46 research outputs found

    Large Supports are required for Well-Supported Nash Equilibria

    Get PDF
    We prove that for any constant kk and any ϵ<1\epsilon<1, there exist bimatrix win-lose games for which every ϵ\epsilon-WSNE requires supports of cardinality greater than kk. To do this, we provide a graph-theoretic characterization of win-lose games that possess ϵ\epsilon-WSNE with constant cardinality supports. We then apply a result in additive number theory of Haight to construct win-lose games that do not satisfy the requirements of the characterization. These constructions disprove graph theoretic conjectures of Daskalakis, Mehta and Papadimitriou, and Myers

    Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

    Get PDF
    In an epsilon-approximate Nash equilibrium, a player can gain at most epsilon in expectation by unilateral deviation. An epsilon well-supported approximate Nash equilibrium has the stronger requirement that every pure strategy used with positive probability must have payoff within epsilon of the best response payoff. Daskalakis, Mehta and Papadimitriou conjectured that every win-lose bimatrix game has a 2/3-well-supported Nash equilibrium that uses supports of cardinality at most three. Indeed, they showed that such an equilibrium will exist subject to the correctness of a graph-theoretic conjecture. Regardless of the correctness of this conjecture, we show that the barrier of a 2/3 payoff guarantee cannot be broken with constant size supports; we construct win-lose games that require supports of cardinality at least Omega((log n)^(1/3)) in any epsilon-well supported equilibrium with epsilon < 2/3. The key tool in showing the validity of the construction is a proof of a bipartite digraph variant of the well-known Caccetta-Haggkvist conjecture. A probabilistic argument shows that there exist epsilon-well-supported equilibria with supports of cardinality O(log n/(epsilon^2)), for any epsilon> 0; thus, the polylogarithmic cardinality bound presented cannot be greatly improved. We also show that for any delta > 0, there exist win-lose games for which no pair of strategies with support sizes at most two is a (1-delta)-well-supported Nash equilibrium. In contrast, every bimatrix game with payoffs in [0,1] has a 1/2-approximate Nash equilibrium where the supports of the players have cardinality at most two.Comment: Added details on related work (footnote 7 expanded

    Approximate well-supported Nash equilibria in symmetric bimatrix games

    Full text link
    The ε\varepsilon-well-supported Nash equilibrium is a strong notion of approximation of a Nash equilibrium, where no player has an incentive greater than ε\varepsilon to deviate from any of the pure strategies that she uses in her mixed strategy. The smallest constant ε\varepsilon currently known for which there is a polynomial-time algorithm that computes an ε\varepsilon-well-supported Nash equilibrium in bimatrix games is slightly below 2/32/3. In this paper we study this problem for symmetric bimatrix games and we provide a polynomial-time algorithm that gives a (1/2+δ)(1/2+\delta)-well-supported Nash equilibrium, for an arbitrarily small positive constant δ\delta

    Parameterized Two-Player Nash Equilibrium

    Full text link
    We study the computation of Nash equilibria in a two-player normal form game from the perspective of parameterized complexity. Recent results proved hardness for a number of variants, when parameterized by the support size. We complement those results, by identifying three cases in which the problem becomes fixed-parameter tractable. These cases occur in the previously studied settings of sparse games and unbalanced games as well as in the newly considered case of locally bounded treewidth games that generalizes both these two cases

    On the Approximation Performance of Fictitious Play in Finite Games

    Full text link
    We study the performance of Fictitious Play, when used as a heuristic for finding an approximate Nash equilibrium of a 2-player game. We exhibit a class of 2-player games having payoffs in the range [0,1] that show that Fictitious Play fails to find a solution having an additive approximation guarantee significantly better than 1/2. Our construction shows that for n times n games, in the worst case both players may perpetually have mixed strategies whose payoffs fall short of the best response by an additive quantity 1/2 - O(1/n^(1-delta)) for arbitrarily small delta. We also show an essentially matching upper bound of 1/2 - O(1/n)

    An Empirical Study of Finding Approximate Equilibria in Bimatrix Games

    Full text link
    While there have been a number of studies about the efficacy of methods to find exact Nash equilibria in bimatrix games, there has been little empirical work on finding approximate Nash equilibria. Here we provide such a study that compares a number of approximation methods and exact methods. In particular, we explore the trade-off between the quality of approximate equilibrium and the required running time to find one. We found that the existing library GAMUT, which has been the de facto standard that has been used to test exact methods, is insufficient as a test bed for approximation methods since many of its games have pure equilibria or other easy-to-find good approximate equilibria. We extend the breadth and depth of our study by including new interesting families of bimatrix games, and studying bimatrix games upto size 2000×20002000 \times 2000. Finally, we provide new close-to-worst-case examples for the best-performing algorithms for finding approximate Nash equilibria

    Computing Equilibria in Anonymous Games

    Full text link
    We present efficient approximation algorithms for finding Nash equilibria in anonymous games, that is, games in which the players utilities, though different, do not differentiate between other players. Our results pertain to such games with many players but few strategies. We show that any such game has an approximate pure Nash equilibrium, computable in polynomial time, with approximation O(s^2 L), where s is the number of strategies and L is the Lipschitz constant of the utilities. Finally, we show that there is a PTAS for finding an epsilo

    Approximate Equilibria in Games with Few Players

    Full text link
    We study the problem of computing approximate Nash equilibria (epsilon-Nash equilibria) in normal form games, where the number of players is a small constant. We consider the approach of looking for solutions with constant support size. It is known from recent work that in the 2-player case, a 1/2-Nash equilibrium can be easily found, but in general one cannot achieve a smaller value of epsilon than 1/2. In this paper we extend those results to the k-player case, and find that epsilon = 1-1/k is feasible, but cannot be improved upon. We show how stronger results for the 2-player case may be used in order to slightly improve upon the epsilon = 1-1/k obtained in the k-player case
    corecore