196 research outputs found

    Using Multi-indices Approach to Quantify Mangrove Changes Over the Western Arabian Gulf along Saudi Arabia Coast

    Get PDF
    Mangroves habitat present an important resource for large coastal communities benefiting from activities such as fisheries, forest products and clean water as well as protection against coastal erosion and climate related extreme events. Yet they are increasingly threatened by natural pressure and anthropogenic activities. We observed an inaccurate distribution of mangroves over the Western Arabian Gulf (WAG) which is a vital habitat and resource for the local ecosystem, according to the United Stated Geological Survey (USGS) mangrove database through spectral analysis. Change detection analysis is conducted on mangrove forests along the Saudi Arabian coast of the WAG for the years 2000, 2010 and 2018 using Landsat 7 & 8 data. Three supervised classification methodologies are employed for mangrove mapping, including Supported Vector Machine (SVM), Decision Tree (DT), referred to as Classification and Regression Trees (CART) and Random Forest (RF). CART’s accuracy was recorded to be \u3e95% while other classifiers were \u3e90%. The CART supervised learning classifier, mapping mangroves’ distribution and biomass using Google Earth Engine (GEE) online platform, indicates an overall increase in the northern Tarut Bay and Tarut Island, by 0.21 km2 from 2000 to 2010 and by 1.4 km2 from 2010 to 2018. The increase might be due to mitigation strategies such as mangrove breeding and plantation. It can be challenging to detect changes in certain regions due to the inadequate resolution of Landsat where submerged mangroves can be confused with salt marshes and macro algae. We employed a new method to identify and analyze submerged mangrove forests distribution via a submerged mangrove recognition index (SMRI) and Normalized Difference Vegetation Index (NDVI) in Abu Ali Island. Our results show the robustness of SMRI as an effective indicator to detect submerged mangroves in both high and medium spatial resolution satellite images. NDVI values differentiated submerged mangroves from tidal flats between Landsat 7 & 8 as well as during conditions of low and high tides. High resolution WorldView-2 image showed agreement of mangroves distribution with the SMRI and NDVI results

    INTEGRATED ANALYSIS OF MANGROVE CHANGES USING THE MANGROVE VEGETATION INDEX AND RANDOM FOREST CLASSIFICATION IN THE GAMBIA

    Get PDF
    The extraction of mangrove forests from satellite imagery is usually accomplished using image classification algorithms. Recently, the mangrove vegetation index (MVI) was developed for rapid and accurate mapping of mangrove extent from remotely sensed imageries. In this study, we combine two techniques (random forest classification and the MVI) to improve the detection of mangrove changes within the Bintang Bolong Estuary in The Gambia. The two techniques were implemented on Sentinel-2 multi-spectral imageries covering the study area at two periods - 2017 and 2020. The random forest classifier was used to extract the full land cover information from which the mangroves were separated, while the MVI was implemented using the green, near-infrared and shortwave infrared bands. Subsequently, the results were extracted for interpretation and analysis. The image classification results showed an increase in mangroves from 38.6 km2 in 2017 to 41.5 km2 in 2020. The areal extent of mangroves from image classification was positively correlated with the MVI-generated extent. The findings prove the importance of combining image classification and spectral indices for gaining more comprehensive perspectives of mangrove changes

    Remote Sensing in Mangroves

    Get PDF
    The book highlights recent advancements in the mapping and monitoring of mangrove forests using earth observation satellite data. New and historical satellite data and aerial photographs have been used to map the extent, change and bio-physical parameters, such as phenology and biomass. Research was conducted in different parts of the world. Knowledge and understanding gained from this book can be used for the sustainable management of mangrove forests of the worl

    Dynamics of mangrove species dominant area changes in Timbulsloko and Bedono, Demak

    Get PDF
    Mangrove forests in Timbulsloko and Bedono villages have very important benefits in minimizing abrasion, due to tidal flooding and land absorption in this area. A large number of people have planted mangroves to restore the function of mangrove forests in coastal areas which conducted by NGOs, students, government agencies, and awareness from local residents. This study aimed to determine the dynamics of mangrove area and mangrove species dominant area changes in 2016, 2018, 2020 and 2022 based on Sentinel-2 Satellite Imagery processing, and to analyze the dynamic changes based on geospatial analysis. The method used in this study is divided into two: satellite imagery data processing and field survey. The result showed that the area of mangrove species in Timbulsloko and Bedono increased from 2016 to 2022. In 2016 the area of mangroves was 140.04 ha, 159.57 ha in 2018, 171.05 ha in 2020, and 234.8 ha in 2022. The use of Sentinel 2 Satellite Imagery to map the distribution of mangrove species dominant produce overall accuracy of 84.62%. The mangrove species with the highest area are Avicennia marina followed by Avicennia alba, Rhizophora apiculata, and Rhizophora mucronate. The increase in this area of mangroves in this area is due to natural additions and artificial additions due to mangrove planting conservation by several parties and the awareness of the local residents to protect mangroves. Keywords: Mangrove Species Dynamics Coastal Area Sentinel 2 Remote Sensin

    TerraSAR-X and Wetlands: A Review

    Get PDF
    Since its launch in 2007, TerraSAR-X observations have been widely used in a broad range of scientific applications. Particularly in wetland research, TerraSAR-X\u27s shortwave X-band synthetic aperture radar (SAR) possesses unique capabilities, such as high spatial and temporal resolution, for delineating and characterizing the inherent spatially and temporally complex and heterogeneous structure of wetland ecosystems and their dynamics. As transitional areas, wetlands comprise characteristics of both terrestrial and aquatic features, forming a large diversity of wetland types. This study reviews all published articles incorporating TerraSAR-X information into wetland research to provide a comprehensive study of how this sensor has been used with regard to polarization, and the function of the data, time-series analyses, or the assessment of specific wetland ecosystem types. What is evident throughout this literature review is the synergistic fusion of multi-frequency and multi-polarization SAR sensors, sometimes optical sensors, in almost all investigated studies to attain improved wetland classification results. Due to the short revisiting time of the TerraSAR-X sensor, it is possible to compute dense SAR time-series, allowing for a more precise observation of the seasonality in dynamic wetland areas as demonstrated in many of the reviewed studies

    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Applications 28 (2018): 749-760, doi: 10.1002/eap.1682.The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.National Center for Ecological Analysis and Synthesis (NCEAS); National Aeronautics and Space Administration (NASA) Grant Numbers: NNX16AQ34G, NNX14AR62A; National Ocean Partnership Program; NOAA US Integrated Ocean Observing System/IOOS Program Office; Bureau of Ocean and Energy Management Ecosystem Studies program (BOEM) Grant Number: MC15AC0000

    Satellite Sensor Requirements for Monitoring Essential Biodiversity Variables of Coastal Ecosystems

    Get PDF
    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibratio

    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

    Get PDF
    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration \u3c2%, relative calibration of 0.2%, polarization sensitivity \u3c1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications

    Evaluation of LAI Estimation of Mangrove Communities Using DLR and ELR Algorithms With UAV, Hyperspectral, and SAR Images

    Get PDF
    The high-precision estimation of mangrove leaf area index (LAI) using a deep learning regression algorithm (DLR) always requires a large amount of training sample data. However, it is difficult for LAI field measurements to collect a sufficient amount of sample data in mangrove wetlands. To tackle this challenge, this paper proposed an approach for expanding training samples and quantitatively evaluated the performance of estimating LAI for mangrove communities using Deep Neural Networks (DNN) and Transformer algorithms. This study also explored the effects of unmanned aerial vehicle (UAV) and Sentinel-2A multispectral, orbital hyper spectral (OHS), and GF-3 SAR images on LAI estimation of different mangrove communities. Finally, this paper evaluated the LAI estimation ability of mangrove communities using ensemble learning regression (ELR) and DLR algorithms. The results showed that: (1) the UAV images achieved the better LAI estimation of different mangrove communities (R2 = 0.5974–0.6186), and GF-3 SAR images were better for LAI estimation of Avicennia marina with high coverage (R2 = 0.567). The optimal spectral range for estimating LAI for mangroves in the optical images was between 650–680 nm. (2) The ELR model outperformed single base model, and produced the high-accuracy LAI estimation (R2 = 0.5266–0.713) for different mangrove communities. (3) The average accuracy (R2) of the ELR model was higher by 0.0019–0.149 than the DLR models, which demonstrated that the ELR model had a better capability (R2 = 0.5865–0.6416) in LAI estimation. The Transformer-based LAI estimation of A. marina (R2 = 0.6355) was better than the DNN model, while the DNN model produced higher accuracy for Kandelia candel (KC) (R2 = 0.5577). (4) With the increase in the expansion ratio of the training sample (10–50%), the LAI estimation accuracy (R2) of DNN and Transformer models for different mangrove communities increased by 0.1166–0.2037 and 0.1037–0.1644, respectively. Under the same estimation accuracy, the sample enhancement method in this paper could reduce the number of filed measurements by 20–40%
    corecore