1,811 research outputs found

    Signature-Based Protection from Code Reuse Attacks

    Full text link
    Abstract—Code Reuse Attacks (CRAs) recently emerged as a new class of security exploits. CRAs construct malicious programs out of small fragments (gadgets) of existing code, thus eliminating the need for code injection. Existing defenses against CRAs often incur large performance overheads or require extensive binary rewriting and other changes to the system software. In this paper, we examine a signature-based detection of CRAs, where the attack is detected by observing the behavior of programs and detecting the gadget execution patterns. We first demonstrate that naive signature-based defenses can be defeated by introducing special “delay gadgets ” as part of the attack. We then show how a software-configurable signature-based approach can be designed to defend against such stealth CRAs, including the attacks that manage to use longer-length gadgets. The proposed defense (called SCRAP) can be implemented entirely in hardware using simple logic at the commit stage of the pipeline. SCRAP is realized with minimal performance cost, no changes to the software layers and no implications on binary compatibility. Finally, we show that SCRAP generates no false alarms on a wide range of applications.

    Quantifying and Predicting the Influence of Execution Platform on Software Component Performance

    Get PDF
    The performance of software components depends on several factors, including the execution platform on which the software components run. To simplify cross-platform performance prediction in relocation and sizing scenarios, a novel approach is introduced in this thesis which separates the application performance profile from the platform performance profile. The approach is evaluated using transparent instrumentation of Java applications and with automated benchmarks for Java Virtual Machines

    Extensible Performance-Aware Runtime Integrity Measurement

    Get PDF
    Today\u27s interconnected world consists of a broad set of online activities including banking, shopping, managing health records, and social media while relying heavily on servers to manage extensive sets of data. However, stealthy rootkit attacks on this infrastructure have placed these servers at risk. Security researchers have proposed using an existing x86 CPU mode called System Management Mode (SMM) to search for rootkits from a hardware-protected, isolated, and privileged location. SMM has broad visibility into operating system resources including memory regions and CPU registers. However, the use of SMM for runtime integrity measurement mechanisms (SMM-RIMMs) would significantly expand the amount of CPU time spent away from operating system and hypervisor (host software) control, resulting in potentially serious system impacts. To be a candidate for production use, SMM RIMMs would need to be resilient, performant and extensible. We developed the EPA-RIMM architecture guided by the principles of extensibility, performance awareness, and effectiveness. EPA-RIMM incorporates a security check description mechanism that allows dynamic changes to the set of resources to be monitored. It minimizes system performance impacts by decomposing security checks into shorter tasks that can be independently scheduled over time. We present a performance methodology for SMM to quantify system impacts, as well as a simulator that allows for the evaluation of different methods of scheduling security inspections. Our SMM-based EPA-RIMM prototype leverages insights from the performance methodology to detect host software rootkits at reduced system impacts. EPA-RIMM demonstrates that SMM-based rootkit detection can be made performance-efficient and effective, providing a new tool for defense

    Precision pressure/temperature logging tool

    Full text link

    Vista: November 16, 2006

    Get PDF
    https://digital.sandiego.edu/vista/1543/thumbnail.jp

    State of Alaska Election Security Project Phase 2 Report

    Get PDF
    A laska’s election system is among the most secure in the country, and it has a number of safeguards other states are now adopting. But the technology Alaska uses to record and count votes could be improved— and the state’s huge size, limited road system, and scattered communities also create special challenges for insuring the integrity of the vote. In this second phase of an ongoing study of Alaska’s election security, we recommend ways of strengthening the system—not only the technology but also the election procedures. The lieutenant governor and the Division of Elections asked the University of Alaska Anchorage to do this evaluation, which began in September 2007.Lieutenant Governor Sean Parnell. State of Alaska Division of Elections.List of Appendices / Glossary / Study Team / Acknowledgments / Introduction / Summary of Recommendations / Part 1 Defense in Depth / Part 2 Fortification of Systems / Part 3 Confidence in Outcomes / Conclusions / Proposed Statement of Work for Phase 3: Implementation / Reference

    Increasing the robustness of networked systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 133-143).What popular news do you recall about networked systems? You've probably heard about the several hour failure at Amazon's computing utility that knocked down many startups for several hours, or the attacks that forced the Estonian government web-sites to be inaccessible for several days, or you may have observed inexplicably slow responses or errors from your favorite web site. Needless to say, keeping networked systems robust to attacks and failures is an increasingly significant problem. Why is it hard to keep networked systems robust? We believe that uncontrollable inputs and complex dependencies are the two main reasons. The owner of a web-site has little control on when users arrive; the operator of an ISP has little say in when a fiber gets cut; and the administrator of a campus network is unlikely to know exactly which switches or file-servers may be causing a user's sluggish performance. Despite unpredictable or malicious inputs and complex dependencies we would like a network to self-manage itself, i.e., diagnose its own faults and continue to maintain good performance. This dissertation presents a generic approach to harden networked systems by distinguishing between two scenarios. For systems that need to respond rapidly to unpredictable inputs, we design online solutions that re-optimize resource allocation as inputs change. For systems that need to diagnose the root cause of a problem in the presence of complex subsystem dependencies, we devise techniques to infer these dependencies from packet traces and build functional representations that facilitate reasoning about the most likely causes for faults. We present a few solutions, as examples of this approach, that tackle an important class of network failures. Specifically, we address (1) re-routing traffic around congestion when traffic spikes or links fail in internet service provider networks, (2) protecting websites from denial of service attacks that mimic legitimate users and (3) diagnosing causes of performance problems in enterprises and campus-wide networks. Through a combination of implementations, simulations and deployments, we show that our solutions advance the state-of-the-art.by Srikanth Kandula.Ph.D

    Continuous monitoring methods to achieve resiliency for virtual machines

    Get PDF
    This dissertation describes monitoring methods to achieve both security and reliability in virtualized computer systems. Our key contribution is showing how we can perform continuous monitoring and leverage information across different layers of a virtualized computer system to detect malicious attacks and accidental failures. For monitoring software running inside a virtual ma- chine, we introduce HyperTap and Hprobes, which are out-of-VM monitoring frameworks that facilitate detection of security and reliability incidents oc- curring inside a VM. For monitoring the hypervisor, we introduce hShield, a Control-Flow Integrity (CFI) enforcement method to detect VM-escape at- tacks. HyperTap, Hprobes, and hShield create a complete chain-of-trust for the entire virtualization software stack
    • …
    corecore