34 research outputs found

    Inexact Proximal Newton Methods for Finite Strain Plasticity

    Get PDF

    Deformable Medical Image Registration: A Survey

    Get PDF
    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this technical report, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this technical report is to provide an extensive account of registration techniques in a systematic manner.Le recalage déformable d'images est une des tâches les plus fondamentales dans l'imagerie médicale. Parmi ses applications les plus importantes, on compte: i) la fusion d' information provenant des différents types de modalités a n de faciliter le diagnostic et la planification du traitement; ii) les études longitudinales, oú des changements structurels ou anatomiques sont étudiées en fonction du temps; et iii) la modélisation de la variabilité anatomique normale d'une population et les atlas statistiques. Dans ce rapport de recherche, nous essayons de donner un aperçu des différentes méthodes du recalage déformables, en mettant l'accent sur les avancées les plus récentes du domaine. Nous avons particulièrement insisté sur les techniques appliquées aux images médicales. A n d'étudier les méthodes du recalage d'images, leurs composants principales sont d'abord identifiés puis étudiées de manière indépendante, les techniques les plus récentes étant classifiées en suivant un schéma logique déterminé. La contribution de ce rapport de recherche est de fournir un compte rendu détaillé des techniques de recalage d'une manière systématique

    Bundle methods for regularized risk minimization with applications to robust learning

    Get PDF
    Supervised learning in general and regularized risk minimization in particular is about solving optimization problem which is jointly defined by a performance measure and a set of labeled training examples. The outcome of learning, a model, is then used mainly for predicting the labels for unlabeled examples in the testing environment. In real-world scenarios: a typical learning process often involves solving a sequence of similar problems with different parameters before a final model is identified. For learning to be successful, the final model must be produced timely, and the model should be robust to (mild) irregularities in the testing environment. The purpose of this thesis is to investigate ways to speed up the learning process and improve the robustness of the learned model. We first develop a batch convex optimization solver specialized to the regularized risk minimization based on standard bundle methods. The solver inherits two main properties of the standard bundle methods. Firstly, it is capable of solving both differentiable and non-differentiable problems, hence its implementation can be reused for different tasks with minimal modification. Secondly, the optimization is easily amenable to parallel and distributed computation settings; this makes the solver highly scalable in the number of training examples. However, unlike the standard bundle methods, the solver does not have extra parameters which need careful tuning. Furthermore, we prove that the solver has faster convergence rate. In addition to that, the solver is very efficient in computing approximate regularization path and model selection. We also present a convex risk formulation for incorporating invariances and prior knowledge into the learning problem. This formulation generalizes many existing approaches for robust learning in the setting of insufficient or noisy training examples and covariate shift. Lastly, we extend a non-convex risk formulation for binary classification to structured prediction. Empirical results show that the model obtained with this risk formulation is robust to outliers in the training examples

    NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

    Get PDF
    Partial differential equations are the chief means of providing mathematical models in science, engineering and other fields. Optimal control of partial differential equations (PDEs) has tremendous applications in engineering and science, such as shape optimization, image processing, fluid dynamics, and chemical processes. In this thesis, we develop and analyze several efficient numerical methods for the optimal control problems governed by elliptic PDE, parabolic PDE, and wave PDE, respectively. The thesis consists of six chapters. In Chapter 1, we briefly introduce a few motivating applications and summarize some theoretical and computational foundations of our following developed approaches. In Chapter 2, we establish a new multigrid algorithm to accelerate the semi-smooth Newton method that is applied to the first-order necessary optimality system arising from semi-linear control-constrained elliptic optimal control problems. Under suitable assumptions, the discretized Jacobian matrix is proved to have a uniformly bounded inverse with respect to mesh size. Different from current available approaches, a new strategy that leads to a robust multigrid solver is employed to define the coarse grid operator. Numerical simulations are provided to illustrate the efficiency of the proposed method, which shows to be computationally more efficient than the popular full approximation storage (FAS) multigrid method. In particular, our proposed approach achieves a mesh-independent convergence and its performance is highly robust with respect to the regularization parameter. In Chaper 3, we present a new second-order leapfrog finite difference scheme in time for solving the first-order necessary optimality system of the linear parabolic optimal control problems. The new leapfrog scheme is shown to be unconditionally stable and it provides a second-order accuracy, while the classical leapfrog scheme usually is well-known to be unstable. A mathematical proof for the convergence of the proposed scheme is provided under a suitable norm. Moreover, the proposed leapfrog scheme gives a favorable structure that leads to an effective implementation of a fast solver under the multigrid framework. Numerical examples show that the proposed scheme significantly outperforms the widely used second-order backward time differentiation approach, and the resultant fast solver demonstrates a mesh-independent convergence as well as a linear time complexity. In Chapter 4, we develop a new semi-smooth Newton multigrid algorithm for solving the discretized first-order necessary optimality system that characterizes the optimal solution of semi-linear parabolic PDE optimal control problems with control constraints. A new leapfrog discretization scheme in time associated with the standard five-point stencil in space is established to achieve a second-order accuracy. The convergence (or unconditional stability) of the proposed scheme is proved when time-periodic solutions are considered. Moreover, the derived well-structured discretized Jacobian matrices greatly facilitate the development of an effective smoother in our multigrid algorithm. Numerical simulations are provided to illustrate the effectiveness of the proposed method, which validates the second-order accuracy in solution approximations as well as the optimal linear complexity of computing time. In Chapter 5, we offer a new implicit finite difference scheme in time for solving the first-order necessary optimality system arising in optimal control of wave equations. With a five-point central finite difference scheme in space, the full discretization is proved to be unconditionally convergent with a second-order accuracy, which is not restricted by the classical Courant-Friedrichs-Lewy (CFL) stability condition on the spatial and temporal step sizes. Moreover, based on its advantageous developed structure, an efficient preconditioned Krylov subspace method is provided and analyzed for solving the discretized sparse linear system. Numerical examples are presented to confirm our theoretical conclusions and demonstrate the promising performance of proposed preconditioned iterative solver. Finally, brief summaries and future research perspectives are given in Chapter 6

    Convex relaxation methods for graphical models : Lagrangian and maximum entropy approaches

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 241-257).Graphical models provide compact representations of complex probability distributions of many random variables through a collection of potential functions defined on small subsets of these variables. This representation is defined with respect to a graph in which nodes represent random variables and edges represent the interactions among those random variables. Graphical models provide a powerful and flexible approach to many problems in science and engineering, but also present serious challenges owing to the intractability of optimal inference and estimation over general graphs. In this thesis, we consider convex optimization methods to address two central problems that commonly arise for graphical models. First, we consider the problem of determining the most probable configuration-also known as the maximum a posteriori (MAP) estimate-of all variables in a graphical model, conditioned on (possibly noisy) measurements of some variables. This general problem is intractable, so we consider a Lagrangian relaxation (LR) approach to obtain a tractable dual problem. This involves using the Lagrangian decomposition technique to break up an intractable graph into tractable subgraphs, such as small "blocks" of nodes, embedded trees or thin subgraphs. We develop a distributed, iterative algorithm that minimizes the Lagrangian dual function by block coordinate descent. This results in an iterative marginal-matching procedure that enforces consistency among the subgraphs using an adaptation of the well-known iterative scaling algorithm. This approach is developed both for discrete variable and Gaussian graphical models. In discrete models, we also introduce a deterministic annealing procedure, which introduces a temperature parameter to define a smoothed dual function and then gradually reduces the temperature to recover the (non-differentiable) Lagrangian dual. When strong duality holds, we recover the optimal MAP estimate. We show that this occurs for a broad class of "convex decomposable" Gaussian graphical models, which generalizes the "pairwise normalizable" condition known to be important for iterative estimation in Gaussian models.(cont.) In certain "frustrated" discrete models a duality gap can occur using simple versions of our approach. We consider methods that adaptively enhance the dual formulation, by including more complex subgraphs, so as to reduce the duality gap. In many cases we are able to eliminate the duality gap and obtain the optimal MAP estimate in a tractable manner. We also propose a heuristic method to obtain approximate solutions in cases where there is a duality gap. Second, we consider the problem of learning a graphical model (both the graph and its potential functions) from sample data. We propose the maximum entropy relaxation (MER) method, which is the convex optimization problem of selecting the least informative (maximum entropy) model over an exponential family of graphical models subject to constraints that small subsets of variables should have marginal distributions that are close to the distribution of sample data. We use relative entropy to measure the divergence between marginal probability distributions. We find that MER leads naturally to selection of sparse graphical models. To identify this sparse graph efficiently, we use a "bootstrap" method that constructs the MER solution by solving a sequence of tractable subproblems defined over thin graphs, including new edges at each step to correct for large marginal divergences that violate the MER constraint. The MER problem on each of these subgraphs is efficiently solved using the primaldual interior point method (implemented so as to take advantage of efficient inference methods for thin graphical models). We also consider a dual formulation of MER that minimizes a convex function of the potentials of the graphical model. This MER dual problem can be interpreted as a robust version of maximum-likelihood parameter estimation, where the MER constraints specify the uncertainty in the sufficient statistics of the model. This also corresponds to a regularized maximum-likelihood approach, in which an information-geometric regularization term favors selection of sparse potential representations. We develop a relaxed version of the iterative scaling method to solve this MER dual problem.by Jason K. Johnson.Ph.D

    Distributed Learning, Prediction and Detection in Probabilistic Graphs.

    Full text link
    Critical to high-dimensional statistical estimation is to exploit the structure in the data distribution. Probabilistic graphical models provide an efficient framework for representing complex joint distributions of random variables through their conditional dependency graph, and can be adapted to many high-dimensional machine learning applications. This dissertation develops the probabilistic graphical modeling technique for three statistical estimation problems arising in real-world applications: distributed and parallel learning in networks, missing-value prediction in recommender systems, and emerging topic detection in text corpora. The common theme behind all proposed methods is a combination of parsimonious representation of uncertainties in the data, optimization surrogate that leads to computationally efficient algorithms, and fundamental limits of estimation performance in high dimension. More specifically, the dissertation makes the following theoretical contributions: (1) We propose a distributed and parallel framework for learning the parameters in Gaussian graphical models that is free of iterative global message passing. The proposed distributed estimator is shown to be asymptotically consistent, improve with increasing local neighborhood sizes, and have a high-dimensional error rate comparable to that of the centralized maximum likelihood estimator. (2) We present a family of latent variable Gaussian graphical models whose marginal precision matrix has a “low-rank plus sparse” structure. Under mild conditions, we analyze the high-dimensional parameter error bounds for learning this family of models using regularized maximum likelihood estimation. (3) We consider a hypothesis testing framework for detecting emerging topics in topic models, and propose a novel surrogate test statistic for the standard likelihood ratio. By leveraging the theory of empirical processes, we prove asymptotic consistency for the proposed test and provide guarantees of the detection performance.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110499/1/mengzs_1.pd

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore