1,237 research outputs found

    Configuration Sharing Optimized Placement and Routing

    Get PDF
    Reconfigurable systems have been shown to achieve very high computational performance. However, the overhead associated with reconfiguration of hardware remains a critical factor in overall system performance. This paper discusses the development and evaluation of a technique to minimize the delay associated with reconfiguration based upon optimized sharing of configuration bit streams between design contexts. This is achieved through modified placement and routing algorithms

    RecoNoC: a reconfigurable network-on-chip

    Get PDF
    This article presents the design of RecoNoC: a compact, highly flexible FPGA-based network-on-chip (NoC), that can be easily adapted for various experiments. In this work, we enhanced this NoC with dynamically reconfigurable shortcuts. These can be used to alter the NoC's topology to adapt to the system's communication needs. The design has been implemented and tested on a Xilinx Virtex-2 Pro FPGA, using the TMAP dynamic datafolding toolflow to automatically generate the reconfigurable hardware and the software reconfiguration procedures. The results show that, using dynamic datafolding, the overhead of introducing this shortcut mechanism is limited

    Optimizing Scrubbing by Netlist Analysis for FPGA Configuration Bit Classification and Floorplanning

    Full text link
    Existing scrubbing techniques for SEU mitigation on FPGAs do not guarantee an error-free operation after SEU recovering if the affected configuration bits do belong to feedback loops of the implemented circuits. In this paper, we a) provide a netlist-based circuit analysis technique to distinguish so-called critical configuration bits from essential bits in order to identify configuration bits which will need also state-restoring actions after a recovered SEU and which not. Furthermore, b) an alternative classification approach using fault injection is developed in order to compare both classification techniques. Moreover, c) we will propose a floorplanning approach for reducing the effective number of scrubbed frames and d), experimental results will give evidence that our optimization methodology not only allows to detect errors earlier but also to minimize the Mean-Time-To-Repair (MTTR) of a circuit considerably. In particular, we show that by using our approach, the MTTR for datapath-intensive circuits can be reduced by up to 48.5% in comparison to standard approaches

    New Design Techniques for Dynamic Reconfigurable Architectures

    Get PDF
    L'abstract ĆØ presente nell'allegato / the abstract is in the attachmen

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows
    • ā€¦
    corecore