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Abstract—This article presents the design of RecoNoC: a
compact, highly flexible FPGA-based network-on-chip (NoC),
that can be easily adapted for various experiments. In this
work, we enhanced this NoC with dynamically reconfigurable
shortcuts. These can be used to alter the NoC’s topology
to adapt to the system’s communication needs. The design
has been implemented and tested on a Xilinx Virtex-2 Pro
FPGA, using the TMAP dynamic datafolding toolflow to
automatically generate the reconfigurable hardware and the
software reconfiguration procedures. The results show that,
using dynamic datafolding, the overhead of introducing this
shortcut mechanism is limited.
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I. INTRODUCTION

Advances in VLSI technology allow us to integrate more
processing elements on one chip, creating ever more pow-
erful and diverse systems-on-chip (SoC). Most of these
elements are available as IP cores, so the main problem
for many designers today is connecting them in an efficient
way, maximizing performance and minimizing area and
power costs. Since the concept has been introduced in [1],
network-on-chip (NoC) architectures have emerged as the
most promising solutions to this problem. The distributed
nature of a NoC allows it to transport many parallel data
streams, making it very scalable and performant.

If an application’s network usage patterns are known a
priori, the physical topology of the network can be designed
to match the logical topology of the application and meet
all delay and bandwidth requirements, without using more
resources than strictly necessary. In many cases however,
the communication patterns are highly dependent on the
system’s inputs or the system must be suited to run many
diverse applications. In these cases a network using a generic
topology and very wide links to provide sufficient bandwidth
for the worst-case scenario is the only option. This takes up
a lot of resources, most of which are rarely used.

In this work, we attempt to use the dynamic reconfigura-
bility of SRAM-based FPGAs to make more efficient use of
the available resources. We use a generic NoC design, but
with a quick dynamic reconfiguration procedure, we can add
shortcuts to our network. These shortcuts allow data streams
to travel between distant nodes, using their own dedicated
link and not passing through intermediate buffers or routers.

Once the shortcut is no longer needed, it can be torn down
and it’s resources can be used to create another shortcut. This
approach is very similar to the one used in [2] to reconfigure
optical networks connecting processors at the printed circuit
board (PCB) level and showed clear performance improve-
ments for realistic network loads. These improvements were
bigger for larger networks and we expect similar results.

II. RECONOC DESIGN

A first goal of this work is to create a compact, flexible
and easily extendable NoC on a FPGA. This will allow
exploration of the NoC’s performance for different network
configurations. The design of RecoNoC therefore consists
of nodes with an arbitrary number of in- and outputs, which
can be connected in a flexible way, with the possibility to
add shift registers between nodes to pipeline long links. Ar-
bitrary topologies can be created, but currently we will limit
ourselves to rectangular meshes. With additional buffering
to avoid metastability issues, the design can be used in
Globally Asynchronous, Locally Synchronous (GALS) sys-
tems, where every node in the network uses a different
clock signal. Virtual channels (VCs) are also implemented,
as these can increase performance and are necessary to
achieve deadlock-free routing with some dynamic routing
protocols. RecoNoC currently uses wormhole routing and
a simple ACK/NACK handshake link protocol. Table-based
static routing is used, because it is necessary to be able to
change the routing tables as we change the topology. Turn
restrictions are used to avoid deadlocks. Arbitration takes
3 clock cycles and node buffering takes 2 cycles so the
minimum node delay is 5 cycles. The links between nodes
can transfer 1 byte of packet data every 4 cycles. TWait

is the time that a packet waits in the buffers if some links
are occupied. Total packet delay in cycles is thus calculated
using Equation (1).

Tdelay = 5 · hops + 4 · bytesPerPacket + Twait (1)

Secondly, we wanted to use the dynamic reconfigurability
of SRAM-based FPGAs to create shortcuts that allow data
streams to travel between distant nodes, using their own
dedicated link and not passing through intermediate buffers
or routers. To add the shortcuts to RecoNoC, we increased
the radix of each node by 1 and connected the extra in- and
output port to a crossbar. This crossbar is connected to each
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of the neighbouring nodes’ crossbars, as shown in Figure 1.
With these crossbars, we can set up point-to-point simplex
links from any node to any other node, effectively creating
a shortcut. Packets can travel along these shortcuts and get
to their destination in a single hop, avoiding additional wait
times if links along the regular route are in use by other
data streams. For long links, this can greatly improve packet
delays [2].

Figure 1. RecoNoC with a regular 4x4 mesh topology. NI = Network
Interface, R = Router, X = crossbar.

III. PRELIMINARY RESULTS

There has been quite some previous work on dynamically
reconfigurable NoCs, for example [3] and [4]. In all cases
Xilinx’s Modular Design Flow was used. In this work, on
the other hand, the TMAP dynamic datafolding toolflow,
described in [5], was used to automatically generate the
dynamically reconfigurable crossbars of RecoNoC. A unique
feature of TMAP is that only some of the FPGA’s look-up
tables need to be rewritten during run-time, while the routing
is kept fixed. This is expected to drastically reduce recon-
figuration time. The dynamically reconfigurable crossbars
are still much smaller than crossbars that can be adapted
using control inputs implemented in the FPGA fabric. This
is because the control inputs are considered constant, i.e.
connections are hardwired and are changed by reconfiguring
the FPGA. The area reduction for one crossbar is shown in
Table I.

Radix LUTs LUTs (TMAP) Area reduction
3 45 39 13,3%
4 162 52 67,1%
5 215 65 69,8%

Table I
CROSSBAR AREA REDUCTION USING TMAP.

Radix Base (slices) 2xDW 2xBD 2 VCs reco
3 210 44,8% 56,7% 95,2% 40,5%
4 297 41,4% 49,8% 90,2% 30,6%
5 397 39,5% 43,1% 88,2% 22,0%

Table II
COMPARISON OF NODE AREA COSTS. DW = DATA WIDTH, BD =

BUFFER DEPTH, VC = VIRTUAL CHANNEL, RECO = WITH
RECONFIGURABLE CROSSBAR.

To illustrate the network’s flexibility, the size of one
network routing node for different network configurations
is shown in Table II. This experiment was conducted in ISE
9.1 on a Xilinx Virtex-2 Pro (XC2VP30) device. The base
node to which is compared has a data width of 8 bits, a
buffer depth of 4 bytes and no VCs. We see that, for a node
with radix 5, doubling the data width, doubling the buffer
depth and using VCs costs a lot more than the crossbars. We
also see that adding the reconfigurable shortcuts only results
in a limited overhead of 22 %.

IV. CONCLUSIONS AND FUTURE WORK

We have presented the design of RecoNoC: a compact,
highly flexible NoC, that can be easily adapted for var-
ious experiments. Using the TMAP dynamic datafolding
tool flow, we also enhanced this NoC with dynamically
reconfigurable shortcuts. These extra shortcuts can be used
to change the topology of the network to adapt to the
network’s communication needs. The area cost of adding
these shortcuts is modest, but the performance gains are
expected to be substantial. In the future we want to finish
implementing the tools that measure our NoC’s performance
for different network configurations and traffic patterns.
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