2,261 research outputs found

    Tunnelling in quantum superlattices with variable lacunarity

    Full text link
    Quantum fractal superlattices are microelectronic devices consisting of a series of thin layers of two semiconductor materials deposited alternately on each other over a substrate following the rules of construction of a fractal set, here, a symmetrical polyadic Cantor fractal. The scattering properties of electrons in these superlattices may be modeled by using that of quantum particles in piecewise constant potential wells. The twist plots representing the reflection coefficient as function of the lacunarity parameter show the appearance of black curves with perfectly transparent tunnelling which may be classified as vertical, arc, and striation nulls. Approximate analytical formulae for these reflection-less curves are derived using the transfer matrix method. Comparison with the numerical results show their good accuracy.Comment: 12 pages, 3 figure

    Fractals

    Get PDF

    Lacunar fractal photon sieves

    Get PDF
    We present a new family of diffractive lenses whose structure is based on the combination of two concepts: photon sieve and fractal zone plates with variable lacunarity. The focusing properties of different members of this family are examined. It is shown that the sieves provide a smoothing effect on the higher order foci of a conventional lacunar fractal zone plate. However, the characteristic self-similar axial response of the fractal zone plates is always preserved.Comment: 7 pages, 5 figure

    Alternate islands of multiple isochronous chains in wave-particle interactions

    Full text link
    We analyze the dynamics of a relativistic particle moving in a uniform magnetic field and perturbed by a standing electrostatic wave. We show that a pulsed wave produces an infinite number of perturbative terms with the same winding number, which may generate islands in the same region of phase space. As a consequence, the number of isochronous island chains varies as a function of the wave parameters. We observe that in all the resonances, the number of chains is related to the amplitude of the various resonant terms. We determine analytically the position of the periodic points and the number of island chains as a function of the wave number and wave period. Such information is very important when one is concerned with regular particle acceleration, since it is necessary to adjust the initial conditions of the particle to obtain the maximum acceleration.Comment: Submitte

    Nontwist non-Hamiltonian systems

    Full text link
    We show that the nontwist phenomena previously observed in Hamiltonian systems exist also in time-reversible non-Hamiltonian systems. In particular, we study the two standard collision/reconnection scenarios and we compute the parameter space breakup diagram of the shearless torus. Besides the Hamiltonian routes, the breakup may occur due to the onset of attractors. We study these phenomena in coupled phase oscillators and in non-area-preserving maps.Comment: 7 pages, 5 figure
    corecore