9,118 research outputs found

    Improving the Asymmetric TSP by Considering Graph Structure

    Get PDF
    Recent works on cost based relaxations have improved Constraint Programming (CP) models for the Traveling Salesman Problem (TSP). We provide a short survey over solving asymmetric TSP with CP. Then, we suggest new implied propagators based on general graph properties. We experimentally show that such implied propagators bring robustness to pathological instances and highlight the fact that graph structure can significantly improve search heuristics behavior. Finally, we show that our approach outperforms current state of the art results.Comment: Technical repor

    Faster and better nested dissection orders for Customizable Contraction Hierarchies

    Get PDF
    Graph partitioning has many applications. We consider the acceleration of shortest path queries in road networks using Customizable Contraction Hierarchies (CCH). It is based on computing a nested dissection order by recursively dividing the road network into parts. Recently, with FlowCutter and Inertial Flow, two flow-based graph bipartitioning algorithms have been proposed for road networks. While FlowCutter achieves high-quality results and thus fast query times, it is rather slow. Inertial Flow is particularly fast due to the use of geographical information while still achieving decent query times. We combine the techniques of both algorithms to achieve more than six times faster preprocessing times than FlowCutter and even faster queries on the Europe road network. We show that, using 16 cores of a shared-memory machine, this preprocessing needs four minutes

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    An analysis of commitment strategies in planning: The details

    Get PDF
    We compare the utility of different commitment strategies in planning. Under a 'least commitment strategy', plans are represented as partial orders and operators are ordered only when interactions are detected. We investigate claims of the inherent advantages of planning with partial orders, as compared to planning with total orders. By focusing our analysis on the issue of operator ordering commitment, we are able to carry out a rigorous comparative analysis of two planners. We show that partial-order planning can be more efficient than total-order planning, but we also show that this is not necessarily so
    corecore