−1(n) = (r, s). If r is not the codeγ (M) of a Turing machine
thenw /∈ L.

If r = γ (M) for some Turing machineM, we simulate the action ofM on the inputw
for f (|w|) steps. By Lemma 9.2 this requires at most O(f 3(|w|)) steps. Putw in L if and
only if M does not acceptw in f (|w|) steps.

By construction, we haveL ∈ DTIME(f 3(n)). On the other hand, ifL were in
GenTIME(f (n)) then there would exist a Turing machineM ′ and an integern such that
for all m � n the machineM ′ correctly decides membership inL′ on at least three-quarte
of all words of length less than or equal tom. Let r = −γ (M ′), s > n, andt = p−1(r, s).
Note thatt > n. By construction,M ′ does not decide correctly membership inL′ for any
words of lengtht in timef (t). But more than half of the words of length less than or eq
to t have length exactlyt . HenceM ′ fails to generically decideL′ in timef (n), yielding a
contradiction. ✷
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