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Because of the poor radio frequency coil uniformity and gradient-driven eddy currents, there is much noise and intensity
inhomogeneity (bias) in brain magnetic resonance (MR) image, and it severely affects the segmentation accuracy. Better
segmentation results are difficult to achieve by traditional methods; therefore, in this paper, a modified brain MR image
segmentation and bias field estimationmodel based on local and global information is proposed.We first construct local constraints
including image neighborhood information in Gaussian kernel mapping space, and then the complete regularization is established
by introducing nonlocal spatial information of MR image. The weighting between local and global information is automatically
adjusted according to image local information. At the same time, bias field information is coupled with the model, and it makes the
model reduce noise interference but also can effectively estimate the bias field information. Experimental results demonstrate that
the proposed algorithm has strong robustness to noise and bias field is well corrected.

1. Introduction

As an important medical treatment technique, magnetic res-
onance imaging (MRI) has greatly enhanced the efficiency of
the doctor’s diagnosis and avoided the numerous anatomical
surgeries or diagnostic laparotomies. In various applications
of MR image, brain MR image has played a vital role in
the detection and diagnosis of brain diseases. In practice,
however, brain MR image has some deficiencies such as
noise interference, intensity inhomogeneity, low contrast,
and the partial volume effect of brain tissue. Therefore, it is
very difficult to segment accurately brain MR images. Now,
most of the image segmentation methods assume that the
intensity distribution ofMR images is uniform, only from the
perspective of antinoise performance to segment MR image,
which is bound to cause inaccurate segmentation result. For
this reason, to achieve higher segmentation accuracy, it is
necessary to estimate the bias field of MR images.

Currently, fuzzy 𝐶-means (FCM) clustering technique
has been widely applied in image segmentation, and it has

the advantages of unsupervised segmentation, simple arith-
metic, and fast speed of computation [1–3]. Meanwhile, the
algorithm also has shortcomings. It only considers single
pixel information in the image while ignoring the influence
of neighborhood spatial pixel, which is sensitive to noise.
Therefore, many scholars put forward a series of improved
algorithms [4–9]. Ahmed et al. [4] presented an algorithm
that incorporated the neighboring spatial information of a
pixel in local window into the objective function of the FCM
algorithm to improve antinoise capability (called BCFCM).
Cai et al. [5] modified BCFCM algorithm (called FGFCM)
where the gray level value and local spatial information of
adjacent pixels are all similarly considered in the measure-
ment. Krinidis et al. [6] proposed a clustering algorithm
called FLICM (fuzzy local information 𝐶-means), which
introduces an adaptive control factor in its objective function
without trial-and-error experiments, as well as obtaining bet-
ter antinoise performance and image segmentation accuracy.
However, the aforementioned algorithms only considered the
local neighborhood information of the image without taking
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into account the global structural information of an image.
As a result, the FCM algorithm with local spatial constraints
generally cannot get satisfactory segmentation results.

In recent years, a few FCM algorithms with global
constrained methods were presented [10–12]. Zhao et al. [11]
proposed an efficient fuzzy clustering scheme, in which a
nonlocal constraint item is introduced into the objective
function of the improved FCM, and the global structure
information of the image plays a very important role in the
process of image segmentation. Feng et al. [12] proposed a
nonlocal FCMclusteringmethodwith edge preservation, and
the detail information of the image can be well preserved.
The antinoise ability of these algorithms has been greatly
improved for image segmentation.However, these algorithms
ignored the correction of intensity nonuniformity in MR
image.

In order to get rid of the influence of bias field,many stud-
ies have been launched in this respect by some scholars [13–
20].Wells et al. [13] suggested an adaptive estimationmethod
of bias field using the expectation maximization model. The
model can automatically segment each brain tissue, but it
needs to accurately know the specific information of each
tissue and results in high computational complexity. Sled
et al. [14] proposed a nonparametric nonuniform intensity
normalization (N3) approach in MR data. The method is
iterative and seeks the smooth multiplicative field that maxi-
mizes the high frequency content of the distribution of tissue
intensity, and it requires no a priori knowledge and can be
applied to almost anyMR image. Tustison et al. [15] improved
N3 algorithm by replacing the B-spline smoothing strategy
used in the original N3 framework with an advantageous
alternative and modified the iterative optimization scheme
to improve convergence performance (called N4ITK). N3
and N4ITK are available to the public, so they have been
applied widely in medical image processing. However, N3
and N4ITK are only designed for bias correction, and the
parameters estimated for B-spline are very time-consuming;
they are generally used for image segmentation [16]. Li et al.
[17] presented a scheme of bias field estimation and image
segmentation based on coherent local intensity clustering
(CLIC); the Gaussian kernel function is incorporated into the
weighting of the local neighborhood in themodel to measure
the spatial distance betweenneighbor pixels in FCMobjective
function.AlthoughCLICmodel can correct the bias field, this
algorithm only utilizes grayscale distribution information in
local neighborhood without considering global information
of the whole image. Therefore, CLIC algorithm is sensitive to
noise and has lower segmentation accuracy.

Through the analysis mentioned above, it can be seen
that FCM and its variants only use the difference between
the central pixel and its neighboring pixels to calculate the
local similarity measure. When both the central pixel and
some of the neighboring pixels are abnormal pixels, it may
fail to analyze the impact of each neighboring pixel on the
local similarity measure exhaustively. In this condition, the
local spatial information derived from the image may play
a negative role in guiding the noisy image segmentation.
However, the nonlocal information can take advantage of the
high degree of redundancy in the image. In otherwords, every

pixel in the image can find a set of samples with a similar
neighborhood configuration to it. Then, the pixel under
consideration could be influenced by the weighted averaging
over these samples. If nonlocal adaptive spatial constraint
term is introduced, then the objective function, the local
neighborhood information, and global structure information
of an image can be comprehensively utilized. Therefore, a
novel model of simultaneous MRI brain tissue segmentation
and bias field estimation is proposed in this paper, which
includes two improvements. Firstly, an improved FCMobjec-
tive function is constructed including local spatial constraint
term and nonlocal constraint term, which can significantly
enhance the antinoise performance and the segmentation
accuracy. Secondly, the bias field was coupled with the model
as a multiplicative additional field, and thus bias field can be
effectively estimated fromMR images to reduce the impact of
intensity inhomogeneity for image segmentation.

2. Related Work

2.1. FCMClustering with Spatial Constraints. In view of some
drawbacks of standard FCM algorithm, a modified scheme
is proposed by Ahmed et al. [4]. The objective function
introduces a regularization term with spatial neighborhood
constraints in the local window, and the new objective
function is
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where 𝑥𝑘 is the gray value of the 𝑘th pixel, V𝑖 is the 𝑖th
cluster center, 𝑢

𝑖𝑘
is the fuzzy membership degree of the 𝑘th
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represents the set of neighbors that exist in a

window around 𝑥
𝑘
.The parameter𝑚 is a weighting exponent

controlling classification results, and 𝛼 is a key parameter to
control the balance between the first term and the second
term in (1). By minimizing (1), 𝑢
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2.2. FCM Clustering with Improved Fuzzy Partitions. FCM
clustering with spatial constraints and its variants have
better segmentation performance than the standard FCM
algorithm. However, they still have some disadvantages. For



Computational and Mathematical Methods in Medicine 3

example, their antinoise ability is not strong enough, and the
execution efficiency of the algorithm is low, and the adaptive
ability of related parameters is poor. Zhu et al. [10] proposed
a more effective FCM clustering model (called GIFP FCM),
in which a novel energy function is built by introducing
a new membership constraint item; the convergence speed
and segmentation accuracy of GIFP FCM algorithm get
more significant enhancement than FCM.The corresponding
objective function of GIFP FCM is as follows:
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where 𝑎
𝑘
is an adjusted parameter for controlling the cluster-

ing performance of GIFP FCM, 𝑎𝑘 = 𝛼min{‖𝑥𝑘 − V𝑖‖
2
, 𝑖 ∈

{1, 2, . . . , 𝑐}}, and 0 < 𝛼 < 1. By minimizing (3) using
Lagrangian optimization, the fuzzy membership 𝑢𝑖𝑘 and
clustering center V𝑖 are derived as follows:
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2.3. Bias Field Model. In practical application, affected by
radio frequency coil, magnetic resonance equipment, and the
variability of different brain tissue, intensity inhomogeneity
generally appears in MR image. As a result, bias field correc-
tion is a very important task for MR image segmentation.

In MR image, bias field presents smooth variation of
gray level of the pixels of the same tissue in spatial domain.
Therefore, bias field can be regarded as a multiplicative
component of an MR image. Let 𝑋 be the observed image
and 𝑋

0
be the true image; 𝑏 and 𝑁 denote bias field and noise

in the image, respectively. The model is as follows:

𝑋 = 𝑏𝑋
0

+ 𝑁. (5)

2.4. CLIC Model. In CLIC model [17], a Gaussian kernel
function is first used in local neighborhood by standard FCM
algorithm to segment the MR image and then extended to
the whole image. In the small neighborhood of an image, bias
field can be approximated as constant; the pixel gray level can
also be regarded as a constant. In this case, the bias field can
be estimated when ignoring the additional noise in (5). The
clustering criterion function of CLIC is
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where 𝑏(𝑟) is the bias field, 𝐾(𝑟 − 𝑘) is the weight of a
truncated Gaussian kernel assigned to the intensity 𝑥

𝑘
, and

the weighting function 𝐾 is written as follows:
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where 𝜎 is the standard deviation of the Gaussian kernel, 𝜌

is the radius of the adjacent window, and 𝑎 is a constant to
normalize the Gaussian kernel.

In CLIC model, image segmentation and bias field esti-
mation can be completed simultaneously, but this model also
has some drawbacks. First of all, as for the weighting of
spatial measure, Gaussian kernel is only related to the local
neighborhood of current target pixel, without taking into
account the texture structure of the whole image. As a result,
some of the pixels will get the error classification. Second,
the model cannot effectively eliminate the influence of noise,
because CLIC is modeled based on the standard FCM.
Finally, a large number of nuclear convolution calculations
result in high computational complexity in CLIC.

3. The Proposed Method

During MR brain image segmentation, the local neighbor-
hood information and global structure information of the
image should be used for ensuring the accuracy of the
segmented results and robustness to noise. In this section,
we reconstructed the objective function based on CLIC and
GIFP FCM algorithms, and a nonlocal regularization term is
added in the modified model. In fact, the variation pattern
of MR image pixels has certain regularity; that is, the brain
tissue region has a strong global similarity, and it should be
treated with nonlocal constraint.

3.1. Nonlocal Spatial Constraint. Given a noisy MR image,
the similarity between the 𝑘th and 𝑙th pixels is measured
by their gray value vectors 𝑥(𝑁
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where 𝜎 denotes the standard deviation of the Gaussian
kernel, 𝑥(𝑁

𝑘
) denotes a window of radius 𝑠 around 𝑥
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,
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where 𝑦𝑝 = mod(𝑝, (2𝑠 + 1)) and 𝑧𝑝 = floor(𝑝, (2𝑠 + 1)) +

1. (𝑦𝑝, 𝑧𝑝) denote the coordinates of the 𝑝th element in
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the square window 𝑥(𝑁
𝑖
), 𝑑 = max(|𝑦
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voxels in the MR image is as follows:
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where ℎ is a constant proportional to the noise deviation 𝜎; it
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Therefore, for the 𝑘th pixel of the image, the nonlocal
average method obtains its estimate value 𝑥

𝑘
utilizing a

weighted average method, and the expression is as follows:

𝑥
𝑘

= ∑

𝑙∈𝑤
𝑢

𝑘

𝑆
𝑘𝑙

𝑥
𝑙
. (12)

3.2. Objective Function. The modified objective function
incorporating local operation and nonlocal operation is as
follows:
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𝑖𝑘

= (
𝜆
𝑘

− 𝑎
𝑘

𝑚 ∑
𝑟∈Ω
𝑘

(𝐾
𝑥
𝑘 − 𝑏𝑘V𝑖



2
− 𝑎𝑘 + 𝛽𝑘𝐾

𝑥𝑘 − 𝑏𝑘V𝑖


2
)

)

1/(𝑚−1)

.

(20)

By substituting (20) into (18), we obtain

(
𝜆𝑘 − 𝑎𝑘

𝑚
)

−1/(𝑚−1)

=
1

∑
𝑐

𝑙=1
(∑
𝑟∈Ω
𝑘

(𝐾
𝑥
𝑘

− 𝑏
𝑘
V
𝑙



2
− 𝑎
𝑘

+ 𝛽
𝑘
𝐾

𝑥
𝑘

− 𝑏
𝑘
V
𝑙



2
))
−1/(𝑚−1)

.

(21)

By substituting (21) into (20), we obtain

𝑢
𝑖𝑘

=

∑
𝑟∈Ω
𝑘

(𝐾
𝑥
𝑘 − 𝑏𝑘V𝑖



2
− 𝑎𝑘 + 𝛽𝑘𝐾

𝑥𝑘 − 𝑏𝑘V𝑖


2
)
−1/(𝑚−1)

∑
𝑐

𝑙=1
(∑
𝑟∈Ω
𝑘

(𝐾
𝑥
𝑘

− 𝑏
𝑘
V
𝑙



2
− 𝑎
𝑘

+ 𝛽
𝑘
𝐾

𝑥
𝑘

− 𝑏
𝑘
V
𝑙



2
))
−1/(𝑚−1)

. (22)
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(a) (b) (c) (d)

Figure 1: Bias field estimation and corresponding segmentation results. (a) Three MR images, (b) the estimated bias field, (c) the images of
removed bias field, and (d) the segmented images.

Similarly, let 𝜕𝐿/𝜕V
𝑖
= 0; that is,

𝜕𝐿

𝜕V
𝑖

=

𝑁

∑

𝑘=1

𝑢
𝑚

𝑖𝑘

⋅ ( ∑

𝑟∈Ω
𝑘

𝐾 ((𝑏𝑘𝑥𝑘 − 𝑏
2

𝑘
V𝑖) + 𝛽𝑘 (𝑏𝑘𝑥𝑘 − 𝑏

2

𝑘
V𝑖)))

= 0.

(23)

From (23), we obtain

V
𝑖
=

∑
𝑁

𝑘=1
∑
𝑟∈Ω
𝑘

𝐾𝑏
𝑘

(𝑥
𝑘

+ 𝛽
𝑘
𝑥
𝑘
) 𝑢
𝑚

𝑖𝑘

∑
𝑁

𝑘=1
∑
𝑟∈Ω
𝑘

𝐾𝑏
2

𝑘
(1 + 𝛽𝑘) 𝑢

𝑚

𝑖𝑘

. (24)

The theorem is completely proved.

3.3. Bias Field Estimation. To estimate the bias field 𝑏
𝑘
of the

image in (17), we adopt the same analysismethod and take the
partial derivative of 𝐿 with respect to 𝑏

𝑘
. Let 𝜕𝐿/𝜕𝑏

𝑘
= 0; that

is,

𝜕𝐿

𝜕𝑏
𝑘

=

𝑐

∑

𝑖=1

𝑢
𝑚

𝑖𝑘

⋅ ( ∑

𝑟∈Ω
𝑘

𝐾 ((𝑥
𝑘
V
𝑖
− V2
𝑖
𝑏
𝑘
) + 𝛽
𝑘

(𝑥
𝑘
V
𝑖
− V2
𝑖
𝑏
𝑘
)))

= 0.

(25)

From (25), 𝑏
𝑘
can be obtained:

𝑏
𝑘

=

∑
𝑐

𝑖=1
∑
𝑟∈Ω
𝑘

𝐾V
𝑖
(𝑥
𝑘

+ 𝛽
𝑘
𝑥
𝑘
) 𝑢
𝑚

𝑖𝑘

∑
𝑐

𝑖=1
∑
𝑟∈Ω
𝑘

𝐾V2
𝑖

(1 + 𝛽
𝑘
) 𝑢
𝑚

𝑖𝑘

. (26)



6 Computational and Mathematical Methods in Medicine

(a)

(b)

(c)

(d)

Figure 2: Comparison of the estimated bias fields of several algorithms. (a) BCFCM, (b) N3, (c) N4ITK, and (d) the proposed method.

3.4. The Algorithm Flow. The program flow of the proposed
algorithm can be summarized as follows.

Step 1. The following are given: the number of clusters 𝑐, the
exponent of fuzziness 𝑚, the radius of local window 𝑠, the
radius of searchwindow 𝑢, bias field 𝑏0 = 1, and stop criterion
𝜀.

Step 2. Get the fuzzy cluster prototypes 𝑉
(1)

= {V(1)
1

, V(1)
2

, . . . ,

V(1)
𝑐

} using 𝐶-means algorithm and set the iteration initial
value 𝑡 = 0.

Step 3. Compute nonlocal similarity measure 𝑆𝑘𝑙 using (10)
and then obtain the nonlocal weighted average 𝑥𝑘 for the 𝑘th
pixel using (12).

Step 4. Compute and update the membership degree 𝑢
(𝑡)

𝑖𝑘
by

(15).

Step 5. Compute and update the clustering prototypes V(𝑡)
𝑖

by
(15).

Step 6. Get the bias field estimate 𝑏
(𝑡)

𝑘
by (26).
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Figure 3: Histograms of original image and bias corrected images in Figure 2. (a) original image, (b) BCFCM, (c) N3, (d) N4ITK, and (e)
our method.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4: Antinoise ability comparison of the five algorithms. (a) Noisy image, (b) FCM, (c) BCFCM, (d) GIFP FCM, (e) CLIC, (f) the
proposed algorithm, and (g) ground truth.

Step 7. If max ‖𝑉
(𝑡+1)

− 𝑉
(𝑡)

‖ < 𝜀, then output results;
otherwise, go to Step 3 and set 𝑡 = 𝑡 + 1.

4. Experimental Results

To validate the validity of the proposed algorithm, several bias
field estimation and image segmentation algorithms are taken
as comparative methods. In all experiments, the parameter
settings are as follows: the stop criterion 𝜀 = 0.001 and 𝑚 = 2

and the radius of two windows 𝑟 = 10 and 𝑠 = 3, respectively.

4.1. Bias Field Correction. First of all, the proposed method
is applied to the 1.5T- and 3T-weighted brain MR images,
and Figure 1 illustrates the experimental results. Column
(a) shows three MR images with different level intensity
nonuniformity (INU), column (b) shows the estimated bias
field, column (c) shows the corrected images, and column
(d) shows the segmentation results. In column (d), the brain
tissue of corrected image becomes very homogeneous, and
the cerebrospinal fluid (CSF), white matter (WM), and grey
matter (GM) can be also clearly identified.

In addition, Figure 2 compares results by BCFCM [4], N3
[14], N4ITK [15], and the proposed algorithm onMR images.
The original images, estimated bias fields, and bias corrected
images are shown in the first, second, and third columns of
Figures 2(a)–2(d), respectively. The histogram of the original
MR image and the histograms of the bias corrected images

by BCFCM, N3, N4ITK, and our methods are shown in
Figure 3. In the histograms, the right two significant peaks
correspond to the GM and WM, respectively. The peak of
the cerebrospinal fluid (CSF) is not distinct since its volume
is relatively small. From the histograms of the bias corrected
images recovered by BCFCM, N3, N4ITK, and our methods,
we see that the histograms of specific tissues approximately
satisfy Gaussian distribution but with significantly different
variances. These results validate that our model is more
consistent with the intensity distribution of the image with
intensity inhomogeneity than other algorithms.

4.2. Antinoise Ability Analysis. In the second experiment, the
images from BrainWeb simulated MR image database [21]
are applied to analyze the antinoise ability of five algorithms
(FCM, BCFCM [4], GIFP FCM [10], CLIC [17], and our
method). These simulated brain images are of T1-weighted
contrast with a 1mm slice thickness, 15% Rician noise,
and no intensity inhomogeneities. The noisy MR images
are segmented into four classifications: CSF, WM, GM,
and the background. Before segmentation, the extracranial
tissues were removed.The segmentation results using the five
methods are shown in Figure 4, respectively.

Figure 4(a) is the MR image with 15% (𝑙 = 15) Rician
noise. Figures 4(b)–4(f) show the corresponding experi-
mental results by the five methods, respectively. Figure 4(g)
shows the ground truth. Figure 4 shows that the ability of
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Figure 5: Continued.
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(e)

(f)

(g)

Figure 5: Experimental results for three MR images. (a) Noisy MR images, (b) FCM, (c) BCFCM, (d) GIFP FCM, (e) CLIC, (f) the proposed
method, and (g) ground truth.

our method is excellent at the preservation of image detail
and robustness to noise, while the other four compared
algorithms are relatively poor.

In order to quantitatively analyze the antinoise perfor-
mance of the five algorithms, 8 MR images (the level of
Rician noise ranges from 5% to 20%) are selected as the
experimental samples. The statistical results (average values)
of the Jaccard similarity (JS) [22] values of GM, WM, and

CSF are shown in Table 1. JS was used for comparison and
quantitative evaluation. Hence,

JS =

𝐴 𝑖 ∩ 𝐵
𝑖


𝐴 𝑖 ∪ 𝐵𝑖



, (27)

where 𝐴
𝑖
denotes the set of pixels belonging to the 𝑖th class

identified by the clustering algorithm, while 𝐵
𝑖
denotes the

set of pixels belonging to the 𝑖th class in the ground truth.
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Figure 6: JS comparison of the brain tissue segmentation with three algorithms: (a) JS ofWM segmentation, (b) JS of GM segmentation, and
(c) JS of CSF segmentation.

As a fuzzy similarity measure, the larger the JS value, the
better the clustering performance. It can be seen from the
experimental results in Table 1 that, with the increase of noise
level of MR image, JS values of all algorithms are reduced.
However, our method has higher values than the other four
algorithms, and it illustrates that the proposed algorithm
has better clustering performance and stronger robustness to
noise.

4.3. Brain Tissue Segmentation of Noisy MR Image. In the
third experiment, three MR images are selected for brain
tissue segmentation by five algorithms, and these images
are corrupted by 12% Rician noise and 40% intensity

inhomogeneity. The noisy MR images are shown in Fig-
ure 5(a), and the corresponding segmentation results of FCM,
BCFCM, GIFP FCM, CLIC, and the proposed algorithm are
shown in Figures 5(a)–5(f), respectively. Figure 5(g) shows
the ground truth of the three test images. Figure 5 shows
that the proposed algorithm not only can estimate bias field
but also can effectively ensure segmentation accuracy of three
MR images.

To evaluate the segmentation accuracy with the variety
of bias fields, we tested 10 MR brain images using three bias
field estimation algorithms: BCFCM,CLIC, and the proposed
method. The JS values of WM, GM, and CSF are compared
when the INU level of bias fields varied from 10% to 80% for
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Table 1: Comparison of JS on simulated MR images with different
levels of noise.

Algorithm Tissues 5% 10% 15% 20%

FCM
WM 0.8373 0.7458 0.6403 0.5773
GM 0.7189 0.5325 0.4211 0.3021
CSF 0.8359 0.6751 0.5238 0.4001

BCFCM
WM 0.9022 0.8563 0.7459 0.6832
GM 0.8754 0.7681 0.5765 0.4308
CSF 0.8868 0.8354 0.6869 0.5369

GIFP FCM
WM 0.9491 0.8993 0.8357 0.7365
GM 0.9011 0.8377 0.7324 0.5793
CSF 0.9268 0.8634 0.7957 0.7263

CLIC
WM 0.9007 0.8557 0.7461 0.6989
GM 0.8766 0.7706 0.6013 0.5426
CSF 0.8993 0.8457 0.6956 0.5536

The proposed algorithm
WM 0.9513 0.9320 0.8697 0.7833
GM 0.9295 0.8723 0.7838 0.6619
CSF 0.9457 0.8803 0.8329 0.7937

theMR images with noise 9%, and the comparison results are
illustrated in Figure 6, respectively. It can be observed from
Figure 6 by quantitative comparison that JS values of three
algorithms are progressively smaller with the increase of the
INU level, and our proposed model can preserve more image
detail than the other two methods.

5. Conclusion

The traditional FCM algorithms with local information to
suppress noise have some limitations in image segmentation.
Due to the nonlocal weighted measure being unable to
reflect the distance of real pixel points to the clustering
center, a robust MRI brain tissue segmentation and bias
field estimation model based on local and global information
is proposed in this paper. During the process of calculat-
ing similarity measure, the algorithm utilized the nonlocal
information to adjust parameters and reduce the difficulty of
parameter setting; meanwhile, bias fields of MR brain image
with intensity inhomogeneity is corrected. The segmentation
results of the experiment showed that the proposed method
presents stronger robustness to noise and accurately estimates
the bias field, and more detailed structure of the MR brain
image can be efficiently preserved.
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