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Abstract
The most important computational problem on lattices is the Shortest Vector Problem (SVP). In this
paper, we present new algorithms that improve the state-of-the-art for provable classical/quantum
algorithms for SVP. We present the following results.

1. A new algorithm for SVP that provides a smooth tradeoff between time complexity and memory
requirement. For any positive integer 4 ≤ q ≤

√
n, our algorithm takes q13n+o(n) time and

requires poly(n) · q16n/q2
memory. This tradeoff which ranges from enumeration (q =

√
n) to

sieving (q constant), is a consequence of a new time-memory tradeoff for Discrete Gaussian
sampling above the smoothing parameter.

2. A quantum algorithm that runs in time 20.9533n+o(n) and requires 20.5n+o(n) classical memory
and poly(n) qubits. This improves over the previously fastest classical (which is also the fastest
quantum) algorithm due to [2] that has a time and space complexity 2n+o(n).

3. A classical algorithm for SVP that runs in time 21.741n+o(n) time and 20.5n+o(n) space. This
improves over an algorithm of [15] that has the same space complexity.

The time complexity of our classical and quantum algorithms are expressed using a quantity
related to the kissing number of a lattice. A known upper bound of this quantity is 20.402n, but in
practice for most lattices, it can be much smaller and even 2o(n). In that case, our classical algorithm
runs in time 21.292n and our quantum algorithm runs in time 20.750n.
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4:2 Improved (Provable) Algorithms for the Shortest Vector Problem

1 Introduction

A lattice L = L(b1, . . . , bn) := {
∑n

i=1 zibi : zi ∈ Z} is the set of all integer combinations
of linearly independent vectors b1, . . . , bn ∈ Rn. We call n the rank of the lattice and
(b1, . . . , bn) a basis of the lattice.

The most important computational problem on lattices is the Shortest Vector Problem
(SVP). Given a basis for a lattice L ⊆ Rn, SVP asks us to compute a non-zero vector in
L with the smallest Euclidean norm. Starting from the ’80s, the use of approximate and
exact solvers for SVP (and other lattice problems) gained prominence for their applications
in algorithmic number theory [41], convex optimization [32, 34, 20], coding theory [17],
and cryptanalysis tool [56, 14, 40]. The security of many cryptographic primitives is
based on the worst-case hardness of (a decision variant of) approximate SVP to within
polynomial factors [6, 44, 53, 52, 45, 23, 13] in the sense that any cryptanalytic attack
on these cryptosystems that runs in time polynomial in the security parameter implies a
polynomial time algorithm to solve approximate SVP to within polynomial factors. Such
cryptosystems have attracted a lot of research interest due to their conjectured resistance to
quantum attacks.

The SVP is a well studied computational problem in both its exact and approximate
(decision) versions. By a randomized reduction, it is known to be NP-hard to approximate
within any constant factor, and hard to approximate within a factor nc/ log log n for some
c > 0 under reasonable complexity-theoretic assumptions [42, 35, 27]. For an approximation
factor 2O(n), one can solve SVP in time polynomial in n using the celebrated LLL lattice
basis reduction algorithm [41]. In general, the fastest known algorithm(s) for approximating
SVP within factors polynomial in n rely on (a variant of) the BKZ lattice basis reduction
algorithm [54, 55, 7, 21, 25, 3], which can be seen as a generalization of the LLL algorithm
and gives an rn/r approximation in 2O(r) poly(n) time. All these algorithms internally use
an algorithm for solving (near) exact SVP in lower-dimensional lattices. Therefore, finding
faster algorithms to solve SVP is critical to choosing security parameters of cryptographic
primitives.

As one would expect from the hardness results above, all known algorithms for solving
exact SVP, including the ones we present here, require at least exponential time. In fact,
the fastest known algorithms also require exponential space. There has been some recent
evidence [4] showing that one cannot hope to get a 2o(n) time algorithm for SVP if one
believes in complexity theoretic conjectures such as the (Gap) Exponential Time Hypothesis.
Most of the known algorithms for SVP can be broadly classified into two classes: (i) the
algorithms that require memory polynomial in n but run in time nO(n) and (ii) the algorithms
that require memory 2O(n) and run in time 2O(n).

The first class, initiated by Kannan [34, 28, 26, 22, 48], combines basis reduction with
exhaustive enumeration inside Euclidean balls. While enumerating vectors requires 2O(n log n)

time, it is much more space-efficient than other kinds of algorithms for exact SVP.
Another class of algorithms, and currently the fastest, is based on sieving. First developed

by Ajtai, Kumar, and Sivakumar [7], they generate many lattices vectors and then divide-
and-sieve to create shorter and shorter vectors iteratively. A sequence of improvements [51,
49, 46, 50, 2, 5], has led to a 2n+o(n) time and space algorithm by sieving the lattice vectors
and carefully controlling the distribution of output, thereby outputting a set of lattice vectors
that contains the shortest vector with overwhelming probability.

An alternative approach using the Voronoi cell of the lattice was proposed by Micciancio
and Voulgaris [47] and gives a deterministic 22n+o(n)-time and 2n+o(n)-space algorithm for
SVP (and many other lattice problems).
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There are variants [49, 46, 39, 11] of the above mentioned sieving algorithms that, under
some heuristic assumptions, have an asymptotically smaller (but still 2Θ(n)) time and space
complexity than their provable counterparts.

Algorithms giving a time/space tradeoff

Even though sieving algorithms are asymptotically the fastest known algorithms for SVP,
the memory requirement, in high dimension, has historically been a limiting factor to run
these algorithms. Some recent works [18, 8] have shown how to use new tricks to make it
possible to use sieving on high-dimensional lattices in practice and benefit from their efficient
running time [57].

Nevertheless, it would be ideal and has been a long standing open question to obtain an
algorithm that achieves the “best of both worlds”, i.e. an algorithm that runs in time 2O(n)

and requires memory polynomial in n. In the absence of such an algorithm, it is desirable to
have a smooth tradeoff between time and memory requirement that interpolates between the
current best sieving algorithms and the current best enumeration algorithms.

To this end, Bai, Laarhoven, and Stehlé [10] proposed the tuple sieving algorithm,
providing such a tradeoff based on heuristic assumptions similar in nature to prior sieving
algorithms. They conjectured a running time kn+o(n) and space complexity kn/k+o(n). One
can vary the parameter k to obtain a smooth time/space tradeoff. Nevertherless, it is still
desirable to obtain a provable variant of this algorithm that does not rely on any heuristics.
The complexity of this algorithm was later proven, under the same heuristic assumptions [29],
but only for constant k, therefore leaving the subexponential memory regime open.

Kirchner and Fouque [36] attempted to do this. They claim an algorithm for solving
SVP in time qΘ(n) and in space qΘ(n/q) for any positive integer q > 1. Unfortunately, their
analysis falls short of supporting their claimed result, and the correctness of the algorithm is
not clear. We refer the reader to the full version of the paper for more details.

In addition to the above, Chen, Chung, and Lai [15] propose a variant of the algorithm
based on Discrete Gaussian sampling in [2]. Their algorithm runs in time 22.05n+o(n) and
the memory requirement is 20.5n+o(n). The quantum variant of their algorithm runs in time
21.2553n+o(n) time and has the same space complexity. Their algorithm has the best space
complexity among known provably correct algorithms that run in time 2O(n).

A number of works have also investigated the potential quantum speedups for lattice
algorithms, and SVP in particular. A similar landscape to the classical one exists, although
the quantum memory model has its importance. While quantum enumeration algorithms
only require qubits [9], sieving algorithms require more powerful QRAMs [39, 37].

1.1 Our results
We first present a new algorithm for SVP that provides a smooth tradeoff between the
time complexity and memory requirement of SVP without any heuristic assumptions. This
algorithm is obtained by giving a new algorithm for sampling lattice vectors from the Discrete
Gaussian distribution that runs in time qO(n) and requires qO(n/q2) space.

▶ Theorem 1 (Time-space tradeoff for smooth discrete Gaussian, informal). There is an
algorithm that takes as input a lattice L ⊂ Rn, a positive integer q, and a parameter s above
the smoothing parameter of L, and outputs q16n/q2 samples from DL,s using q13n+o(n) time
and poly(q) · q16n/q2 space.

STACS 2021
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Using the standard reduction from Bounded Distance Decoding (BDD) with preprocessing
(where an algorithm solving the problem is allowed unlimited preprocessing time on the
lattice before the algorithm receives the target vector) to Discrete Gaussian Sampling (DGS)
from [16] and a reduction from SVP to BDD given in [15], we obtain the following.

▶ Theorem 2 (Time-space tradeoff for SVP). Let n ∈ N, q ∈ [4,
√

n] be a positive integer. Let
L be the lattice of rank n. There is a randomized algorithm that solves SVP in time q13n+o(n)

and in space poly(n) · q
16n
q2 .

If we take k = q2, then the time complexity of the previous SVP algorithm becomes
k6.5n+o(n) and the space complexity poly(n) · k(8n/k). Our tradeoff is thus the same (up to a
constant in the exponents) as what was claimed by Kirchner and Fouque [36] and proven
in [29] under heuristic assumptions.

Our second result is a quantum algorithm for SVP that improves over the current fastest
quantum algorithm for SVP [2] (Notice that the algorithm in [2] is still the fastest classical
algorithm for SVP).

▶ Theorem 3 (Quantum Algorithm for SVP). There is a quantum algorithm that solves
SVP in 20.9533n+o(n) time and classical 20.5n+o(n) space with an additional number of qubits
polynomial in n.

Our third result is a classical algorithm for SVP that improves over the algorithm from [15]
and results in the fastest classical algorithm that has a space complexity 20.5n+o(n).

▶ Theorem 4 (Algorithm for SVP with 20.5n+o(n) space). There is a classical algorithm that
solves SVP in 21.740n+o(n) time and 20.5n+o(n) space.

The time complexity of our second and third results are obtained using a quantity related
to the kissing number of a lattice. A known upper bound of this quantity is 20.402n, but in
practice for most lattices, it can be much smaller and even 2o(n). In that case, our classical
algorithm runs in time 21.292n and our quantum algorithm runs in time 20.750n. See Section
5 of the full version of the paper for more details [1].

We summarize known provable Classical and Quantum algorithms in Table 1. Note that
all the classical algorithms are also quantum algorithms but they don’t use any quantum
power.

Table 1 Comparison of algorithms for the Shortest vector problem. [39] uses the quantum RAM
model. [15] and our quantum algorithm need only polynomial qubits and 20.5n+o(n) classical space.

Classical Algorithms
Time Space Reference

nn+o(n) poly(n) [34]
2n+o(n) 2n+o(n) [2]

22.05n+o(n) 20.5n+o(n) [15]
21.741n+o(n) 20.5n+o(n) This paper

Quantum Algorithms
Time Space Reference

21.799n+o(n) 21.286n+o(n), QRAM [39]
21.2553n+o(n) 20.5n+o(n) [15]
20.9533n+o(n) 20.5n+o(n) This paper

▶ Remark 5 (Magic constants). Most of the constants that appear in this paper were calculated
by optimising the complexity with respect to a quantity related to the kissing number and
then instantiating with b = 0.402, the best known upper-bound on this quantity. The details
of these calculations are available in the full version, section 5.

https://arxiv.org/abs/2002.07955
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Roadmap

In the following, we give a high-level overview of our proofs in Section 1.2. Section 2
contain some preliminaries on lattices. The proofs of the time-space tradeoff for Discrete
Gaussian sampling above the smoothing parameter and the time-space tradeoff for SVP
are given in Section 3. Our classical and quantum algorithms for solving SVP with space
complexity 20.5n+o(n) are presented in Section 4. We also shows how the time complexity of
our algorithms varies with a quantity related to the kissing number in Section 5 of the full
version of the paper [1].

1.2 Proof overview
We now include a high-level description of our proofs. Before describing our proof ideas, we
emphasize that it was shown in [16, 2] that given an algorithm for DGS a constant factor c

above the smoothing parameter, we can solve the problem of BDD where the target vector is
within distance αλ1(L) of the lattice, where the constant α < 0.5 depends on the constant c.
Additionally, using [15], one can enumerate all lattice points within distance pδ to a target t

by querying pn times a BDD oracle with decoding distance δ (or pn/2 times if we are given a
quantum BDD oracle). Thus, by choosing p = ⌈λ1(L)/δ⌉ and t = 0, an algorithm for BDD
immediately gives us an algorithm for SVP. Therefore, it suffices to give an algorithm for
DGS above the smoothing parameter.

1.2.1 Time-space tradeoff for DGS above smoothing
Recall that efficient algorithms are known for sampling from a discrete Gaussian with a large
enough parameter (width) [38, 24, 12]. In [2], the authors begin by sampling N = 2n+o(n)

vectors from the Discrete Gaussian distribution with (large) parameter s and then look for
pairs of vectors whose sum is in 2L, or equivalently pairs of vectors that lie in the same
coset c ∈ L /2L. Since there are 2n cosets, if we take Ω(2n) samples from DL,s, almost all of
the resulting vectors (except at most 2n vectors) will be paired and are statistically close
to independent samples from the distribution DL,s/

√
2, provided that the parameter s is

sufficiently above the smoothing parameter.
To reduce the space complexity, we modify the algorithm by generating random samples

and checking if the sum of d of those samples is in qL for some integer q. Intuitively, if we
start with two lists of vectors (L1 and L2) of size qO(n/d) from DL,s, where s is sufficiently
above the smoothing parameter, each of these vectors is contained in any coset qL+c for any
c ∈ L /qL with probability roughly 1/qn. We therefore expect that the coset of a uniformly
random d-combination of vectors from L2 is uniformly distributed in L /qL. The proof of
this statement follows from the Leftover Hash Lemma [31]. We therefore expect that for
any vector v ∈ L1, with high probability, there is a set of d vectors x1, . . . , xd in L2 that
sum to a vector in qL+v, and hence 1

q

(∑d
i=1 xi − v

)
∈ L. A lemma by Micciancio and

Peikert ([43]) shows that this vector is statistically close to a sample from the distribution
DL,s

√
d+1/q. We can find such a combination by trying all subsets of d vectors.

We would like to repeat this and find qO(n/d) (nearly) independent vectors in qL. It is
not immediately clear how to continue since, in order to guarantee independence, one would
not want to reuse the already used vectors x1, . . . , xd and conditioned on the choice of these
vectors, the distribution of the cosets containing the remaining vectors is disturbed and is no
longer nearly uniform. By using a simple combinatorial argument, we show that even after
removing any 1/ poly(d) fraction of vectors from the list L2, the d-combination of vectors in
L2 has at least cqn different cosets. This is sufficient to output qO(n/d) independent vectors
in qL with overwhelming probability.

STACS 2021
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1.2.2 A new algorithm for BDD with preprocessing leads to a faster
quantum algorithm for SVP

This result improves the quantum algorithm from [15]. As mentioned above, a BDD oracle
from discrete Gaussian sampling can have a decoding distance αλ1(L) with α < 0.5, and,
using [15], one needs to enumerate all lattice points within distance pαλ1(L) to a target
t by querying pn times a BDD oracle with decoding distance αλ1(L) (or pn/2 times if we
are given a quantum BDD oracle). Hence, we need to take p = 3 so that pαλ1(L) ⩾ λ1(L),
and the search space is at least 3n, or 3n/2 quantum queries. Thus, towards optimizing the
algorithm for SVP, one should aim to solve α-BDD for α slightly larger than 1/3 since a
larger value of α will still lead to the same running time for SVP. Using known bounds,
it can be shown that such an algorithm requires 20.1605n+o(n) independent (preprocessed)
samples from DL,ηε(L)

1 for ε = 2−cn for some constant c.
In [2], the authors gave an algorithm that runs in time 2n/2+o(n) and outputs 2n/2+o(n)

samples from DL,s for any s ≥
√

2η0.5(L), i.e. a factor
√

2 above the smoothing parameter).
In order to obtain samples at the smoothing parameter, we construct a dense lattice L′ of
smaller smoothing parameter than L. We then sample 20.5n+o(n) vectors from DL′,s and
reject those that are not in L. Using the reduction from BDD to DGS, and by repeating this
algorithm, we obtain a 20.661n+o(n) time and 20.5n+o(n)-space algorithm to solve 1/3-BDD
with preprocessing, where each call to BDD requires 20.161n+o(n) time. Thus, the total
time complexity of the classical algorithm is 3n · 20.161n+o(n), and that of the corresponding
quantum algorithm is 3n/2 · 20.161n+o(n).

1.2.3 Covering surface of a ball by spherical caps

As we mentioned above, one can enumerate all lattice points within a pδ distance to a target
t by querying pn times a BDD oracle with decoding distance δ. Our algorithm for BDD is
obtained by preparing samples from the discrete Gaussian distribution. However, note that
the decoding distance of BDD oracle built by discrete Gaussian samples as shown in [16]
is successful if the target vector is within a radius αλ1(L) for α < 1/2 (there is a tradeoff
between α and the number of DGS samples needed), and therefore, if we choose t to be 0, as
we do in the other algorithms mentioned above, then p has to be at least 3 to ensure that the
shortest vector is one of the vectors output by the enumeration algorithm. We observe here
that if we choose a target t to be a random vector “close to” but not at the origin, then the
shortest vector will be within a radius 2δ from the target t with some probability P , and thus
we can find the shortest vector by making 2n/P calls to the BDD oracle. An appropriate
choice of the target t and the factor α gives an algorithm that runs in time 2n · 20.74n+o(n),
which is faster than the algorithm (running in time 3n20.161n+o(n)) mentioned above.

We note that the corresponding quantum algorithm runs in time 2n/2 · 20.74n+o(n), which
is significantly slower than the quantum algorithm mentioned above.

We also note that the running time of this algorithm crucially depends on a quantity
related to the kissing number of a lattice. Since a tight bound on this quantity is not known,
the actual running time of this algorithm might be smaller than that promised above. For a
more elaborate discussion on this, see Section 5 of the full version [1].

1 The number of samples depends on a quantity related to the kissing number of a lattice, we used the
best known upper bound on this quantity due to [33].
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2 Preliminaries

Let N = {1, 2, . . . , }. We use bold letters x for vectors and denote a vector’s coordinates
with indices xi. We use log to represent the logarithm base 2 and ln to represent the natural
logarithm. Throughout the paper, n will always be the dimension of the ambient space Rn.

Lattices

A lattice L is a discrete subgroup of Rn, i.e. the set L(b1, . . . , bn) = {
∑m

i=1 xibi : xi ∈ Z}
of all integer combinations of m linearly independent vectors b1, . . . , bn ∈ Rn. Such bi’s form
a basis of L. The lattice L is said to be full-rank if n = m. We denote by λ1(L) the first
minimum of L, defined as the length of a shortest non-zero vector of L.

For a rank n lattice L ⊂ Rn, the dual lattice, denoted L∗, is defined as the set of all points
in span(L) that have integer inner products with all lattice points, L∗ = {w⃗ ∈ span(L) :
∀y⃗ ∈ L, ⟨w⃗, y⃗⟩ ∈ Z} . Similarly, for a lattice basis B = (⃗b1, . . . , b⃗n), we define the dual basis
B∗ = (⃗b∗

1, . . . , b⃗∗
n) to be the unique set of vectors in span(L) satisfying ⟨⃗b∗

i , b⃗j⟩ = 1 if i = j,
and 0, otherwise. It is easy to show that L∗ is itself a rank n lattice and B∗ is a basis of L∗.
Given a lattice B = (⃗b1, . . . , b⃗n), we denote ∥B ∥2 = max

i
∥bi∥.

Probability distributions

Given two random variables X and Y on a set E, we denote by dSD the statistical distance
between X and Y , which is defined by

dSD(X, Y ) = 1
2

∑
z∈E

∣∣∣Pr
X

[X = z]− Pr
Y

[Y = z]
∣∣∣ =

∑
z∈E :

PrX [X=z]>PrY [Y =z]

(
Pr
X

[X = z]− Pr
Y

[Y = z]
)

.

We write X is ε-close to Y to denote that the statistical distance between X and Y is at
most ε. Given a finite set E, we denote by UE a uniform random variable on E, i.e., for all
x ∈ E, PrUE

[UE = x] = 1
|E| .

Discrete Gaussian Distribution

For any s > 0, define ρs(x) = exp(−π∥x∥2/s2) for all x ∈ Rn. We write ρ for ρ1. For a
discrete set S, we extend ρ to sets by ρs(S) =

∑
x∈S ρs(x). Given a lattice L, the discrete

Gaussian DL,s is the distribution over L such that the probability of a vector y ∈ L is
proportional to ρs(y): PrX∼DL,s

[X = y] = ρs(y)
ρs(L) .

2.1 Lattice problems
The following problem plays a central role in this paper.

▶ Definition 6. For δ = δ(n) ≥ 0, σ a function that maps lattices to non-negative real
numbers, and m = m(n) ∈ N, δ-DGSm

σ (the Discrete Gaussian Sampling problem) is defined
as follows: The input is a basis B for a lattice L ⊂ Rn and a parameter s > σ(L). The goal
is to output a sequence of m vectors whose joint distribution is δ-close to m independent
samples from DL,s.

We omit the parameter δ if δ = 0, and the parameter m if m = 1. We stress that δ

bounds the statistical distance between the joint distribution of the output vectors and m

independent samples from DL,s. We consider the following lattice problems.

STACS 2021
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▶ Definition 7. The search problem SVP (Shortest Vector Problem) is defined as follows:
The input is a basis B for a lattice L ⊂ Rn. The goal is to output a vector y ∈ L with
∥y⃗∥ = λ1(L).

▶ Definition 8. The search problem CVP (Closest Vector Problem) is defined as follows:
The input is a basis B for a lattice L ⊂ Rn and a target vector t⃗ ∈ Rn. The goal is to output
a vector y⃗ ∈ L with ∥y⃗ − t⃗∥ = dist(⃗t,L).

▶ Definition 9. For α = α(n) < 1/2, the search problem α-BDD (Bounded Distance Decoding)
is defined as follows: The input is a basis B for a lattice L ⊂ Rn and a target vector t⃗ ∈ Rn

with dist(t,L) ≤ α · λ1(L). The goal is to output a vector y⃗ ∈ L with ∥y⃗ − t⃗∥ = dist(⃗t,L).

Note that while our other problems become more difficult as the approximation factor γ

becomes smaller, α-BDD becomes more difficult as α gets larger.
For convenience, when we discuss the running time of algorithms solving the above

problems, we ignore polynomial factors in the bit-length of the individual input basis vectors
(i.e. we consider only the dependence on the ambient dimension n).

For a lattice L and ε > 0, the smoothing parameter ηε(L) is the smallest s such that
ρ1/s(L∗) = 1 + ε. Recall that if L is a lattice and v ∈ L then ρs(L+ v) = ρs(L) for all s.
The smoothing parameter has the following well-known property.

▶ Lemma 10 ([53, Claim 3.8]). For any lattice L ⊂ Rn, c ∈ Rn, ε > 0, and s ≥ ηε(L),

1− ε

1 + ε
≤ ρs(L+c)

ρs(L) ≤ 1 .

▶ Corollary 11 ([1, Corollary 10]). Let L ⊂ Rn be a lattice, q be a positive integer, and let
s ≥ ηε(qL). Let C be a random coset in L /qL sampled such that Pr[C = qL+c] = ρs(q L +c)

ρs(L) .
Also, let U be a coset in L /qL sampled uniformly at random. Then dSD(C, U) ≤ 2ε .

The following lemma gives a bound on the smoothing parameter.

▶ Lemma 12 ([2, Lemma 2.7]). For any lattice L ⊂ Rn, ε ∈ (0, 1) and k > 1, we have
kηε(L) > ηεk2 (L)

Micciancio and Peikert [43] showed the following result about resulting distribution from
the sum of many Gaussian samples.

▶ Theorem 13 ([43, Theorem 3.3]). Let L be an n dimensional lattice, z ∈ Zm a nonzero
integer vector, si ≥

√
2∥z∥∞ · ηε(L), and L+ci arbitrary cosets of L for i = 1 · · · , m. Let

yi be independent vectors with distributions DL +ci,si
, respectively. Then the distribution of

y =
∑
i

ziyi is mε close to DY,s, where Y = gcd(z)L+
∑
i

zici, and s =
√∑

(zisi)2.

We will need the following reduction from α-BDD to DGS that was shown in [16].

▶ Theorem 14 ([16, Theorem 3.1], [2, Theorem 7.3]). For any ε ∈ (0, 1/200), let ϕ(L) ≡√
ln(1/ε)/π−o(1)

2ηε(L∗) . Then, there exists a randomized reduction from CVPϕ to 0.5-DGSm
ηε

, where
m = O(n log(1/ε)√

ε
) and CVPϕ is the problem of solving CVP for target vectors that are

guaranteed to be within a distance ϕ(L) of the lattice. The reduction preserves the dimension,
makes a single call to the DGS oracle, and runs in time m · poly(n). Furthermore, the
reduction always reduces an instance of CVPϕ on a lattice L to an instance of DGS on the
dual lattice L∗.
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We need the following relation between the first minimum of lattice and the smoothing
parameter of dual lattice. We will use this to compute the decoding distance of BDD oracle.

▶ Lemma 15 ([2, Lemma 6.1]). For any lattice L ⊂ Rn, ε ∈ (0, 1), we have√
ln(1/ε)

π
< λ1(L)ηε(L∗) <

√
β2n

2πe
· ε−1/n · (1 + o(1)), (1)

and if ε ≤ (e/β2 + o(1))− n
2 , we have√

ln(1/ε)
π

< λ1(L)ηε(L∗) <

√
ln(1/ε) + n ln β + o(n)

π
. (2)

where β(L) = inf{γ : ∀r ≥ 1, N(L, rλ1(L)) ≤ (γr)n}. In particular β(L) ∈ [1, 20.402].

The following theorem proved in [15], is required to solve SVP by exponential number of
calls to α-BDD oracle.

▶ Theorem 16 ([15, Theorem 8]). Given a basis matrix B ⊂ Rn×n for lattice L(B) ⊂ Rn, a
target vector t ∈ Rn, an α-BDD oracle BDDα with α < 0.5, and an integer scalar p > 0. Let
fα

p : Zn
p → Rn be fα

p (s) = −p · BDDα(L, (B s− t)/p) + B s. If dist(L, t) ≤ αλ1(L), then the
list m = {fα

p (s) | s ∈ Zn
p} contains all lattice points within distance pαλ1(L) to t.

We will need the following theorems to sample the DGS vectors with a large width.

▶ Theorem 17 ([2],Proposition 2.17). For any ε ≤ 0.99, there is an algorithm that takes
as input a lattice L ∈ Rn, M ∈ Z>0 (the desired number of output vectors), and s >

2n log log n/ log n · ηε(L), and outputs M independent samples from DL,s in time M · poly(n).

▶ Theorem 18 ([2, Theorem 5.11]). For a lattice L ⊂ Rn, let σ(L) =
√

2η1/2(L). Then
there exists an algorithm that solves exp(−Ω(κ))-DGS2n/2

σ in time 2n/2+polylog(κ)+o(n) with
space O(2n/2) for any κ ≥ Ω(n). Moreover, if the input does not satisfy the promise, and the
input parameter s < σ(L) =

√
2η1/2(L), then the algorithm may output M vectors for some

M ≤ 2n/2 that are exp(−Ω(κ))-close to M independent samples from DL,s.

▶ Lemma 19 ([2, Lemma 5.12]). There is a probabilistic polynomial-time algorithm that
takes as input a lattice L ⊂ Rn of rank n and an integer a with n/2 ≤ a < n and returns
a super lattice L′ ⊃ L of index 2a with L′ ⊆ L /2 such that for any ε ∈ (0, 1), we have
ηε′(L′) ≤ ηε(L)/

√
2 with probability at least 1/2 where ε′ := 2ε2 + 2(n/2)+1−a(1 + ε).

2.2 Probability
We need the following lemma on distribution of vector inner product which directly follows
from the Leftover Hash Lemma [31].

▶ Lemma 20. Let G be a finite abelian group, and let f be a positive integer. Let Y ⊆ {0, 1}f .
Define the inner product ⟨·, ·⟩ : Gf × Y → G by ⟨x, y⟩ =

∑
i xiyi for all x ∈ Gf , y ∈ Y.

Let X, Y be independent and uniformly random variables on Gf ,Y, respectively. Then
dSD((⟨X, Y ⟩, X), (UG, X)) ≤ 1

2 ·
√

|G|
| Y | , where UG is uniform in G and independent of X.

We will also need the Chernoff-Hoeffding bound [30].

▶ Lemma 21. Let X1, . . . , XM be the independent and identically distributed random boolean

variables of expectation p. Then for ε > 0, Pr
[

1
M

M∑
i=1

Xi ≤ p(1− δ)
]
≤
(

e−δ

(1−δ)1−δ

)pM

.

For preliminaries on quantum computing, see [1, Section 2.2]
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3 Algorithms with a time-memory tradeoff for lattice problems

In this section, we present a new algorithm for Discrete Gaussian sampling above the
smoothing parameter.

3.1 Algorithm for Discrete Gaussian Sampling
We now present the main result of this section.

▶ Theorem 22. Let n ∈ N, q ≥ 2, d ∈ [1, n] be positive integers, and let ε > 0. Let C be any
positive integer. Let L be a lattice of rank n, and let s ≥ 2

√
dηε(qL) = 2

√
dqηε(L). There is

an algorithm that, given N = 160d2 ·C ·qn/d independent samples from DL,s, outputs a list of
vectors that is (10dε2dN + 11Cq−5n/2)-close to Cqn/d independent vectors from D

L,

√
8d+1

q s
.

The algorithm runs in time C · (10e · d)8d · q8n+n/d+o(n) and requires memory poly(d) · qn/d

excluding the input and output memory.

Proof. We prove the result for C = 1, and the general result follows by repeating the
algorithm. Let {x1, . . . , xN} be the N input vectors and let {c1, . . . , cN} be the corresponding
cosets in L /qL. The algorithm does the following:
1. Initialize two lists L1 = {x1, . . . , x N

2
} and L2 = {x N

2 +1, . . . , xN} each with N
2 input

vectors, and let Q = 0.
2. Let v be the first vector in L1.
3. Find 8d vectors (by trying all 8d-tuples) xi1 , . . . , xi8d

from L2 such that ci1 +· · ·+ci8d
−v ∈

qL. If no such vectors exist go to step(6).
4. Output the vector xi1 +···+xi8d

−v

q ∈ L, and let Q = Q + 1. If Q = qn/d, then END.
5. Remove vectors xi1 , · · · , xi8d

from L2

6. Remove vector v⃗ from L1 and repeat Steps (2) to (5).

The time complexity of the algorithm is N
2 ·
(

N/2
8d

)
≤ N

2
(

eN
16d

)8d ≤ (10e ·d)8d ·q8n+n/d+o(n),

and memory requirement of the algorithm is immediate. We now show correctness. Let
ε′ = ε2d so that s ≥

√
2ηε′(qL) by Lemma 12. Without loss of generality, we can assume

that the vectors xi for i ∈ [N ] are sampled by first sampling ci ∈ L/qL such that Pr[ci =
c] = Pr[DL,s ∈ qL+c] and then sampling the vector xi according to Dq L +ci,s. Moreover,
by Corollary 11, this distribution is 2ε′N -close to sampling ci for i ∈ [N ], independently and
uniformly from L /qL, and then sampling the vectors xi according to Dq L +ci,s. We now
assume that the input is sampled from this distribution.

Without loss of generality, we can assume that the algorithm initially gets only the
corresponding cosets as input, and the vectors xij

∈ qL+cij
for j ∈ [8d], and v ∈ qL+c

are sampled from Dq L +cij
,s and Dq L +c,s only before such a tuple is needed in Step 4 of the

algorithm. Since any input vector is used only once in Step 4, these samples are independent
of all prior steps. This implies, by Theorem 13, that the vector obtained in Step 4 of the
algorithm is ε′(8d + 1)-close to being distributed as D

L,s

√
8d+1
q

.

It remains to show that our algorithm finds qn/d vectors (with high probability). Let
N ′ = N

2 be an integer, X be a random variable uniform over (L /qL)N ′ , and let Y be a
random variable independent of X and uniform over vectors in {0, 1}N ′ with Hamming
weight 8d. The number of such vectors is(

N ′

8d

)
≥
(

N ′

8d

)8d

≥ q8n . (3)
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Let U be a uniformly random coset of L /qL. By Lemma 20 and (3), we have

dSD((⟨X, Y ⟩, X), (U, X)) ≤ 1
2 ·
√

qn

q8n
< q−7n/2 ,

for a large enough value of n. By Markov inequality, with probability greater than 1− (10 ·
q−5n/2) over the choice of x← X, we have that the statistical distance between ⟨x, Y ⟩ and
U is less than q−n

10 , which implies for any v ∈ L /qL,

q−n + q−n

10 > Pr[⟨x, Y ⟩ = v mod qL] > q−n − q−n

10 . (4)

We assume that the input vectors in list L2 satisfy (4), introducing a statistical distance of
at most 10 · q−5n/2. Notice that after the algorithm found i vectors for any i < qn/d, it has
removed 8id vectors from L2. We will show that for each vector from L1 (which is uniformly
sampled from L /qL) with constant probability we will find 8d-vectors in Step (3).

After i < qn/d output vectors have been found, there are M = N ′− 8id vectors remaining
in the list L2. There are

(
M
8d

)
different 8d-combinations possible with vectors remaining in L2.(

N ′

8d

)
/

(
M

8d

)
= N ′ · · · (N ′ − 8d + 1)

M · · · (M − 8d + 1) <

(
N ′

N ′ − 8d(i + 1)

)8d

⩽

(
1 + 8dqn/d

N ′ − 8dqn/d

)8d

=
(

1 + 1
10d− 1

)8d

<
5
2 since N ′ = 80d2qn/d for C = 1 (5)

At the beginning of the algorithm, there are
(

N ′

8d

)
combinations, and hence by (4), each of

the qn cosets appears at least 0.9q−n
(

N ′

8d

)
times. After i < qn/d output vectors have been

found, there are only
(

M
8d

)
combinations left, and

(
N ′

8d

)
−
(

M
8d

)
possible combinations have

been removed. We say that a coset c disappears if there is no set of 8d vectors in L2 that
add to c. In order for a coset to disappear, all of the at least 0.9q−n

(
N ′

8d

)
combinations from

the initial list must be removed. Hence, the number of cosets that disappear is at most
(N′

8d)−(M
8d)

0.9q−n(N′
8d) < 3/5

0.9 qn = 2
3 qn distinct cosets by (5). Hence with probability at least 1/3, we find

8d vectors xi1 , . . . , xi8d
from L2 such that xi1 + · · ·+ xi8d

− v ∈ qL. By Chernoff-Hoeffding
bound with probability greater than 1− e−d2qn/d , the algorithm finds at least qn/d vectors.
In total, the statistical distance from the desired distribution is

(8d + 1)ε′ ·N + 2ε′qn/d + 10 · q−5n/2 + e−d2qn/d

≤ 10dε′ ·N + 11 · q−5n/2. ◀

▶ Corollary 23. Let n ∈ N, q ∈ [4,
√

n] be an integer, and let ε = q−32n/q2 . Let L be a lattice
of rank n, and let s ≥ ηε(L). There is an algorithm that outputs a list of vectors that is
q−Ω(n)-close to q16n/q2 independent vectors from DL,s. The algorithm runs in time q13n+o(n)

and requires memory poly(n) · q16n/q2 .

Proof. Choose d so that 16d − 16 < q2 ⩽ 16d, which is possible when q ⩾ 4, and let
α = q/

√
8d + 1 – this is the ratio by which we decrease the Gaussian width in Theorem 22 –

and note that α ≥ 1.2.
Let p = ⌈2

√
dq⌉ < q2 and k be the smallest integer such that αk · p ≥ 2n log log n/ log n.

Thus k = O(n log log n/ log n). Let g = αkps ≥ 2n log log n/ log n · ηε(L). By Theorem 17, in
time N0 · poly(n), we get N0 = (160d2)kqn/d samples from DL,g.

We now iterate k times the algorithm from Theorem 22. Initially we have N0 vectors. At
the beginning of the i-th iteration for i ≤ k−1, we have Ni := N0 · (160d2)−i vectors that are
∆i-close to being independently distributed from DL,α−ig, where α−ig ⩾ αp · ηε(L). Hence,
we can apply Theorem 22 and get Ni+1 = Ni/160d2 vectors that are ∆i+1-close to being
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independently distributed from DL,α−(i+1)g, where ∆i+1 ⩽ ∆i +4ε2dNi +11(160d2)k−iq−5n/2.
At each iteration we had Ni ≥ 160d2qn/d vectors, a necessary condition to apply Theorem 22.
Therefore after k iterations, we have at least Nk = N0/(160d2)k = qn/d samples that are
∆k-close to being independently distributed from DL,α−kg, where

∆k ⩽ 11q−5n/2
k∑

i=1
(160d2)k−i +

k−1∑
i=0

10dε2dNi

≤ 11(160d2)kq−5n/2 + 10dq−4nqn/d
k−1∑
i=0

(160d2)k−i since 16d ⩾ q2

≤
(

11q−5n/2 + 10dq−4n+n/d
)

(160d2)k+1 = q−5n/2+o(n) since (160d2)k+1 = qo(n).

Any vector distributed as DL,ps is in pL with probability at least p−n. We repeat the
algorithm 2pn = O(q2n) times to obtain pn · 2 · qn/d vectors that are 2pnq−5n/2+o(n) =
q−n/2+o(n) close to 2pn · qn/d independent samples from DL,ps. Of these samples obtained,
we only keep vectors that fall in pL and divide them by p. Let M = pn · 2 · qn/d. By
Chernoff-Hoeffding (Lemma 21) with P = p−n, and δ = 1

2 , the probability to obtain less than

(1 − δ)PM = qn/d samples is at most
(

e−δ

(1−δ)1−δ

)P M

⩽ e− 1
10 qn/d

. Furthermore, d ⩽ q2+16
16

and q 7→ ln q
16+q2 is decreasing for q ⩾ 4, hence for q ⩽

√
n,

qn/d ⩾ e
16n ln q

16+q2 ⩾ e16n ln
√

n
16+n ⩾ e16 ln

√
n−o(1) = Ω(n8).

Hence with probability greater than 1− e− 1
10 qn/d

= 1− q−Ω(n8), we get qn/d vectors from
the distribution DL,s. The statistical distance from the desired distribution is q−Ω(n8) +
q−n/2+o(n) ≤ q−n/2+o(n). We repeat this for q16n/q2

qn/d times, to get q16n/q2 vectors. The total

statistical distance from the desired distribution is q16n/q2

qn/d · q−n/2+o(n) ≤ q−Ω(n). The total
running time is bounded by

q2n

(
q16n/q2

qn/d

)(
poly(n) ·N0 +

k−1∑
i=0

(10ed)8d · (160d2)k−iq8n+n/d+o(n)

)
⩽ q13n+o(n).

The memory usage is slightly more involved: we can think of the k iterations as a pipeline
with k intermediate lists and we observe that as soon as a list (at any level) has more than
160d2q16n/q2 elements, we can apply Theorem 22 to produce q16n/q2 vectors at the next
level. Hence, we can ensure that at any time, each level contains at most 160d2q16n/q2

vectors, so in total we only need to store at most k · 160d2q16n/q2 = poly(n)q16n/q2 vectors,
to which we add the memory usage of the algorithm of Theorem 22 which is bounded by
poly(n) · qn/d ⩽ poly(n) · q16n/q2 . Finally, we run the filter (pL) on the fly at the end of the
k iterations to avoid storing useless samples. ◀

This tradeoff works for any q ≥ 4, and the running time can be bounded by c
n+o(n)
1 · qc2n

for some constants c1 and c2 that we have not tried to optimize.

3.2 Algorithms for BDD and SVP
▶ Theorem 24. Let n ∈ N, q ∈ [4,

√
n] be a positive integer. Let L be a lattice of rank

n, there exists an algorithm that creates a 0.1/q-BDD oracle in time q13n+o(n) and space
poly(n) · q16n/q2 . Every call to this oracle takes time poly(n)q16n/q2 time.
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Proof. Let ε = q
−32n

q2 and s = ηε(L∗). From corollary 23, there exists an algorithm that
outputs q16n/q2 vectors whose distribution is statistically close to time DL∗,s in q13n+o(n)

and space poly(n) · q16n/q2 .
By Theorem 14, there is a reduction from α-BDD to 1

2 -DGSm
ηε

with m = O( n log(1/ε)√
ε

) =

O(n2

q2 q16n/q2), where the decoding coefficient is α =
√

log(1/ε)/π−o(1)
2ηε(L∗)λ1(L) . By repeating poly(n)

times the algorithm from Corollary 23, we get m vectors from DL∗,ηε(L∗). By Lemma 15,
we get

α(L) =
√

log(1/ε)/π − o(1)
2ηε(L∗)λ1(L) ≥

√
log(1/ε)

2n(β2/e)ε−1/n
· (1−o(1)) ≥ 1

q

√
32 · e · log q

2β2q32/q2 ≥ (10q)−1.

Note that here we are using the fact that the reduction in Theorem 14 always reduces an
instance on a lattice L to an instance on the dual lattice L∗: this is why we generate samples
from DL∗,ηε(L∗) in the preprocessing phase, even before any call to the oracle is made. Finally,
by Theorem 14, each call to the oracle takes time m · poly(n) = O(q16n/q2 poly(n)). ◀

▶ Theorem 25. Let n ∈ N, q ∈ [4,
√

n] be a positive integer. Let L be a lattice of rank n.
There is a randomized algorithm that solves SVP in time q13n+o(n) and in space poly(n) ·q

16n
q2 .

Proof. By Theorem 24, we can construct a 0.1
q -BDD oracle in time q13n+o(n) and in space

poly(n) · q
16n
q2 . Each execution of the BBD oracle now takes O(poly(n)q16n/q2) time. By

Theorem 16, with (10q)n queries to 0.1
q -BDD oracle, we can find the shortest vector. The

total time complexity is q13n+o(n) + poly(n)q16n/q2 · (10q)n = q13n+o(n). ◀

▶ Remark 26. If we take q =
√

n, Theorem 25 gives a SVP algorithm that takes nO(n) time
and poly(n) space. The constant in the exponent of time complexity is worse than the best
enumeration algorithms. When q is a large enough constant, for any constant ε > 0, there
exists a constant C = C(ε) > 2, such that there is a 2Cn time and 2εn space algorithm for
DGS, and SVP. In particular, the time complexity of the algorithm in this regime is worse
than the best sieving algorithms.

4 New space efficient algorithms for SVP

In this section, we present relatively space-efficient classical and quantum algorithms to find
a shortest nonzero lattice vector. Our quantum algorithm is the first provable algorithm for
exact-SVP that takes less than O(2n) time. Recall that there exists an algorithm [15] that,
given a lattice L and a target vector t, outputs all lattice vectors within distance pαλ1(L) to
t, by making pn calls to an α-BDD oracle. We present a quantum algorithm for SVP that
takes 20.9532n+o(n) time and 20.5n+o(n) space with poly(n) qubits. We also present a classical
algorithm for SVP that takes 21.741n+o(n) time and 20.5n+o(n) space.

The strategy followed by [15] is to choose p = ⌈1/α⌉, the target vector t to be the origin,
and sequentially compute the candidate vectors for SVP. There are two ways to reduce the
time complexity: one can improve the BDD oracle or reduce the number of queries. We will
show how to improve both aspects.

4.1 Quantum algorithm for SVP
In order to solve SVP by the method in [15], it is sufficient to use a BDD oracle with decoding
coefficient α slightly greater than 1/3. In [15], the authors use a reduction from BDD to DGS
by [16] and use the Gaussian sampler of [2] to obtain many samples with standard deviation
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equal to
√

2η1/2. This allows them to construct a 0.391-BDD but each call to the BDD oracle
uses many DGS samples. This is wasteful since we really only need a 1/3-BDD. The reason
why it is so expensive is that in the analysis they need to find ε such that ηε >

√
2η1/2 to

apply the reduction, and it requires them to take ε much smaller than would be strictly
necessary to construct a 1/3-BDD oracle; this smaller ε explains the bigger decoding radius.

We obtain a BDD oracle with decoding distance 1/3 by using the same reduction but
making each call cheaper. This is achieved by building a sampler that directly samples at the
smoothing parameter, hence avoiding the

√
2 factor, allowing us to take a bigger ε. In [2],

it was shown how to construct a dense lattice L′ whose smoothing parameter η(L′) is
√

2
times smaller than the original lattice, and that contains all lattice points of the original
lattice. Suppose that we first use such a dense lattice to construct a corresponding discrete
Gaussian sampler with standard deviation equal to s =

√
2η(L′). We then do the rejection

sampling on condition that the output is in the original lattice L. We thus have constructed
a discrete Gaussian sampler of L whose standard deviation is

√
2η(L′) = η(L). Nevertheless,

| L′ /L | will be at least 20.5n, which implies that this procedure needs at least 20.5n input
vectors to produce an output vector. We use this idea to obtain the following lemma.

▶ Lemma 27. There is an probabilistic algorithm that, given a lattice L ⊂ Rn, m ∈ Z+ and
s ≥ η1/3(L) as input, outputs m samples from a distribution (m · 2−Ω(n2))-close to DL,s in
expected time m · 2(n/2)+o(n) and (m + 2n/2) · 2o(n) space.

Proof. Let a = n
2 + 4. We repeat the following until we output m vectors. We use the

algorithm in Lemma 19 to obtain a lattice L′ ⊃ L of index 2a. We then run the algorithm
from Theorem 18 with input (L′, s) to obtain a list of vectors from L′. We output the vectors
in this list that belong to L.

By Theorem 18, we obtain, in time and space 2(n/2)+o(n), M = 2n/2 vectors that are
2−Ω(n2)-close to M vectors independently sampled from DL′,s. Also, by Lemma 19, with
probability at least 1/2, we have s ≥ η1/3(L) ≥

√
2η1/2(L′).

From these M vectors, we will reject the vectors which are not in lattice L. It is easy
to see that the probability that a vector sampled from the distribution DL′,s is in L is at
least ρs(L)/ρs(L′) ≥ 1

2a using Lemma 10. Thus, the probability that we obtain at least one
vector from L (which is distributed as DL,s) is at least

1
2

(
1− (1− 1/2a)2n/2

)
≥ 1

2 ·
(

1− e−2n/2/2n/2+4
)

= 1
2(1− e−1/16).

It implies that after rejection of vectors, with constant probability we will get at least one
vector from DL,s. Thus, the expected number of times we need to repeat the algorithm is
O(m) until we obtain vectors y1, . . . , ym whose distribution is statistically close to being
independently distributed from DL,s. The time and space complexity is clear from the
algorithm. ◀

▶ Theorem 28. For any sufficiently large integer n, any integer m > 0, and a lattice L ⊂ Rn,
there exists an algorithm that creates a 1/3-BDD oracle in 20.6608n+o(n) time and 20.5n+o(n)

space. Every call to this oracle takes 20.1608n+o(n) time and space.

Proof. See full version [1, Theorem 30]; it is similar to Theorem 24 but using Lemma 27. ◀

From [15], we can enumerate all vectors of length p· 13 λ1(L) by making pn calls to 1/3-BDD
oracle. Although naively searching for the minimum in the set of vectors of length less than
or equal to p · 1

3 λ1(L), will find the origin with high probability, one can work around this
issue by shifting the zero vector. Choosing an arbitrary nonzero lattice vector as the shift,
we are guaranteed to obtain a vector of length at least λ1 for p ≥ 3. Hence by combining the
1/3-BDD oracle from Theorem 28 and the quantum minimum finding algorithm from [19,
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Theorem 1], we can find the shortest vector. Note that, we can directly use the quantum
speedup construction from [15]. The following theorem is a simplified construction for the
quantum algorithm.

▶ Theorem 29. For any n ≥ 5, there is a quantum algorithm that solves SVP in time
20.9533n+o(n) and classical-space 20.5n+o(n) with polynomial number of qubits.

Proof. Let B be a basis of the lattice, BDD1/3 be a 1/3-BDD oracle and let f : Zn
3 → L

be f(s) = −3 · BDD1/3(L, (Bs)/3) + Bs. The algorithm works on three quantum registers
and our goal is to build a superposition of states of the form |s⟩|f(s)⟩|x⟩ where x = ∥f(s)∥
most the time (see the definition of U below). The algorithm goes like this, we first use
Theorem 28 to construct a quantum oracle OBDD on the first two registers that satisfies
OBDD|s⟩|0⟩ = |s⟩|f(s)⟩ for all s ∈ Zn

3 . We then construct another quantum circuit U

satisfying

U(|ω⟩|0⟩) =
{
|ω⟩| ∥ω∥⟩ if ω ̸= 0
|ω⟩| ∥Be1∥+ 1⟩ if ω = 0,

and apply it on the second and third registers. Here e1 ∈ Zn is a vector whose first coordinate
is one and rest are zero. After that, we apply the quantum minimum finding algorithm on
the first and third registers and get an index s′. The output of the algorithm will be f

1/3
3 (s′).

By Theorem 28, in 20.661n+o(n)-time and 20.5n+o(n) space, we can generate 20.161n+o(n)

vectors to construct a 1/3-BDD oracle. Thus OBDD can be built using 20.1608n+o(n) Toffoli
gates and poly(n) qubits. To see that we only need poly(n) qubits, we only keep the vectors
of size smaller than exp(n) in the constuction of OBDD, they thus can all be stored within
poly(n) qubits. Since the vectors are sampled from a Gaussian with width at most exp(n),
the error induced by throwing away the tail of the distribution is negligible. Furthermore all
functions acting on these vectors can be implemented with poly(n) qubits.

We can also construct U efficiently. Hence, the algorithm needs O(20.1608n+o(n)) Toffoli
gates and poly(n) qubits for three registers. As a result by applying the quantum minimum
finding algorithm from [19, Theorem 1], the quantum algorithm takes 30.5n · 20.1608n+o(n) =
20.9533n+o(n) time and 20.5n+o(n) classical space with a polynomial number of qubits.

Lastly, we show that the quantum algorithm will output a shortest non-zero vector with
constant probability. Since ∥Be1∥+ 1 > λ1(L), with at least 1/2 probability one will find
the index i such that f(i) is a shortest nonzero vector by using the quantum minimum
finding algorithm from [19, Theorem 1]. Therefore it suffices to show that there is an index
i ∈ Zn

3 such that ∥f(i)∥ = λ1(L). By Theorem 16, the list {f(s)|s ∈ Zn
3} contains all lattice

points within radius 3 · 1
3 λ1(L) = λ1(L) from 0, including the lattice vector with length

λ1(L). Hence with at least 1/2 probability, the algorithm outputs a non-zero shortest lattice
vector. ◀

4.2 Solving SVP by spherical caps on the sphere
We now explain how to reduce the number of queries to the α-BDD oracle. Consider a
uniformly random target vector t such that α(1− 1

n )λ1(L) ≤ ∥t∥ < αλ1(L), it satisfies the
condition of Theorem 16, i.e. dist(L, t) ≤ αλ1(L). We enumerate all lattice vectors within
distance 2αλ1(L) to t and keep only the shortest nonzero one. We show that for α = 0.4097,
we will get the shortest nonzero vector of the lattice with probability at least 2−0.3298n+o(n).
By repeating this O(20.3298n+o(n)) times, the algorithm will succeed with constant probability.
We rely on the following construction of a 0.4097-BDD oracle.

▶ Theorem 30. For any dimension n ≥ 4, any integer m > 0, and a lattice L ⊂ Rn, there
exists an algorithm that constructs a 0.4097-BDD oracle in 20.9108n+o(n) time and 20.5n+o(n)

space. Each call to the oracle takes 20.4108n+o(n) time and space.
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Proof. See full version [1, Theorem 32]; it is similar to Theorem 24 but using Lemma 27. ◀

▶ Theorem 31. There is a randomized algorithm that solves SVP in time 21.741n+o(n) and
in space 20.5n+o(n) with constant probability.

Proof. On input lattice L(B), use the LLL algorithm [41] to get a number d (the norm of
the first vector of the basis) that satisfies λ1(L) ≤ d ≤ 2n/2λ1(L). For i = 1, . . . , n2, let
di = d/(1 + 1

n )i, and let α = 0.4097. There exists a j such that λ1(L) ≤ dj ≤ (1 + 1
n )λ1(L).

We repeat the following procedure for all i = 1, . . . , n2:
For j = 1 to 20.3298n+o(n), pick a uniformly random vector vij on the surface of the ball

of radius α(1− 1
n )di. By Theorem 16, we can enumerate 2n lattice points using the function

fij : Zn
2 → L defined by fij(x) = B x − 2 · BDDα(L, (B x − vij)/2). At each step we only

store the shortest nonzero vector. At the end, we output the shortest among them.
The running time of the algorithm is straightforward. We make 2n queries to a α-BDD

oracle that takes 20.4108n+o(n) time and space by Theorem 30. We further repeat this
n220.3298n+o(n) times. Therefore the algorithm takes 21.741n+o(n) time and 20.5n+o(n) space.

To prove the correctness of the algorithm, it suffices to show that there exists an i ∈ [n2]
for which the algorithm finds the shortest vector with high probability. Recall that there
exists an i such that λ1(L) ≤ di ≤ (1 + 1

n )λ1(L) and let that index be k. We will show
that for a uniformly random vector v of length α(1− 1

n )dk, if we enumerate 2n vectors by
the function f : Zn

2 → L, f(x) = B x − 2 · BDDα(L, (B x − v)/2), then with probability
2−0.3298n−o(n) there exists x ∈ Zn

2 such that f(x) is the shortest nonzero lattice vector.
We show that we can cover the sphere of radius λ1 by 20.3298n+o(n) balls of radius

2αλ1 = 0.4097 ∗ 2λ1 whose centers are at distance α(1− 1
n )dk ≤ 0.4097λ1 from the origin

(see figure 1). We have two concentric circles of radius α(1− 1
n )dk and λ1, and let P be a

uniformly random point on the surface of the ball of radius α(1− 1
n )dk. A ball of radius 2αλ1

at center P will cover the spherical cap with angle ϕ of the ball of radius λ1. By the law of
the cosines, we can compute ϕ ≈ cos−1( 1−3α2

2α ) and hence, by [4, Lemma 5.6], if we randomly
choose v, the corresponding spherical caps will cover the shortest vector with probability at
least

∫ ϕ

0 sinn−2 θdθ ≥ 2−0.3298n−o(n). Besides, by Theorem 16, the list {f(x) | x ∈ Zn
2} will

contain all lattice points within radius 2αdk from v. Hence, the list will contain a shortest
vector with probability 2−0.3298n+o(n). By repeating this process 20.3298n+o(n) times, we can
find the shortest vector with constant probability. ◀

O

P
2αλ1

αλ1

λ1
ϕ

Figure 1 One can cover the sphere of radius λ1 by balls of radius 2αλ1, where 1
3 ⩽ α < 1

2 , whose
centers (here P ) are at distance αλ1 from the origin O. Each such ball covers a spherical cap of
half-angle ϕ.
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