566 research outputs found

    Lost in translation: Toward a formal model of multilevel, multiscale medicine

    Get PDF
    For a broad spectrum of low level cognitive regulatory and other biological phenomena, isolation from signal crosstalk between them requires more metabolic free energy than permitting correlation. This allows an evolutionary exaptation leading to dynamic global broadcasts of interacting physiological processes at multiple scales. The argument is similar to the well-studied exaptation of noise to trigger stochastic resonance amplification in physiological subsystems. Not only is the living state characterized by cognition at every scale and level of organization, but by multiple, shifting, tunable, cooperative larger scale broadcasts that link selected subsets of functional modules to address problems. This multilevel dynamical viewpoint has implications for initiatives in translational medicine that have followed the implosive collapse of pharmaceutical industry 'magic bullet' research. In short, failure to respond to the inherently multilevel, multiscale nature of human pathophysiology will doom translational medicine to a similar implosion

    Evolutionary Tabletop Game Design: A Case Study in the Risk Game

    Full text link
    Creating and evaluating games manually is an arduous and laborious task. Procedural content generation can aid by creating game artifacts, but usually not an entire game. Evolutionary game design, which combines evolutionary algorithms with automated playtesting, has been used to create novel board games with simple equipment; however, the original approach does not include complex tabletop games with dice, cards, and maps. This work proposes an extension of the approach for tabletop games, evaluating the process by generating variants of Risk, a military strategy game where players must conquer map territories to win. We achieved this using a genetic algorithm to evolve the chosen parameters, as well as a rules-based agent to test the games and a variety of quality criteria to evaluate the new variations generated. Our results show the creation of new variations of the original game with smaller maps, resulting in shorter matches. Also, the variants produce more balanced matches, maintaining the usual drama. We also identified limitations in the process, where, in many cases, where the objective function was correctly pursued, but the generated games were nearly trivial. This work paves the way towards promising research regarding the use of evolutionary game design beyond classic board games.Comment: 11 pages, 8 figures, accepted for publication at the XXII Braziliam Simposium on Games and Digital Entertainment (SBGames 2023

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    Efficient Learning Machines

    Get PDF
    Computer scienc

    Solution Strategies in Short-term Scheduling for Multitasking Multipurpose Plants

    Get PDF
    This thesis addresses challenges in short-term scheduling of multipurpose facilities using mathematical optimization. Such approach involves the formulation of a predictive model and an objective function, and the development of a solution strategy around such scheduling model formulation in order to obtain an operating schedule that achieves certain objectives, such as maximization of throughput or minimization of makespan. There are many choices that must be made in these aspects of short-term scheduling, and these choices often lead to a trade-off between the solution quality and computational time. This thesis presents two studies analyzing the quality-CPU time trade-off in two major aspects: time representations in model formulation, and the strategy for handling multiple conflicting objectives. The ultimate goal is to develop bi-objective short-term scheduling approaches to tackle industrial-sized problems for multitasking multipurpose plants that are computationally inexpensive, but provide practical schedules with a good balance between throughput and makespan. The first study addresses the first aspect of interest and compares two different time representation approaches: discrete-time and continuous-time approaches. This comparison is made considering maximization of throughput as the sole objective. We show that, for the modeling framework implemented in this work, the selected discrete-time formulation typically obtained higher quality solutions, and required less time to solve compared to the selected continuous-time formulation, as the continuous-time formulation exhibited detrimental trade-off between computational time and solution quality. We also show that within the scope of this study, non-uniform discretization schemes typically yielded solutions of similar quality compared to a fine uniform discretization scheme, but required only a fraction of the computational time. The second study builds on the first study and develops a strategy around an efficient non-uniform discretization approach to handle the conflicting objectives of throughput maximization and makespan minimization, focusing on a priori multi-objective methods. Two main contributions are presented in this regard. The first contribution is to propose a priori bi-objective methods based on the hybridization of compromise programming and the U+03B5-constraint method. The second is to present short-term operational objective functions, that can be used within short-term scheduling to optimize desired long term objectives of maximizing throughput and minimizing makespan. Two numerical case studies, one in a semiconductor processing plant and an analytical services facility, are presented using a rolling horizon framework, which demonstrate the potential for the proposed methods to improve solution quality over a traditional a priori approac

    Effective and efficient estimation of distribution algorithms for permutation and scheduling problems.

    Get PDF
    Estimation of Distribution Algorithm (EDA) is a branch of evolutionary computation that learn a probabilistic model of good solutions. Probabilistic models are used to represent relationships between solution variables which may give useful, human-understandable insights into real-world problems. Also, developing an effective PM has been shown to significantly reduce function evaluations needed to reach good solutions. This is also useful for real-world problems because their representations are often complex needing more computation to arrive at good solutions. In particular, many real-world problems are naturally represented as permutations and have expensive evaluation functions. EDAs can, however, be computationally expensive when models are too complex. There has therefore been much recent work on developing suitable EDAs for permutation representation. EDAs can now produce state-of-the-art performance on some permutation benchmark problems. However, models are still complex and computationally expensive making them hard to apply to real-world problems. This study investigates some limitations of EDAs in solving permutation and scheduling problems. The focus of this thesis is on addressing redundancies in the Random Key representation, preserving diversity in EDA, simplifying the complexity attributed to the use of multiple local improvement procedures and transferring knowledge from solving a benchmark project scheduling problem to a similar real-world problem. In this thesis, we achieve state-of-the-art performance on the Permutation Flowshop Scheduling Problem benchmarks as well as significantly reducing both the computational effort required to build the probabilistic model and the number of function evaluations. We also achieve competitive results on project scheduling benchmarks. Methods adapted for solving a real-world project scheduling problem presents significant improvements

    Integrated machine learning and optimization approaches

    Get PDF
    This dissertation focuses on the integration of machine learning and optimization. Specifically, novel machine learning-based frameworks are proposed to help solve a broad range of well-known operations research problems to reduce the solution times. The first study presents a bidirectional Long Short-Term Memory framework to learn optimal solutions to sequential decision-making problems. Computational results show that the framework significantly reduces the solution time of benchmark capacitated lot-sizing problems without much loss in feasibility and optimality. Also, models trained using shorter planning horizons can successfully predict the optimal solution of the instances with longer planning horizons. For the hardest data set, the predictions at the 25% level reduce the solution time of 70 CPU hours to less than 2 CPU minutes with an optimality gap of 0.8% and without infeasibility. In the second study, an extendable prediction-optimization framework is presented for multi-stage decision-making problems to address the key issues of sequential dependence, infeasibility, and generalization. Specifically, an attention-based encoder-decoder neural network architecture is integrated with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions. The proposed framework is demonstrated to tackle the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing and multi-dimensional knapsack. The results show that models trained on shorter and smaller-dimension instances can be successfully used to predict longer and larger-dimension problems with the presented item-wise expansion algorithm. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. The proposed framework can be advantageous for solving dynamic mixed-integer programming problems that need to be solved instantly and repetitively. In the third study, a deep reinforcement learning-based framework is presented for solving scenario-based two-stage stochastic programming problems, which are computationally challenging to solve. A general two-stage deep reinforcement learning framework is proposed where two learning agents sequentially learn to solve each stage of a general two-stage stochastic multi-dimensional knapsack problem. The results show that solution time can be reduced significantly with a relatively small gap. Additionally, decision-making agents can be trained with a few scenarios and solve problems with a large number of scenarios. In the fourth study, a learning-based prediction-optimization framework is proposed for solving scenario-based multi-stage stochastic programs. The issue of non-anticipativity is addressed with a novel neural network architecture that is based on a neural machine translation system. Furthermore, training the models on deterministic problems is suggested instead of solving hard and time-consuming stochastic programs. In this framework, the level of variables used for the solution is iteratively reduced to eliminate infeasibility, and a heuristic based on a linear relaxation is performed to reduce the solution time. An improved item-wise expansion strategy is introduced to generalize the algorithm to tackle instances with different sizes. The results are presented in solving stochastic multi-item capacitated lot-sizing and stochastic multi-stage multi-dimensional knapsack problems. The results show that the solution time can be reduced by a factor of 599 with an optimality gap of only 0.08%. Moreover, results demonstrate that the models can be used to predict similarly structured stochastic programming problems with a varying number of periods, items, and scenarios. The frameworks presented in this dissertation can be utilized to achieve high-quality and fast solutions to repeatedly-solved problems in various industrial and business settings, such as production and inventory management, capacity planning, scheduling, airline logistics, dynamic pricing, and emergency management

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment
    corecore