345 research outputs found

    Variational Bayesian algorithm for quantized compressed sensing

    Full text link
    Compressed sensing (CS) is on recovery of high dimensional signals from their low dimensional linear measurements under a sparsity prior and digital quantization of the measurement data is inevitable in practical implementation of CS algorithms. In the existing literature, the quantization error is modeled typically as additive noise and the multi-bit and 1-bit quantized CS problems are dealt with separately using different treatments and procedures. In this paper, a novel variational Bayesian inference based CS algorithm is presented, which unifies the multi- and 1-bit CS processing and is applicable to various cases of noiseless/noisy environment and unsaturated/saturated quantizer. By decoupling the quantization error from the measurement noise, the quantization error is modeled as a random variable and estimated jointly with the signal being recovered. Such a novel characterization of the quantization error results in superior performance of the algorithm which is demonstrated by extensive simulations in comparison with state-of-the-art methods for both multi-bit and 1-bit CS problems.Comment: Accepted by IEEE Trans. Signal Processing. 10 pages, 6 figure

    Optimization with Sparsity-Inducing Penalties

    Get PDF
    Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate non-smooth norms. The goal of this paper is to present from a general perspective optimization tools and techniques dedicated to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent, reweighted â„“2\ell_2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provide an extensive set of experiments to compare various algorithms from a computational point of view

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    A Generalized Newton Method for Subgradient Systems

    Full text link
    This paper proposes and develops a new Newton-type algorithm to solve subdifferential inclusions defined by subgradients of extended-real-valued prox-regular functions. The proposed algorithm is formulated in terms of the second-order subdifferential of such functions that enjoys extensive calculus rules and can be efficiently computed for broad classes of extended-real-valued functions. Based on this and on metric regularity and subregularity properties of subgradient mappings, we establish verifiable conditions ensuring well-posedness of the proposed algorithm and its local superlinear convergence. The obtained results are also new for the class of equations defined by continuously differentiable functions with Lipschitzian derivatives (C1,1\mathcal{C}^{1,1} functions), which is the underlying case of our consideration. The developed algorithm for prox-regular functions is formulated in terms of proximal mappings related to and reduces to Moreau envelopes. Besides numerous illustrative examples and comparison with known algorithms for C1,1\mathcal{C}^{1,1} functions and generalized equations, the paper presents applications of the proposed algorithm to the practically important class of Lasso problems arising in statistics and machine learning.Comment: 35 page

    A Proximal Approach for a Class of Matrix Optimization Problems

    Full text link
    In recent years, there has been a growing interest in mathematical models leading to the minimization, in a symmetric matrix space, of a Bregman divergence coupled with a regularization term. We address problems of this type within a general framework where the regularization term is split in two parts, one being a spectral function while the other is arbitrary. A Douglas-Rachford approach is proposed to address such problems and a list of proximity operators is provided allowing us to consider various choices for the fit-to-data functional and for the regularization term. Numerical experiments show the validity of this approach for solving convex optimization problems encountered in the context of sparse covariance matrix estimation. Based on our theoretical results, an algorithm is also proposed for noisy graphical lasso where a precision matrix has to be estimated in the presence of noise. The nonconvexity of the resulting objective function is dealt with a majorization-minimization approach, i.e. by building a sequence of convex surrogates and solving the inner optimization subproblems via the aforementioned Douglas-Rachford procedure. We establish conditions for the convergence of this iterative scheme and we illustrate its good numerical performance with respect to state-of-the-art approaches
    • …
    corecore