10 research outputs found

    Numerical Simulation of Water Circulation In Marinas of Complex Geometry By A Multi-block Technique

    Get PDF
    International audienceThis paper presents a finite-volume method for solving the Shallow-Water Equations (SWE) in a curvilinear coordinate system on an arbitrary overlapping composite grids. A multi-block technique is implemented. The academic tests are also presented to validate the proposed technique. A typical application of this technique is the simulation of water circulation in marinas and harbor

    Accelerated Data-Flow Analysis

    Full text link
    Acceleration in symbolic verification consists in computing the exact effect of some control-flow loops in order to speed up the iterative fix-point computation of reachable states. Even if no termination guarantee is provided in theory, successful results were obtained in practice by different tools implementing this framework. In this paper, the acceleration framework is extended to data-flow analysis. Compared to a classical widening/narrowing-based abstract interpretation, the loss of precision is controlled here by the choice of the abstract domain and does not depend on the way the abstract value is computed. Our approach is geared towards precision, but we don't loose efficiency on the way. Indeed, we provide a cubic-time acceleration-based algorithm for solving interval constraints with full multiplication

    Applications of Polyhedral Computations to the Analysis and Verification of Hardware and Software Systems

    Get PDF
    Convex polyhedra are the basis for several abstractions used in static analysis and computer-aided verification of complex and sometimes mission critical systems. For such applications, the identification of an appropriate complexity-precision trade-off is a particularly acute problem, so that the availability of a wide spectrum of alternative solutions is mandatory. We survey the range of applications of polyhedral computations in this area; give an overview of the different classes of polyhedra that may be adopted; outline the main polyhedral operations required by automatic analyzers and verifiers; and look at some possible combinations of polyhedra with other numerical abstractions that have the potential to improve the precision of the analysis. Areas where further theoretical investigations can result in important contributions are highlighted.Comment: 51 pages, 11 figure

    Research reports: 1987 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 23rd consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama in Huntsville and MSFC during the period 1 June to 7 August 1987. Operated under the auspices of the American Society for Engineering Education, the MSFC program, as well as those at other NASA Centers, was sponsored by the Office of University Affairs, NASA Headquarters, Washington, D.C. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participant's institutions; and (4) to contribute to the research objectives of the NASA Centers. This document is a compilation of Fellow's reports on their research during the Summer of 1987

    Bowdoin Orient v.134, no.1-24 (2004-2005)

    Get PDF
    https://digitalcommons.bowdoin.edu/bowdoinorient-2000s/1005/thumbnail.jp
    corecore