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Abstract

We give a precise definition of “generic-case complexity” and show that for a very large class of
finitely generated groups the classical decision problems of group theory—the word, conjugacy, and
membership problems—all have linear-time generic-case complexity. We prove such theorems by
using the theory of random walks on regular graphs.

0 2003 Elsevier Science (USA). All rights reserved.

1. Motivation

Algorithmic problems such as the word, conjugacy, and membership problems have
played an important role in group theory since the work of Dehn in the early 1900s.
These problems are “decision problems” which ask for a “yes-or-no” answer to a specific
guestion. For example, the word problem for a finitely presented group

G={(x1,....,Xk|7r1,...,F"m)
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asks, given a wordb in {x1, ..., x;}*1, whether or not this word represents the identity
element of G. The classical result of Novikov and of Boone [52] states that there
exists a finitely presented group with unsolvable word problem. This implies that most
other problems (the conjugacy, membership, isomorphism, and order problems) are also
unsolvable in the class of all finitely presented groups (see the survey papers [1,48] for a
detailed exposition).

With the advance of modern computers interest in algorithmic mathematics shifted to
the realm of decidable problems with a particular emphasis on complexity of algorithms,
and in the 1970s modern complexity theory was born. It quickly turned out that some
decidable problems which one would really like to solve are too difficult to be solved
in full generality on actual computers. Among different possible complexity measures
the most important for us here tdne complexityUsually, algorithms with linear, or
guadratic, or sometimes even with high degree polynomial time complexity, are viewed
as fast algorithms. Fortunately, several classes of infinite groups have fast algorithms for
their decision problems. For example, the word and conjugacy problems for any word-
hyperbolic group are solvable in linear and in quadratic time respectively, and the word
problem for a linear group over the field of rational numbers can be solved in cubic time.
On the other hand, there are finitely presented groups whose word problem has arbitrarily
high time complexity. For a group with exponential time complexity of the word problem
any algorithm solving the word problem needs at least exponentially many steps (in length
of the word) to halt on infinitely many inputs. This type of analysis concerns the worst-case
behavior of an algorithm and is now often call@drst-case complexity.

Many algorithms for solving the word problem in finitely presented groups are difficult
to analyze and their worst-case complexity is not known. For example, for the Magnus
algorithm for the word problem for one-relator groups [45], we do not even know if
the complexity is bounded above by any fixed tower of exponentials. Yet anyone who
has conducted computer experiments with finitely presented groups knows that there is
often some kind of an easy “fast check” algorithm which quickly produces a solution
for “most” inputs of the problem. This is true even if the worst-case complexity of the
particular problem is very high or the problem is unsolvable. Thus many group-theoretic
decision problems have a very large set of inputs where the (usually negative) answer
can be obtained easily and quickly. Indeed, our intuition on the subject has been formed
by computer experiments and the main purpose of this paper is to explain some of this
phenomenon. It turns out that a precise mathematical explanation comes from the theory
of random walks on regular graphs.

The kind of situation which we have in mind is often analogous to the use of Dantzig’s
Simplex Algorithm for linear programming problems. This algorithm is used hundreds of
times daily and in practice almost always works quickly. The examples of Klee and Minty
[41] showing that one can make the simplex algorithm take exponential time are very
special. A “generic” or “random” linear programming problem is not “special”, and the
algorithm works quickly. Observations of this type led to the developmemt@fage-case
complexityThere are several different approaches to the average-case complexity, but they
all involve computing the expected value of the running time of an algorithm with respect
to some measure on the set of inputs (for example, see [37,42]).
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To studygeneric-caseeomplexity, which deals with the performance of an algorithm
on “most” inputs, we first need a notion of which sets gemeric.Let v be a probability
distribution onX*, or, more generally, an arbitrary additive function with valuegiinl]
defined on some subsets of the Xétof all finite words over a finite alphabét. A subset
T C X* is calledgeneric with respect to if v(X* — T) = 0. Then, for example, we would
say that an algorithn®® haspolynomial-time generic-case complexity with respeat, tid
£2 runs in polynomial time on all inputs from some subgetf X* which is generic with
respect tov. Of course, we can define generic-case complexity being in any complexity
classC, not only for polynomial time.

Thus “generic-case” complexity is in the spirit of but quite different from average-case
complexity [37,42,60-62] in several respects. First of all, in average-case complexity the
decision problem considered must be decidable and one has to have a total algorithm to
solve it. One is then interested in the expected value of the running time of the algorithm.
On the other hand, in generic-case complexity we consider the behavior of the algorithm
only on a generic sef and completely ignore its behavior elsewhere. Thus we consider
partial algorithms which may only halt on the g&tind the total problem being considered
can have arbitrarily high worst-case complexity or even be undecidable.

The general idea of generic behavior in the context of group theory was introduced by
Gromov [34,35] when he defined the class of word-hyperbolic groups. Gromov indicated
that “most” finitely presented groups are word-hyperbolic. This was made precise by
Ol'shanskii [50] and also by Champetier [19] who formalized the notion of a “generic”
group-theoretic property. Further research on generic group-theoretic properties has been
done by Champetier [19-21], Arzhantseva [6—-9], Zuk [65], Cherix with co-authors [22,23]
and others. Recently Gromov [36] pushed his ideas about “random groups” further with
the goal of constructing finitely presentable groups that do not admit uniform embeddings
into a Hilbert space.

The notion of genericity in the work cited above concerns the collection of all finitely
presented groups. In this paper we shift the focus to considering generic properties
of algorithmic problems inindividual groups with respect t@asymptotic densitfsee
Section 3).

2. Algorithmsand decision problemsfor groups

Convention 2.1. We follow the bookComputational Complexityf Papadimitriou [51] for
our conventions on computational complexity. Recall thewmplexity clasgs determined

by specifying anodel of computatiofwhich for us is always a multi-tape Turing machine),
amode of computatiofe.g., deterministic or non-deterministisourcego be controlled
(e.g., time and space) abhdunddor each controlled resource, that is functigh&) such
that for each input wordv at most f(Jw|) units of the specified resource needs to be
extended by an appropriate Turing machine to reach a decision.

In this paper, unless specified otherwise, when talking about a “complexity €lass
we assume that the resources to be controlled in the definitigharke either time or
space. We also assume that the collection of functions bounding each resource consists
of proper complexity functiong (n) > 0 (see [51] and Section 9 below) and that for any
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function f(n) in this collection and for any integ&r > 1 the functionCf(Cn + C) + C
also belongs to this collection. Most reasonable complexity classes, such as linear time,
polynomial space, log-space, etc, satisfy these restrictions.

Recall that alecision problenis a subseD of the set
* k * *
(X)) ' =X*"x--xX

(k > 1 factors), where* is the set of all words on a finite alphab¥t (By introducing an
extra alphabet symbol “,” we could viewkatuple of words {v1, wa, ..., wi) € (X*)F as a
single word in the alphabéet U {, }.)

In this section we focus on three classical decision problems for a given finitely
generated grou@: theword problem(WP), theconjugacy probleniCP), and thsubgroup
membership problertMP). (Our approach is quite general and can be applied to other
group-theoretic decision problems, such as the order of an element problem.) To formulate
these problems precisely one needs to specify exactly how the groigp‘given.” To
do this, one chooses a finite set of generatbrsf a groupG, that is, one fixes a map
A — G such thatG = (7 (A)). By abuse of notation we often identify elementsAof
with their images under in G. PutX = AU A~1. Thus every wordy € X* represents an
elementr (w) € G.

Now we are ready to formulate the algorithmic problems alvatierespect to the given
set of generatorg:

(WP) Given a wordw € X* determine whether or nat represents the identity element
in G (symbolically,w = g1). Thus

WP(G, A) :={w e X* |w=¢g1}.

(CP) Given two words:, v € X* determine whether they represent conjugate elements
of G or not. Thus

CP(G, A) :={(u,v) € X* x X* | w(u), w(v) are conjugate iIG }.

(MP) Let H < G be a fixed finitely generated subgroup. Given a wiokd X* determine
whether or noi: belongs toH . Thus

MP(G, H, A):={w e X* |m(w) € H}.

Convention 2.2. We call these problems th&-versionsof the corresponding problem
aboutG to emphasize the choice of generatdrsWe use the notatiolD to denote a
problem about a groug and we denote b4 the A-versionof D corresponding to the
finite generating seA of G. Thus if D is the word problem fot;, thenD4 = WPR(G, A).

If D is a problem about a group andC is a complexity class, we say thBtis solvable
for G with complexity inC if for every finite generating set of G the languagé, is
inC.
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Of course, instead of the problems ové&t one can consider decision problems only
over freely reduced words, that is, decision problehg F(A)*, where F(A) is the
free group onA. Since one can easily (in linear time) reduce a wordinto its reduced
form in F(A) these two decision problems are equivalent with respect to time complexity
classes. In average-case or generic-case complexity, where the measure on the set of inputs
matters, the equivalence between these two points of view needs to be verified. Most of
our results are unchanged if we takeéA) rather thanX* as the set of inputs.

If Y is another finite set of generators f6rand Dy is the Y-version of the decision
problemD then these two decision problem are equivalent from the point of view of worst-
case complexity. Indeed, every generatar X = A U A~1 can be written as a word in
F(Y). Thus every word irX* can be re-written in linear time as a word}iti representing
the same group element. This provides a linear-time reductidndad Dy, and vice versa.

Thus the worst-case complexity of group-theoretic decision problems does not depend on
the choice of a finite generating set and is a true group invariant. By contrast, in the average
or generic-case complexities a change in generating sets might conceivably give a different
result and we will explicitly make such an invariance a part of our definition. All of the
results proved in this paper are invariant under change of a generating set.

A more complicated class of algorithmic problems can be describedrasss problems
(or “proof problems”). Unlike decision problems, a “witness problem” asks to produce, for
a given element € D, an explicit justification or “proof” of the fact that is, indeed,
in D. For example, the “witness” version of the Word Problem for a present&tigrr),
given a wordx € ncl(R), asks for an explicit expression @fas a product of conjugates of
elements fromR*!

-1 é&j .
Mj rj I/t],

t
=1

u=

J

whereu; € F(A),rj € R, ande; = £1.

The witness Conjugacy Problem would require producing a conjugating element for two
words known to represent conjugate elements, and the withess Membership Problem would
ask to express a word in the generators of an ambient group (and known to represent an
element from a subgroup) as a word in the generators of that subgroup. Although witness
problems are increasingly important (for example, in group-based cryptography [3,59]),
we concentrate here on the traditional decision problems.

Suppose we have a total algorith@y solving a decision probler® and also a par-
tial algorithm$2; solving the problem generically with low generic-case complexity. Then
by running£2; and £22 in parallel we obtain a new total algorithsa = £21 || £22 which
solvesD with low generic-case complexity. The idea of putting these two algorithms to-
gether is in fact used by many practical experimenters. That is, for a particular problem
one should look both for an exact solution with minimal known worst-case complexity and
for a partial “generic” solution which will work very fast on most inputs. The computa-
tional group theory package “Magnus” already uses this philosophy very substantially, as
most problems there are attacked by several algorithms running in parallel, including “fast
checks” working with abelianizations and other quotients. We refer the reader to the article
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of Baumslag and Miller [13] for a more detailed discussion on “Magnus.” More recently,
several applications of genetic algorithms in group theory [49,57] revealed that some clas-
sical problems that were believed to have only “too slow,” i.e., non-practical, solutions,
admit a very fast solution generically. This, as well as numerous computer experiments,
provided an important source of intuition for the present paper.

If the generic-case complexity @2, is very low and the worst-case complexity of the
total algorithmg2; is not too high, then the combined algorithm may have low actual
average-case complexity. The idea of using generic-case results to prove average-case
results in this way seems very fruitful, and we have already been able to obtain some
interesting results which will be the subject of a future paper.

3. Generic-case complexity

We have stressed that in order to measure the “largeness” of a set of words on an
alphabet one needs a measure or, at least, an additive positive real-value function defined on
some sets of words in the alphabet. For this paper we use the asymptotic density function
suggested in the work of Borovik et al. [17] (see also [16]) and similar in spirit to concepts
considered by Gromov, Ol'shanskii, and Champetier.

Definition 3.1 (Asymptotic density). LeX be a finite alphabet with at least two elements
and let (X*)* denote the set of alt-tuples of words onX. The length of a k-tuple
(w1, ..., wy) is the sum of the lengths of the;. Let S be a subset ofX*)~. For every

n >0, let B, be the set of alk-tuples in(X*)* of length at most.

We define thesymptotic density(S) for S in (X*)¥ as

. |S N By
p(S) :=limsupp,(S), wherep,(S):=

n—00 | Bn|

If the actual limit lim,_ o 0, (S) exists, we denot@(S) := p(S). In the case where the
limit

im0, () = p(S)

exists, we shall be interested in estimating the speed of convergence of the sequence
{pn(S)}. To this end, ifa, > 0 and lim,—.» a, = 0, we will say that the convergence

is exponentially fasif there is 0< o <1 andC > 0 such that for every: > 1 we

havea, < Co”. Similarly, if lim,_ - b, = 1 (Where 0< b, < 1), we will say that the
convergence isxponentially fasif 1 — b,, converges to 0 exponentially fast.

Definition 3.2 (Generic sets). We say that a subSe&t (X*)* is genericif p(S) = 1.
If in addition p, (S) converges to 1 exponentially fast, we say thad strongly generic.

What we have really defined is beiggneric with respect t@ in the sense discussed
in Section 1. Since we now fix this particular concept of being generic, we simply say



I. Kapovich et al. / Journal of Algebra 264 (2003) 665694 671

“generic” for the rest of this paper. The complement of a generic set is termegligible
set. We can definstrongly negligible sets a similar manner. In the following lemma we
collect several simple but useful properties of generic and negligible sets.

Lemma3.3. Let S, T be subsets afX*)*. Then the following hold

(1) The setS is generic if and only if its complement is negligible.

(2) If Sis generic andS C T thenT is generic.

(3) Finite unions and intersections of genefitegligible sets are generitnegligible.

(4) If S is generic andl is negligible, therS — T is generic.

(4) The collections of all generic and all negligible sets forms an algebra of subsets of
(X*)~.

Now we can define generic-case complexity of algorithms.

Definition 3.4 (Generic and strongly generic performance of a partial algorithm). Let
D C (X*)* be a decision problem and l6tbe a complexity class. Le2 be a correct
partial algorithm forD, that is, whenevef2 reaches a definite decision on whether or not
atuple in(X*)* belongs taD, that decision is correct.

We say that2 solvesD with generic-case complexity if there is a generic subset
S C (X*)* such that for every tuple € S the algorithms2 terminates on the input
within the complexity bound.

If in addition the setS is strongly generic, then we say that the partial algorit2m
solves the probler® with generic-case complexity strongly

We again point out that we completely ignore the performanc& afn tuples not
in S and the definition thus applies to the case whBrlas arbitrarily high worst-case
complexity or is indeed undecidable.

One can now define “generic” complexity classes of decision problems in the obvious
way.

Definition 3.5 (Generic complexity classes). LEtbe a complexity class. Then Ggh
denotes the class of all decision problefagor which there exists a partial algorithm
solving D with generic-case complexitg. Similarly, SGeiiC) denotes the class of all
decision problem® for which there exists a partial algorithm solvifgy with generic-
case complexity strongly i@.

As we mentioned before, while the worst-case complexity of most group-theoretic
decision problems does not depend on the choice of a finite generating set for a group, it is
not at all clear (and is probably false) that generic-case complpgitgeis independent
of the chosen set of generators. In order to have a true group-theoretic invariant, we need
to incorporate such independence into the following definition.

Definition 3.6 (Generic-case complexity of a decision problénfor a group G). LetG
be a finitely generated group. LBtbe an algorithmic problem about the groGpWe say



672 I. Kapovich et al. / Journal of Algebra 264 (2003) 665—-694

thatthe decision problen®D for G hasgeneric-case complexity i@ (strongly inC) if for
everyfinite generating sett of G there exists a partial algorithi®2 (A) which solves the
problemD, c (A U A~1)* with generic-case complexity (strongly inC).

4, Main results

In this section we formulate the main results of the paper. Even though our results
regarding the word problem follow from the more general theorem about the membership
problem (see Theorem B below), we state the word problem results first since most of the
applications which we have in mind concern the word problem.

The concept of a group being nonamenable plays an important role in our results but for
now the reader needs only to remember that any group which contains a free subgroup of
rank two is nonamenable.

Theorem A. Let G be a finitely generated group. Suppose tidathas a finite index
subgroup that possesses an infinite quotient gréufor which the word problem is
solvable in the complexity class. Then the word problem foG has generic-case
complexity in the clas€. Moreover, if the groug is nonamenable, then the generic-case
complexity of the word problem fa@r is strongly inC.

There are a number of interesting immediate corollaries of the above result.
Corollary 4.1. Let G be a finitely generated group.

(1) SupposeG has a finite index subgroup that possesses an infinite word-hyperbolic
quotientG. Then the word problem fo6 is generically in linear time. Moreover,
if G is non-elementary, then the word problem iis strongly generically in linear
time.

(2) Suppose has a finite index subgroup that possesses an infinite automatic quGtient
Then the word problem fo6 is generically in quadratic time. Moreover, & is
nonamenable, then the word problem @iis strongly generically in quadratic time.

(3) Supposé& has a finite index subgroup that possesses an infinite quotient grotiyat
is linear over a field of zero characteristic.

Then the word problem fof is generically in polynomial time. Moreover,f is not
virtually solvable, then the word problem fér is strongly generically in polynomial
time.

Proof. Itis well known that for any word-hyperbolic group and for any finite generating set
of this group, there is a set of defining relators for which Dehn’s algorithm solves the word
problem in linear time in the length of the input word. Moreover, this linear-time algorithm
can be carried out by a multi-tape Turing machine. This was first observed by Anshel and
Domanski [4] (see also [2] for a detailed description of the algorithm). Moreover, Holt and
Rees [38,39] have proved that for a word-hyperbolic group the algorithm solving the word
problem can be carried out by a multitajqeal-timeTuring machine.
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Itis also well known that any word-hyperbolic group is either virtually cyclic (in which
case it is callegtlementarypr contains a free group of rank two (in which case it is called
non-elementary)Thus every non-elementary word-hyperbolic group is nonamenable.
Together with Theorem A this implies the first part of Corollary 4.1.

Similarly, the classical result of [27] shows that for an automatic group with any finite
generating set there is an algorithm which solves the word problem in quadratic time.
Again, by Theorem A the second part of Corollary 4.1 immediately follows.

Animportant result of Lipton and Zalcstein [43] states that for a finitely generated group
over a field of characteristic zero the word problem is solvable in log-space and hence in
polynomial time. By a famous theorem of Tits [56], a finitely generated linear group that
is not virtually solvable contains a non-Abelian free subgroup and hence is nonamenable.
This, together with Theorem A, implies the third part of Corollary 4.1

Example4.2.If G is any finitely generated group with infinite abelianization tiemaps

onto the infinite cyclic group and hence by Corollary 4.1 the word probleghisisolvable
generically in linear time. This is also equivalent to being able to wgitas an HNN
extension in some way. The result thus applies to all knot groups, all Artin groups and all
infinite one-relator groups.

Example 4.3. Let G be a finitely generated infinite virtually solvable group. Th@inas
a finite index subgroup that possesses an infinite virtually Abelian quotient. Hence by
Corollary 4.1 the word problem i is solvable generically in linear time.

Example 4.4. Recall that then-strand braid groum,, wheren > 3, is given by the
presentation

B, = (al, ooy y—1 | ajai11a; = ajy1a;a;41,fori=1,...,n — 2,

anda;a; =aja; for |i — j| > 1).

Thepure braid groupP, corresponds to thosestrand braids where every strand ends
in the same position that it begins. Thén is a normal subgroup of index in B, and
B,/ P, is isomorphic to the symmetric groufy . While it is hard to map one braid group
onto another, this task is easy with pure braid groupsufor4 the groupP, maps onto
P,—1 by “pulling out” the last strand of a braid. Thus for every> 3 the groupPs is a
guotient group ofP,. It is well known thatP3 = F(a, b) x Z. Thus for each: > 3 the
group P, has a non-Abelian free quotieft(a, b). Since P, is of finite index inB, and
sinceF (a, b) is nonelementary word-hyperbolic, Corollary 4.1 implies thatfgt 3 the
group P, and B, have word-problems solvable with generic-case complestiynglyin
linear time.

Example 4.5. Let G = Aut(F,,) or G = Out(F,,) wheren > 2. Then by looking at the
action of an automorphism (an outer automorphismj,0bn the abelianization of;,, we

see thatG maps onto the grou@L(n, Z). Since the word problem iGL(#, Z) is solvable

in quadratic time an&L(n, Z) is nonamenable (it contains a non-Abelian free subgroup),
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Corollary 4.1 implies that the word problem faF is solvable strongly generically in
guadratic time.

This observation raises the interesting question of determining the worst-case complex-
ity of the word problem forG = Aut(F},), say with generators the elementary Nielsen
automorphisms. We usually think that the “obvious algorithm” of checking if the action of
an automorphisrx fixes the generators is very simple, but writing out all the intermediate
step could yield exponentially long words. It is not clear if there is an algorithm with better
worst-case complexity.

Example 4.6. Theorem A holds even if; has unsolvable word problem. We consider the
finitely presented Boone groupwith unsolvable word problem as described in Rotman’s
book [52]. One proves the word problem unsolvable by showing that equality between
certain “special” words exactly mimics the word problem in a semigroup with undecidable
word problem. We again have the situation that the complexity hinges on words of a very
special form. It is easy to see that the grd8ipas the non-Abelian free group generated
by all ther; as the quotient group which is obtained by killing all the other generators.
Thus the stronger conclusion of the theorem applies and the generic-case complexity of
the word problem foB3 is strongly linear time. This is not really surprising and is a precise
version of the statement that the graoBps “large” and the set of special words is really
quite “sparse.”

Example 4.7. Let G be a group with a finite presentation involving at least two more
generators than relators. By the result of Baumslag and Pride@lhhs a subgroup

of finite index that can be mapped homeomorphically onto the free group of rank two.
Hence by Corollary 4.1 has word problem solvable strongly generically in linear time.
In particular, this applies to all one-relator group on at least three generators.

In strong contrast with worst-case complexity is the fact that generic-case complexity
for a problemD for a groupG tells us nothing whatsoever about the complexityZbf
for subgroups of5. For example, ifG is any finitely generated group, théhis certainly
embedded in the direct produBt= G x F(a, b) of G and the free grou@'(«, b) of rank
two. We can apply Theorem A t8 by taking the homomorphism t&(a, b) which Kills
all the elements of;. SinceF'(a, b) is hyperbolic and nonamenable, Theorem A implies
that the word problem irP is strongly generically in linear time. But this says nothing at
all aboutG because we just erased all information abGufThis remark does show that
every finitely generated group can be embedded in a finitely generated group whose word
problem has generic-case complexity strongly in linear time. A well-known theorem of
Neumann (see [44]) shows that there are continuumly many 2-generator groups, and thus
there are continuumly mamygenerator group for every> 2. Thus there are continuumly
many finitely generated group whose word problem has generic-case complexity strongly
linear time. This is in sharp contrast with the fact that there are only countably many finitely
generated groups with solvable word problem.

The following computer experiment is easy to program. Egtbe a free group of
rankn and lety be the homomorphism from, to F,,_; defined by sending the firgt< n
generators of}, to the identity. Pick a large lengtrand use a random number generator to
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generate a large number of random freely reduced words of lénfftbne calculates the
ratio of the number of words with ¢ (w) # 1 to the total of number of words generated,
one observes exactly the phenomena predicted by the theory of random walks.

We now turn to the membership problem. Itis necessary to discuss both a basic situation
where the membership problem is solvable and also a basic result about undecidability of
the membership problem. We first observe thét i any finitely generated group aritlis
a subgroup of finite index, then the membership problentfdin G is decidable in linear
time. Choose a finite set of generators of5. The Schreier coset grapli’ (G, H, A) is
defined as follows. The vertex s&t of I'(G, H, A) is the set of coset§Hg | g € G}.

If y € A then there is an edge labeled byrom Hg to Hgy. Every edge in" (G, H, A)
with labela € A is equipped with a formal inverse edge labelediby. ThusI" (G, H, A)
is an oriented labeled graph.

If A is finite andH has finite index inG then the graph™ (G, H, A) is finite. We
can viewI'(G, H, A) as the transition graph of a finite state automaténwhere the
initial state and the only final state is the co$tl = H. By the definition of the coset
graph, for any wordw on the generators and their inversas$,acceptsw if and only
if w € H. Thus the membership problem f&r is indeed decidable in linear time: given a
wordw € (AU A~1)*, readw on the graph starting at the cogétand see if one ends back
at the cosetd. A generalized version of these ideas is currently important in geometric
group theory.

Theorem B. Let G be a finitely generated group and I&t < G be a finitely generated
subgroup of infinite index. L&t be a subgroup of finite index ii such thatd < G; and
let¢:G1 — G be an epimorphism. Assume thiét= ¢ (H) is contained in a subgroug’

of infinite index inG and such that the membership problemfbin G is in the complexity
classC. Then the membership problem féF in G has generic-case complexity ¢
Moreover, if the Schreier coset gragh(G, K, A) is nonamenabléor some and hence
any finite generating sed of G), then the generic-case complexity of the membership
problem forH in G is strongly inC.

The “strong” conclusion of Theorem B holds, for exampleGifis non-elementary
hyperbolic group andk is a quasiconvex subgroup @. Indeed, in this case the
coset graph™ (G, K, A) is nonamenable by a recent result of Kapovich [40]. Since the
membership problem for a quasiconvex subgroup of a hyperbolic group is solvable in linear
time, Theorem B implies that the membership problemHoin G is strongly generically
in linear time.

Example 4.8. An Artin group is a group with a presentation
G={a1,...,ay |ujj=uj;, where I<i < j <n), (1)
where fori # j

Ujj i=a;ajaj---.
e

mjj times
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The Coxeter grouf associated withG is the quotient group obtained by setting the
squares of the generators equal to the identity. In general, the membership problem may
be unsolvable for a Coxeter group or an Artin group. A Coxeter group or an Artin group
is of extra-large typef all m;; > 4. Any Coxeter group of extra-large type with at least
three generators is a non-elementary hyperbolic group. Appel and Schupp [5] solved the
membership problem for subgroups generated by subsets of the given generators in Artin
groups of extra-large type, but very little is known about the membership problem for
arbitrary finitely generated subgroups.HAf is a finitely generated subgroup of an Artin
group G of extra-large type such that the image has infinite index in the Coxeter
guotientC and is quasiconvex i@ then the membership problem féfin G has generic-
case complexity strongly linear time. Schupp [53] showed that all group in a very extensive
class of Coxeter groups are locally quasiconvex, that is, every finitely generated subgroup is
guasiconvex. Also, in that case one can check whether or not a finitely generated subgroup
has infinite index in quadratic time. This provides a large set of examples of finitely
generated subgroups of Artin groups where the generic-case complexity of the membership
problem is strongly in linear time.

Example 4.9. A basic negative result about the membership problem is the theorem of
Mihailova [46] that if P, = F,, x F, is the direct product of two copies of the free group
F, of rankn > 2, then there are subgroufsof P, with unsolvable membership problem,
(see [44]). Let

G={(x1,....,xp |1y, Tm)

be a finitely presented group with unsolvable word problem. By using the well-known
Higman—Neumann—Neumann embedding of a finitely presented group into a 2-generator
group, we may assume thatis any integer which is at least 2. We use the ordered pair
notation for elements of the direct produgt = F,, x F,. Let H be the subgroup of,

with generators

(xlv-xl)s"'s(-xnsxn)s(li rl)!"'!(ls rnl)' (*)
Since ther; are defining relators fo&, an easy argument shows that
(u,v)e H ifandonlyif u=vinG.

Thus deciding membership i is equivalent to solving the word problemdh

We point out that “genericity” is operating at three different levels when considering the
membership problem. Let us fi®, as the direct product of two free groups of raniCall
a subgroupH asubgroup of Mihailova typd H has a set of generators of the fo(s)
above, which is very special. If we choose a random set of generators for a subgroup, it is
very unlikely that they will be even close to being of Mihailova type. The remarks above
showed that membership in a Mihailova subgratigs equivalent to the word problem
for the groupG whose defining relators are the So just among subgroups of Mihailova
type, if we choose the; at random we encounter the phenomenon that finitely presented
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groups on a fixed set of generators are generically hyperbolic and thus the membership
problem for the corresponding is still actually solvable in linear time. But Theorem B

still applies to a particular Mihailova subgroup chosen to have unsolvable membership
problem. Most of known explicitly constructed groups with unsolvable word problem have
at least infinite cyclic quotients, even after embedding into a two-generator group. That is,
there is a homomorphisgfrom F, to Z which sends all the; to the identity. Let) be the
homomorphism fromP, to Q, = F, x Z defined byy (u, v) = (u, $(v)). The imageH

of H is F, x {1} which has infinite index inQ,,. The membership problem f@¥ in Q,

is clearly in linear time since to decide(if, v) € H one only has to check if equals the
identity. If, for example, we use the Boone groBlirectly, without reducing the number

of generators, to construct a Mihailova subgroup, then we have a homomorphism where the
imageH is the first factor ofF;, x F; and the generic-case complexity of the membership
problem forH is strongly linear time.

There is a similar theorem for the conjugacy problem.

Theorem C. Let G be a non-cyclic finitely generated group with infinite abelianization.
Then the generic-case complexity of the conjugacy probler@ fsrlinear time.

Theorem C is applicable to a wide variety of groups, such as infinite one-relator groups,
braid [14,15,26] and Artin groups, knot groups, etc.

We shall see that the proof of the theorem reduces to the case of the word problem
since two words are conjugate in an Abelian group if and only if they are equal. The reader
has probably noticed that a statement about strong generic-case complexity in the case of
nonamenable quotients is missing from the theorem. At the present writing we do not have
a proof which is invariant under changing the set of generators although we believe that
such a theoremis true.

A very interesting class of finitely presented groups with unsolvable conjugacy problem
is the class of residually finite groups with unsolvable conjugacy problem constructed by
Miller [47]. Given any finitely presented groug with unsolvable word problem, Miller
shows how to construct a groud (G) which is the semidirect product of two finitely
generated free groups (and which is thus residually finite) where conjugatgGn codes
the word problem forG. As usual, the “code words” have a special form. The groups
M (G) have large non-Abelian free quotients. We can show (although the argument is not
presented in this article) that the conjugacy problem of sucM&6) has generic-case
complexity which is strongly linear time because the free quotient is obtained by simply
killing some of the given generators.

We again stress some important limitations of generic case complexity.

First, just the definition of generic-case complexity does not say anything about the
speed with which a particular sequence tends to one or zero. If the quotient Grasup
infinite but not “large enough,” sa§ = Z, this speed may in fact be much slower than the
exponentially fast convergence which we are really aiming at. The weaker convergence is
all that we have for two-generator one-relator groups.

Second, there is a substantial difference between our notion of “generic performance”
and the notion of “average case complexity”. In a situation like the word problem for
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one-relator groups where, although its complexity is not known, we at least have a total
algorithm which is well understood, a future hope is to combine generic and worst-
case methods to obtain average-case results. In this regard the work of [16,17] about
constructing explicit measures on free groups may be particularly useful.

In general, our approach simply shows that for the “decision” version of the word and
the membership problem the fast “No” answer component of the set of all inputs is very
large. One may be mainly interested in some infinite recursive subset of inputs and many
examples may not admit algorithms with fast generic performance when restricted to the
subset of interest.

Finally, our results do not say anything about the generic behavior of the “witness”
versions of the word, conjugacy and membership problems. Yet it appears to us that if one
has in mind practical cryptographic applications, these applications have to be based on
the “witness” versions of the problems (rather than “decision” ones).

Thus we regard this paper as just the first step in the direction of understanding the
generic-case and average-case behavior of various group-theoretic algorithms.

The results which we discuss in the last section of the paper (on finding languages
which arenot in given generic complexity classes) are due to Carl Jockusch and Frank
Stephan. For example, the set of languages over a finite alpaleith at least two
letters) which are generically computable has measure zero (in a precise sense) in the set
of all languages oveA. Moreover, given any proper time-complexity functigiwz) one
can construct a language that is deterministically computable in fifie) but which
cannot be generically computed in tinfign).

These general results do not, however, answer the question of existence of finitely
generatedyroupswith decision problems of arbitrarily “high” generic-case complexity,
say with a word problem which is not generically solvable. All our results in this paper are
proved by the “quotient method” of finding an infinite quotient group in which the relevant
problems have the desired complexity. Using the existence of two disjoint recursively
enumerable sets which are not recursively separable and the Adian—Rabin construction,
Miller 11l [48] constructed an example of a finitely presented gratpall of whose
nontrivial quotients have unsolvable word problem! This particular grGufherefore
completely defeats our quotient method of proof but it is probably the case that the word
problem has low generic-case complexity for some different reason. Indeed, it seems to
be a very difficult problem to construct a finitely generated group where the generic-case
complexity of the word problem is provably not linear.

5. Cogrowth and ssimplerandom walks on regular graphs

The proofs of our theorems depend on already known nontrivial facts about the behavior
of simple random walks on regular graphs. The really hard work is done by that theory, so
we now turn to the results which we need.

The subject of random walks on graphs and groups is vast and very active. We refer
the reader to [18,33,58,63,64] for some background information and further references in
this area. We will recall several basic definitions in facts which are directly needed in our
arguments.
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Definition 5.1. Let I be ad-regular graph (wheré > 2) with a base-vertexg.

Thenleta, (I") = a, denote the number of reduced paths (i.e., paths without backtracks)
of lengthn from xg to xg in I". Similarly, letb,(I") = b, be the number of all paths of
lengthn from xg to xg in I". Also letr, = r,,(I") be denote the number of reduced paths of
length at most from xg to xg in I". Finally, letz, = z,(I") denote the number of all paths
of length at most fromxg to xg in I". Thusr, = Y"_ga; andz, =Y 7 o b;.

Put

a(l) =a :=limsup¥/ay, B(I') =B :=limsupy/b,, and

n—o00 n—o00

v([)=v:= 2,8(1“).

We shall refer tax(I") as thecogrowth rateof I" and tov(I") as thespectral radius
of I'. The numbeB (I") will be called thenon-reduced cogrowth ratef I".

It turns out that the definitions ef(I"), S(I"), andv(I") do not depend on the choice
of a base-pointg € I and we have (see, for example, [18,64]):

Lemma 5.2. Let I be a connected d-regular graph with a base-ventgxwhered > 2.
Then

(1) The values ot (I"), B(I'), and v(I") do not depend on the choice of a base-point
xoel.

(1) 0<a(I) <d—-1,0<B(IN) <d,and0O<v(IN) < 1.

(2) v=limsup,_, », v/ p™ wherep™ is the probability that a simple random walk @h
originating atxp will return to xg in n steps.

Definition 5.3. Let I" be ad-regular graph wheré > 2. We will say thatl” is amenablef
(M) =1.

An important result connecting cogrowth and spectral radius was first obtained by
Grigorchuck [33] and Cohen [24] for Cayley graphs of finitely generated group and later
generalized by Bartholdi [10] to the case of arbitrary regular graphs.

Theorem 5.4. Let I' be ad-regular graph(whered > 2). Leta = ("), 8 = 8(I"), and
v=v(I"). Then

Ja1

V=
2/d-1 otherwise.

In particular,v < 1l<—=a<d -1 B <d,thatisv=1<—a=d — 1<
B=d.
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The above theorem indicates thatis amenable if and only if it has maximal possible
cogrowth for ad-regular graph.
The following classical result is known as Stolz’ Theorem (see, for example, [55]):

Lemmab5.5. Suppose,, y, are sequences of real numbers such that y, 1 for everyn
with lim,,_, oo y» = oo and such that: finite limit

lim Xn+1 — Xn
n—00 y,11 — Y

exists. Then

L Xpa1—X X
lim 2222 i 22

n—o00 )’n+l — yn n—oo .Vn

Lemma 5.6. Letc, > 0 andc > 1 be such thatim, _, oo (cn/c") = 0. Put f, = > yci.
Thenlim,,_, o (fn/c") =0.

Proof. Applying Stolz’ Theorem tor, = f,, andy, = ¢ immediately yields Lemma 5.6.
O

Our principal technical tool is:

Theorem 5.7. Let I' be an infinite connected-regular graph ford > 3. Leta, = a,(I")
andr, =r,(I"). Then

(i) lim —%" _ — jim 2 o
(ii)

Proof. This fact is essentially due to Bartholdi as it follows from the remark on p. 99
in [10]. It was first obtained (in a stronger form) by Woess [63] for the case whasahe
Cayley graph of a finitely generated group. Independent proofs of Theorem 5.7 have also
been obtained by Smirnova—Nagnibeda and Woess (unpublished).

We present briefly a formal argument for completeness.

Notice that (i) implies (ii) by Lemma 5.6 sineg = Y_"_,—a’ andz, = >"_qb;. We
will now verify (i).

Suppose first that(I") < d — 1 and hence8(I") < d by Theorem 5.4. Then there is
No>1 and O< a <d — 1 such that for alk > Ng we havea,, > a". Hence fom > Ng

ay a”

d—D" S (d =1 nooo

El

as required. A similar argument implies that Jim,. b,/d¢ = 0. Hence the statement
of Theorem 5.7 obviously holds. Thus we may assume #&hdl) = d — 1, so that
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B(I')=d andv(I") = 1 by Theorem 5.4. Then the word-by-word repetition of the proof
of Lemma 3.9 in [10] implies that

. b
= lim 22 =0.

m ————
n—oo (d — 1) n—o00 "

Indeed, Lemma 3.9 of [10] proves a stronger version of Theorem 5.7 under the assumption
thatI" is also quasi-transitive. However, the only place in the proof of Lemma 3.9 in [10],
where quasi-transitivity is used, is to conclude thar’) = d which is already known in

our case. O

In case wherd” is nonamenable, we can say even more.

Proposition 5.8. Let I be a nonamenable connectéetegular graph where? > 3 (and
hencer is infinite). Leta, = a,(I"), r, =r,(I"), b, = b,(I"), andz, = z,(I"). Then

(1) Both %
(2) Both 2z

— 0 and —=~; — 0 exponentially fast.

(d l)” (d 1)"
7+ — 0and 2: — 0 exponentially fast.

Pr oof. SinceF is nonamenable, we have= limsup./a, < d — 1 which immediately
implies that -2 (d e = 0 exponentially fast. It also means that there age> 1 and
1 <a <d — 1such that for any > ng we haven,, <a". Hence fom > ng

a~"o _ 1

rnzrno—l+zai<rno—l+ano a—1

i=ng

Thus there ared, B > 0 such that for any: > ng we haver, < A + Ba". Since 1<
a <d — 1, this implies that(d T converges to zero exponentially fast. Thus part (1) of
Proposition 5.8 is verified.

The nonamenability of” implies g = limsup¥/b, < d, which implies part (2) of
Proposition 5.8 by the same argument as above.

6. Cogrowth in groups

Let G be a group with a fixed finite generating getonsisting oft > 1 elements. liw
is a word inA U A~1, we will denote byr(w) the element ofG represented byw. We
will also denote byjw| the length of the wordv. For an elemeng € G denote byig|a
the length of a shortest word ihU A~1 representing. Also, if Q is an alphabet, we will
denote byQ* the set of all words inQ. For a subsef C G we will denote byS, the set
of all words in(A U A~1)* representing elements 6§f

Let H < G be a fixed subgroup (not necessarily normal). Cet I' (G, H, A) be the
Schreier coset grapdefined in Section 4. TheR is a connectediregular graph. Note
also that ifH is normal inG, thenI" is precisely the Cayley graph of the groGg H with
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respect to the generating sét Thus every edge-path i has a label which is a word in

the alphabett U A~L. It is easy to see that for any wokd and any vertex of I" there
exists a unigue path ifr with labelw and originx. Moreover, ifw is the label of a patlp
starting at the vertexg := H1in I', thenz (w) € H if and only if the terminal vertex op

is also equal taH 1. The graph-theoretic concepts from the previous section can now be
re-stated as follows:

a,(G,H, A) = #{w | w is a freely reduced word of lengthin A U A"t with 7(w) € H},
by(G, H, A) = #{w | w is aword of lengthn in AU A~ with 7 (w) € H},
(G, H,A)= #{w | w is a freely reduced word of length n in AU A~ with

m(w) € H}, and

(G, H, A) =#{w | w is a word of length< n in AU A~! with = (w) € H}.

Proposition 6.1. Let G be a group with a fixed finite generating sg&tand let I" =
I'(G, H, A) be the coset graph with base-vertex= H1. Then

an(G: HsA):an(F)s bn(Gv Hv A):bn(r)v
(G, H, A) =r,(I'), and z,(G,H,A)=z,(I).

Proof. This fact follows directly from the definition of = I' (G, H, A) and the fact that
awordw overA U A~1 represents an element &f if and only if the path in” staring at
H1 and labeledv terminatesati1l. O

For this reasorx(G, H, A) := a(I") is called thecogrowth rateof H in G with
respect toA and 8(G, H, A) := B(I') is called thenon-reduced cogrowth rate o
in G with respect taA. Similarly, v(G, H, A) := v(I'") is called thespectral radius ofH
in G with respect toA. As before,w(G, H, A) < 2k — 1, p(G, H, A) < 2k. Moreover,
a(G,H,A) =2k —1ifand only if 8(G, H, A) = 2k if and only if I" is amenable.

Itis easy to see (and it is well known) that amenabilitytiG, H, A) does not depend
on the choice of a finite generating sefor G:

Proposition 6.2. Let G be a finitely generated group ardl < G be a subgroup. Suppose
A, B are two finite generating sets fa@. PutI" = I'(G, H, A) and I'' = I' (G, H, B).
ThenrI” is amenable if and only if" is amenable.

Proof. By Proposition 38 and Theorem 51 of [18], amenability is a quasi-isometry
invariant for regular graphs of finite degree. Let us eqlipand I’ with simplicial
metricsd and d’ accordingly. LetC := max{|alg | a € A} and C' :=maX{|b|a | b €

B}. Then for any two coset#l g, Hgo, we haved'(Hg1, Hgo) < C'd(Hgy, Hg?) and
d(Hg1, Hgy) < Cd'(Hg1, Hgz). Thus the identity map Id¥VI,d) — (VI',d') is a
quasi-isometry, which implies the statement of the propositian.
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According to the traditional definition, a finitely generated graufs calledamenable
if any action of G on a compact spac¥ by homeomorphisms admits @-invariant
probability measure ofif. It turns out that ifA is finite generating set af andH < G is
normal, thenl" = I'(G, H, A) is amenable if and only if the quotient grotpy = G/H
is amenable. In particular itself is amenable if and only if its Cayley gragh(G, A) is
amenable.

Suppose now thar = F = F(x1,...,xx) is a free group of rank > 2. It is easy to
see that the number of vertices of thesphere in the Cayley graph &f with respect to
the free basist = {x1, ..., xx} is 2k(2k — 1)"~1 for n > 1. Hence the number of elements
of F in then-ball around the identity is 4 ﬁ[(Zk — 1" 1_1)forn>1.

Theorem 6.3. Let F = F(x1,...,x;) and let H < F be a subgroup, wherge > 2. Put
A={x1,...,x;}. Leta, =a,(F,H,A), r, =r,(F, H, A) anda = «(F, H, A). Similarly,
letb, =b,(F,H,A),z, =z,(F,H,A),andB = 8(F, H, A).

Thenr" is a2k-regular graph andx < 2k — 1, 8 < 2k. Moreover,

() If [F: H] = oo then

. a
lim —2 — — |

. n
im —" =0, and
n—oo (2k —1)" n—oo (2k — 1)

. bn . Zn
nl|—>moo (2k)" _n“—>moo (2k)" =0

(2) If the coset graph foF relative H is nonamenabléand hencd F : H] = oo) then all
the limits in part(1) converge to zero exponentially fast.
(3) If [F:H] < oothen

. an . rn
limsup——— >0, limsup——— >0,
n—>oop(2k - 1)” n—)oop(Zk - 1)”

. bn . Zn

limsu 0 limsu 0
ol T ISP

Proof. Parts (1) and (2) of this statement follows immediately from Theorem 5.7 and
Proposition 5.8. We will now establish part (3) of Theorem 6.3. Note that a, and

zn = by. Thus it suffices to check that lim-sups involviag and b, are positive. Since
[F: H] < oo, there is a normal subgroup of finite indéx < F such thatH; < H < F.
Thena,(F,H, A) > a,(F, H1,A) and b,(F, H, A) > b,(F, H1, A). So it suffices to
consider the case whe# is normal of finite indexp in I". In this case the coset graph

I' =TI (F, H,A) is finite and hag vertices. Thug" is amenablex(I") = 2k — 1, and
B(I') = 2k. Then by the results of Woess [63] and Bartholdi [10]

if I" has some odd-length circuits,

limsu I _limsu bn_ _
o 2k — D P @y T

<IN T

if I has only even-length circuits.

Thus Theorem 6.3 is proved O
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When H is a normal subgroup af, the first part of Theorem 6.3 is originally due to
Woess [63]. One can obtain much more precise statements than Theorem 6.3, where the
denominators are replaced by powers of the cogrowth raté, dfut Theorem 6.3 is quite
sufficient for our purposes.

7. The member ship problem

We refer the reader to [2,12,25,27,28,30,31,34,54] for the background information
on hyperbolic and automatic group and their rational subgroups. We will recall several
relevant definitions and results.

Definition 7.1. Let G be a group with a finite generating sat Let L be a language
over A U A~1 such thatr (L) = G, wherer is the natural map from the free semigroup
on AU A~ to the groupG. Let H < G be a subgroup.

(1) The subgrouf < G is said to bel-rational if the set
LH:={wEL|n(w)EH}

is a regular language arfdl = 7 (Lg).

(2) The subgrou < G is said to bel-quasiconvexf there existsK > 0 such that for
any initial segment: of a wordw € Ly there is a word of length at mostk such
thatm (uv) € H.

An important observation of Gersten and Short [31] states that:

Proposition 7.2. Let G be a group with a finite generating s&tand letL be a language
overX UX 1 suchthatr(L) = G. LetH < G be a subgroup. TheH is L-rational if and
only if H is L-quasiconvex.

As the example of cyclic subgroups of = Z x Z illustrates, it is possible that a
particular subgroup is rational with respect to one automatic structux@ buat not the
other. However, rationality is invariant in a somewhat weaker sense:

Proposition 7.3. Let G be an automatic group with a finite generating setand an
automatic languagd. over AU A1, Let H < G be anL-rational subgroup. Then for
any finite generating sek of G there is an automatic language’ over B U B~ for G
such thatH is L'-rational.

Suppose further thatr is word-hyperbolic. Then for any finite generating #bf G
and for any automatic languag€’ over B U B~ for G the subgroupH is L'-rational.

Proof. The statement regarding hyperbolic groups is well-known and reflects the fact that
for word-hyperbolic groups all possible notions of quasiconvexity for subgroups coincide.
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The statement about automatic groups follows from the results of [27], although it is
not stated there directly. Indeed, Theorem 2.4.1 of [27] proves that given L as in
Proposition 7.3, for any finite generating setof G there is an automatic languadé
for G over B U B~L. The proof actually shows that any regular sub-language géts
“translated” into a regular sub-languagddfwith the same image i In this procesg. i
gets “translated” in.’, and hencd.’, is regular, as required.C

Because of Proposition 7.3 it is natural to adopt:

Definition 7.4 (Rational subgroup). LeG be an automatic group and I& < G be a
subgroup.

We say thatH isrationalin G if there exists an automatic languabéor G such thatd
in L-rational.

If G is word-hyperbolicthen a rational subgroup is also often referreddqoasiconvex

Proposition 7.5. Let G be an automatic group and l&f < G be a rational subgroup.
Then

(1) Forany finite generating set of G there is an algorithm which solves the membership
problem forH in G in quadratic time.

(2) Suppose that; is word-hyperbolic. Then for any finite generating detf G there is
an algorithm which solves the membership problemHois G in linear time.

Proof. Both of these statements are very well-known (see [27,29,31]), but we will indicate
how the algorithm works.

To see (1) suppose thatis a finite generating set @f. Then there is an automatic lan-
guageL overA U A~L for G such thatL 4 is regular. Given an arbitrary wond over A U
A~1, we first apply the quadratic-time algorithm of [27] to takeo a normal form inL,
that is, to findw’ € L such thatw andw’ represent the same element®f Since an au-
tomatic languagé. consists of quasigeodesics [27], we h&awé < c|w|, wherec is some
constant independent of. We then check whether or net € Ly (which can be done in
time linear in terms ofw’|). The total time expanded time is clearly quadratiguin.

For a hyperbolic grougi; and a rational subgroufl < G, the algorithm solving the
membership problem in linear time is virtually identical. First, for any finite generating
setA of G, there is a finite presentation &f asG = (A|R) such that all Dehn-reduced
words for this presentation are quasigeodesics. (To see this one has to ¢htwge
enough and use the fact that local geodesics inltli€, A) are global quasigeodesics,
provided the “local” parameter is chosen to be sufficiently large [2,25,32].) It is obvious
that the set’. of all Dehn-reduced words is regular. MoreovBr< G is rational implies
that H is a quasiconvex subset df(G, A). Hence H is L-quasiconvex since in a
hyperbolic metric space a quasigeodesic and a geodesic with common endpoints are
Hausdorff-close (again, see [2,25,32]). Theref@ires L-rational by Proposition 7.2 and so
Ly is aregular language. Unlike the general case of an automatic group, as we mentioned
earlier there is dinear-timealgorithm which takes a word over A to its Dehn-reduced
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form w’ (see [2,4]) whergw’| < |w|. The algorithm solving the membership problem
for H in G now works exactly as in the general automatic case.

Theorem B. Let G be a finitely generated group and & < G1 < G whereG1 has
finite index inG. Suppose there is an epimorphigmGy, — G such thatH = ¢(H) is
contained in a subgrou < G of infinite index inG such that the membership problem
for K in G is in the complexity clas§€. Then the membership problem f&F in G has
generic-case complexity ih. Moreover, if the coset graph (G, K) is nonamenabléfor
some and hence any finite generating 4aif G), then the generic-case complexity of the
membership problem fa# in G is strongly inC.

Proof. Let A = {x1,...,x;} be a finite generating set fa¥r and let B be some finite
generating set of51. Let 7 : F — G be the canonical epimorphism corresponding to
the presentatio; = (x1, ..., x¢ | U1, ..., Um,...), whereF = F(xy,...,x;). Let K1 :=
¢ 1K) < G1 <G andletK, :=n~1(K1) < F. Note that{G1: K1] =[G : K] = oo and
hence[F : K2] = co. Moreover, the Schreier coset graphisF, K2, A) = I'(G, K1, A)
andI'(G1, K1, B) =T'(G, K, B) are quasi-isometric sina&; has finite index irG. Thus
I'(F, K2, A) is nonamenable if and onl§f (G, K, B) is nonamenable.

Moreover, H < K1. Thus, if w € (AU A~1)* — (K2)4 thenw(w) € G — H. Let
n =2zn(F, K2, A) and let

(2k)"+1—1
Ch=-—" =
2k—1

be the number of words itd U A~1)* of length at most.
Since[F : K2] = oo, Theorem 6.3 implies thatk2) 4 has zero asymptotic density in
(AUADH* thatis,
im =0 and lim &% g

n—o00 n n—oo n

and in both cases the convergence is exponentially fasi(d, K, B) is nonamenable.
Thus the setA U A~1)* — (K>2))4 is generic (and even strongly generidi{G, K, B) is
nonamenable).

Fix a finite right Schreier transversa@l for G; in G so that 1e T, |T| =[G : G1],
and G = J,cr G1t. Also fix the finite Schreier coset graph(G, G1, A). Recall that a
Schreier rewriting process fag1 in G consists in rewriting a wordy € (A U A~1)*
to a wordvt wherev € (B U B~1)* andr € T, so thatvr and w represent the same
element ofG. Thusw represents an element 6f; if and only if r = 1. We recall, briefly,
how the Schreier rewriting process works. For every T andx € A U A~1 we fix a
word u(z, x) € (B U B~1)* and an element(t, x) € T such thatx = u(r, x)s(¢,x) in G.
Given a wordw = x1---x, € (AU A~1)* where eachy; € A U A~1, we rewrite it as
follows. First 1. x1 = u(1, x1)s(1, x1). If x1--- x; has already been rewritten as;, where
u; € (BUB™H* andy; e T, then

X1+ XiXi+1l = UiliXi+1 = uiu(li, Xi+1)s (i, Xi+1).
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Thus we putu; 1 = u;u(t;, x;+1), t;i+1 = s(t;, x;1+1) and continue to the next step. At the
end of the process we rewriie asut, whereu is a word inB U B~ andr € T. This
rewriting process requires at most a linear amount of space and time in terfus. of
Moreover, we havév| < C|w|, whereC = max{|u(t, x)|: t € T,x € AU A~}

We will now construct a correct partial algorithfa for the membership problem &f
in G as follows. Letw be aword in(A U A~1)*. Denote byg the element ot represented
by w. First we read the word in the finite Schreier graph' (G, G1, A) starting from the
vertexGi - 1 and simultaneously apply the Schreier rewriting process. i the terminal
vertex of the resulting path is different froGy - 1, thensz (w) ¢ G1 and hencer(w) ¢ H.
We declare thatv ¢ M P(G, H, A) and terminate? in this case.

If the resulting path ends &t; - 1 thennm (w) € G1 and we have rewrittew as a worcy
in (B U B~1)*. Note thatjv| < C|w| whereC > 0 is some constant independentaf

By assumption, the membership problem bin G is solvable with complexitg. We
apply this algorithm to the word. If the elemeng of G represented by does not belong
to K, theng ¢ H. Hence the elementof G represented by andv does not belong téf .
In this case we declare that¢ M P(G, H, A) and terminate?.

If it turns out thatv represents an element &f, we terminate2 without an answer.

The algorithms2 terminates with a correct answer for every (K2) 4. Since the set
(AUA~D* — (K2) 4 is generic (and even strongly generiditG, K, B) is nonamenable),
the statement of Theorem B holdso

Our theorem on the word problem is an immediate corollary.

Theorem A. Let G = (x1, ..., x¢|R) be a finitely generated non-cyclic group. Suppose
that G has a finite index subgroup that possesses an infinite quotient giaopvhich the
word problem is solvable in the clags Then the word problem fo has generic-case
complexity in the class.

Moreover, if the grougs is nonamenable, then the generic-case complexity of the word
problem forG is strongly inC.

Proof. Let G1 < G be a subgroup of finite index and k¢t G; — G be an epimorphism
as in the statement of Theorem A. Rifit= {1} < G andK = {1} < G. Thus¢(H) < K.
Moreover, the membership problem féf in G is precisely the word problem fo@.
Similarly the membership problem fdf in G is precisely the word problem fag. Now
the conclusion of Theorem A follows from Theorem Ba

Remark 7.6. Theorem 6.3 shows that the statements of both Theorems A and B remain
true if we define asymptotic density and genericity in terms of subsdts 4§ (rather than
subsets ofA U A~1)*) by counting the ratios of the number of freely reduced words from

a subset over the number of all freely reduced words.

Corollary 7.7. Let G be afinitely generated group ardl < G1 < G, where[G : G1] < co.
Let¢: G1— G be an epimorphism witl/ = ¢ (H). Then
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(1) Supposes is word-hyperbolic and? < G is contained in a quasiconvex subgrokp
of infinite index inG. Then the membership problem fdrin G is strongly generically
in linear time.

(2) Supposes is automatic andd < G is contained in a rational subgrouf of infinite
index inG. Then the membership problem f&irin G is generically in quadratic time.
Moreover, if I' (G, K) is nonamenable then the membership problemHoin G is
strongly generically in quadratic time.

Proof. This follows directly from Theorem B and Proposition 7.5

8. The conjugacy problem
LetF = F(x1,...,x;) and letA = {x1, ..., x;} be afixed free basis df, wherek > 2.

Convention 8.1. As before, we will denote by, the number of words of length at most
in (AUA~Y* Thus

(Zk)n-i-l -1
Cn=
2k—1

Let 0, be the number of pairGv, wp) of words in(A U A~1)* with |w1| + |wp| < n.

Note that if jw1| + |w2| =i < n then|wiwz| =i < n. For a fixed wordw of lengthi
there argi + 1) ways of representing asw = wjwy. Recall thatd U A~1 consists of 2
letters. Hence:

n

On=> i+ 12"

i=0

Proposition 8.2. Let H < F be a subgroup of infinite index and I8tC (A U A~1)* x
(AU A™H* be the set of all pairgwi, wo) with |w1| + |wz| < n such thatwlwz‘1
represents an element &f. Thenp4(S) = 0.

Proof. Letb; =b;(F, H, A) be the number of all words of lengftrepresenting elements

of H. Then by Theorem 6.3 lip1, bj/(2k)f = 0 sinceH has infinite index inF.
Suppos€gw; - wp) is a pair of words such thatv1| + |w2| =i < n and that the word

w = wlwgl represents an element &f. For a fixed wordw of lengthi representing an

element ofH there are + 1 ways of writingw asw = wlwil. Hence

on(S) =) (i +Dbi.

i=0

Therefore
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. 0, (S) . Z(lzo(i + 1)b;
lim —= = | ! . Iz’ Th
Jim 0, Jim ST+ D@k (by Stolz’ Theorem)
(n+1)b, T by

’

= lim ————— = lim =
n—oo (n + 1)(2k)" n—o0 (2k)"
as required. O

Theorem A. Let G be a non-cyclic finitely generated group with infinite abelianization.
Then the generic-case time complexity of the conjugacy problet fetinear.

Proof. Let G be the abelianization a& and let¢ : G — G be the abelianization map. Let
F=F(x1,...,x;), A={x1,...,x¢}, and letr : F — G be the presentation epimorphism.
Let H < G be H :=Ker(¢ o ). As before, letH, be the set of all words igA U A—1)*
representing elements éf. Let

S = {(w, wp) € (AUATY) x (AUA™Y)" | p(n(w1)) = p(n(w2))}

= {(w, w2) € (AUATY) x (AUATY)" |wiwyt € Hal.

By Proposition 8.2,64(S) = 0. If (w1, w2) ¢ S then¢(w(w1)) # ¢ (7 (w2)) and hence
¢ (m(w1)) is not conjugate t@ (7 (wy)) in G (sinceG is Abelian). Thus if(wy, wo) ¢ S
thens (wy) is not conjugate tar(w») in G.

SinceG is finitely generated Abelian, there is an algorittnwhich solves the word
problem forG in linear time. Hence for any paitws, w) ¢ S with |w1| + |wz| < n the
algorithmg2 will terminate in time linear im and declare that (7w (w1)) # ¢ (7w (w2)), and
hencer (wy) is not conjugate tar (w2) in G. 0O

9. Some general observationson generic-case complexity

As mentioned in Section 1, we are greatly indebted to Carl Jockusch and Frank Stephan
for stimulating conversations about some general features of generic-case complexity and
the results in this section are due to them. First, Carl Jockusch observed that if we put a
reasonable measure on the set of all languages over an alphaliit at least two letters,
then the set of generically computable languages has measure zero. Second, Frank Stephan
observed that the standard Time Hierarchy Theorem of complexity theory can be modified
to separate deterministic time classes from generic complexity classes. Thus, for example,
there is a languagg in DTIME (n3) which isnotin GenTIME).

Fix an alphabetAd with at least two letters. A language over A is generically
computabléef there is a partial algorithni2 such that the sef on which 2 correctly
decides membership ih hasp(S) = 1. Thecanonicalor shortlexordering of the sef*
of all words onA orders words first by length and within length, by the lexicographical
ordering induced from a linear ordering df So we have a listindws, ..., wy, ...} of



690 I. Kapovich et al. / Journal of Algebra 264 (2003) 665—-694

A* in which all shorter words come before all longer words. We can now identify a
languagel. C A* with its characteristic function; where

|1 ifw,elL,
XL(")—{O if w, & L.

Since such a characteristic function is an infinite sequébgkl >, of Os and 1s, we
can regard it as the binary expansion of a real number in the unit inf@\HL A binary
expansion is unique except for those which are either all Os or all 1s from some point
onwards. A binary representation which has all 0s from some point onwards corresponds
to a finite subset ofA*. There are only countably many finite subsets; excluding them
gives a one-to-one correspondence between the infinite subsatsarid the half-open
interval (0, 1]. The standard Lebesgue measuré@ri] then gives a measure on the set of
infinite subsets ofA* and this is the measure which we use.

Theorem 9.1. Let A be a finite alphabet with at least two letters. Fix a linear orderingiof
and letm be the measure on the set of infinite languages aveérduced by the shortlex
ordering as described above.

Then the set of languages over A which are generically computable has measure zero.

Proof. It suffices to show that if2 is any fixed partial algorithm whose output is either O
or 1 then the set of languages which are generically decide@ Imas measure 0. Since
there are only countably many algorithms, it then follows that the set of all generically
decidable languages has measure 0.w.die the infinite sequence of Os and 1s where
wn) =1 if £ calculates 1 fow, € A* andw(n) = 0 otherwise. The point is that is

now afixedsequence.

For an integelk > 1 denote byg (K) the number of subsets of a set wikhelements
which contain at least B/4 elements of that set. We need only the fact that the ratio
of g(K) over the number® of all subsets of a set witk' elements goes to 0 & — oc.

This follows easily from applying Stirling’s formula and computing the asymptotics of the
binomial coefficient(slf/4). This computation shows that

(sx/4)

oK :0(UK) askK — oo

for some number & o < 1. Hence

< 0.
2K 2K 4 2K kZeo

g(K) (31?/4) + (31<74+1) +o+ (k) K (31?/4)

For every integerj > 0 the setA* has exactlys(j) := (k/*1 — 1)/(k — 1) words of
length< j, wherek = #A. Thus the firsk (j) digits in the binary sequence of a langudge
determine exactly which words ia* of length at mosy belong toL.

Fix an arbitrarys > 0. Take an integej; > 0 large enough so thgi(K)/2K < /2 for
any integerk > s(j1). Let Q1 be the set of all infinite binary sequences which agree with
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the firsts(j1) digits of w in at least 3(j1)/4 positions. Note that for a fixed binary string
of lengths(j1) the measure of the set of all infinite binary sequences with initial segment
is 27501, Hencem(Q1) < g(s(j1)27*UY < /2.
Now take an integef, > j1 large enough so that(K)/2K < £/22 for any integer
K > s(j2). Let Q> be the set of all infinite binary sequences which agree with the first
s(jo) digits of w in at least 3(j») /4 positions. Again we see that(Q2) < ¢/22. Continue
in this way, choosing at step an integerj, > j,—1 large enough so that for any integer
K > s(j,) we haveg(K)/2K < e/2". Let 0, be the set of all infinite binary sequences
agreeing with the first(j,,) digits ofw in at least 3(j,)/4 positions. Them(Q,) < &/2".
PutQ =J;24 Qn. Then

o
mQ)<Y o =e.
n=1
Now suppose thak is any language generically decided £y Be our choice of the
enumeration ofA* and by the definition of generic computability, there exists an integer
constanti > 0 such that for anyj > i the binary sequence df agrees with the initial
segment ofv of lengths(j) in at least 3(;j)/4 positions. Choose such thatj, > i. Then
XL € On € Q by construction oD,,.
Thus we have shown that for any- O the set of all languages generically computable
by £2 can be covered by a set of measure at roAis required, this implies that the set of
languages generically computable yhas measure zero.O

The following theorem is due to Frank Stephan. Recall that we are following the
definitions and notations of [51] for computational complexity.pfoper complexity
function f is a non-decreasing function for which there is a multi-tape Turing machine
which on an inputw computes the string 4D in O(jw| + f(Jw|)) steps and uses
O(f(Jw|)) space besides its input. The reason for insisting on proper complexity functions
is that they can be used as “clocks” when simulating Turing machines. One effectively
assigns a worg (M) on a fixed alphabe#t which codes the Turing maching. There
is a universal Turing maching& which, for a wordy (M)w given as an input, simulates
the machineV on the inputw. (We can assume that is a word in the alphabd0, 1}.)

If f is a proper complexity function, we can define a time-bounded version of the Halting
Problem by

H(f)={y(M)w: M acceptaw in at mostf (|w|) stepg.
The following statement is Lemma 7.1 of [51] which shows that, given the code of a
Turing machineV/, we do not need more time thaitt(jw|) to simulateM for f(jw|) steps
on an inputw.

Lemma9.2. H(f) € DTIME(f3(n)).

Using the lemma we can prove
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Theorem 9.3. If f(n) > n is a proper complexity function then there is a langudge
{0, 1}* which is computable in timg3() but not generically computable in timg).

Proof. The idea of the proofis that for each Turing machiieve specify infinitely many
lengths devoted to “defeating” the machite We can do this by using ordered pairs. Let

N* denote the set of positive integers. The standard one-to-one enumeration, often called
the “pairing function”,

p:NT x Nt — NT,

is given by a simple formula and its inverse functipn® is also easily computable,
certainly in cubic time. We define the languageas follows. Ifw is a word on{0, 1},
let n = |w| and calculateo—1(n) = (r, s). If r is not the code/ (M) of a Turing machine
thenw ¢ L.

If r =y (M) for some Turing maching?, we simulate the action a¥/ on the inputw
for f(Jw|) steps. By Lemma 9.2 this requires at mosf®|w|)) steps. Puw in L if and
only if M does notaccepb in f(|w|) steps.

By construction, we have. € DTIME(f3(n)). On the other hand, ifL were in
GenTIME( f (n)) then there would exist a Turing maching and an integer such that
for all m > n the machiney’ correctly decides membershipin on at least three-quarters
of all words of length less than or equalio Letr = —y(M’), s > n, andr = p~1(r, 5).
Note thatr > n. By constructionM’ does not decide correctly membershiplihfor any
words of lengttr in time f (). But more than half of the words of length less than or equal
tor have length exactly. HenceM’ fails to generically decidé&’ in time f(n), yielding a
contradiction. O
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