723 research outputs found

    The effect of realistic geometries on the susceptibility-weighted MR signal in white matter

    Full text link
    Purpose: To investigate the effect of realistic microstructural geometry on the susceptibility-weighted magnetic resonance (MR) signal in white matter (WM), with application to demyelination. Methods: Previous work has modeled susceptibility-weighted signals under the assumption that axons are cylindrical. In this work, we explore the implications of this assumption by considering the effect of more realistic geometries. A three-compartment WM model incorporating relevant properties based on literature was used to predict the MR signal. Myelinated axons were modeled with several cross-sectional geometries of increasing realism: nested circles, warped/elliptical circles and measured axonal geometries from electron micrographs. Signal simulations from the different microstructural geometries were compared to measured signals from a Cuprizone mouse model with varying degrees of demyelination. Results: Results from simulation suggest that axonal geometry affects the MR signal. Predictions with realistic models were significantly different compared to circular models under the same microstructural tissue properties, for simulations with and without diffusion. Conclusion: The geometry of axons affects the MR signal significantly. Literature estimates of myelin susceptibility, which are based on fitting biophysical models to the MR signal, are likely to be biased by the assumed geometry, as will any derived microstructural properties.Comment: Accepted March 4 2017, in publication at Magnetic Resonance in Medicin

    A Modified Brain MR Image Segmentation and Bias Field Estimation Model Based on Local and Global Information

    Get PDF
    Because of the poor radio frequency coil uniformity and gradient-driven eddy currents, there is much noise and intensity inhomogeneity (bias) in brain magnetic resonance (MR) image, and it severely affects the segmentation accuracy. Better segmentation results are difficult to achieve by traditional methods; therefore, in this paper, a modified brain MR image segmentation and bias field estimation model based on local and global information is proposed. We first construct local constraints including image neighborhood information in Gaussian kernel mapping space, and then the complete regularization is established by introducing nonlocal spatial information of MR image. The weighting between local and global information is automatically adjusted according to image local information. At the same time, bias field information is coupled with the model, and it makes the model reduce noise interference but also can effectively estimate the bias field information. Experimental results demonstrate that the proposed algorithm has strong robustness to noise and bias field is well corrected

    Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's Disease

    Full text link
    Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI).In this paper, we propose an innovative approach to robustly and accurately detect Alzheimer's disease (AD) based on the distinction of specific atrophic patterns of anatomical structures such as hippocampus (HC) and entorhinal cortex (EC). The proposed method simultaneously performs segmentation and grading of structures to efficiently capture the anatomical alterations caused by AD. Known as SNIPE (Scoring by Non-local Image Patch Estimator), the novel proposed grading measure is based on a nonlocal patch-based frame-work and estimates the similarity of the patch surrounding the voxel under study with all the patches present in different training populations. In this study, the training library was composed of two populations: 50 cognitively normal subjects (CN) and 50 patients with AD, randomly selected from the ADNI database. During our experiments, the classification accuracy of patients (CN vs. AD) using several biomarkers was compared: HC and EC volumes, the grade of these structures and finally the combination of their volume and their grade. Tests were completed in a leave-one-out framework using discriminant analysis. First, we showed that biomarkers based on HC provide better classification accuracy than biomarkers based on EC. Second, we demonstrated that structure grading is a more powerful measure than structure volume to distinguish both populations with a classification accuracy of 90%. Finally, by adding the ages of subjects in order to better separate age-related structural changes from disease-related anatomical alterations, SNIPE obtained a classification accuracy of 93%Data collection and sharing for this project were funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Insti- tute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514, and the Dana Foundation.Coupé, P.; Eskildsen, SF.; Manjón Herrera, JV.; Fonov, VS.; Collins, DL.; Alzheimer's Dis Neuroimaging (2012). Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's Disease. NeuroImage. 59(4):3736-3747. https://doi.org/10.1016/j.neuroimage.2011.10.080S3736374759

    Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images

    Get PDF
    corecore