
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

12-31-2022

Integrated machine learning and optimization approaches Integrated machine learning and optimization approaches

Dogacan Yilmaz
New Jersey Institute of Technology, dy234@njit.edu

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Data Science Commons, Industrial Engineering Commons, and the Operational Research

Commons

Recommended Citation Recommended Citation
Yilmaz, Dogacan, "Integrated machine learning and optimization approaches" (2022). Dissertations. 1645.
https://digitalcommons.njit.edu/dissertations/1645

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1645?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1645&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

INTEGRATED MACHINE LEARNING
AND OPTIMIZATION APPROACHES

by
Dogacan Yilmaz

This dissertation focuses on the integration of machine learning and optimization.

Specifically, novel machine learning-based frameworks are proposed to help solve

a broad range of well-known operations research problems to reduce the solution

times. The first study presents a bidirectional Long Short-Term Memory framework

to learn optimal solutions to sequential decision-making problems. Computational

results show that the framework significantly reduces the solution time of benchmark

capacitated lot-sizing problems without much loss in feasibility and optimality. Also,

models trained using shorter planning horizons can successfully predict the optimal

solution of the instances with longer planning horizons. For the hardest data set, the

predictions at the 25% level reduce the solution time of 70 CPU hours to less than 2

CPU minutes with an optimality gap of 0.8% and without infeasibility. In the second

study, an extendable prediction-optimization framework is presented for multi-stage

decision-making problems to address the key issues of sequential dependence, infea-

sibility, and generalization. Specifically, an attention-based encoder-decoder neural

network architecture is integrated with an infeasibility-elimination and generalization

framework to learn high-quality feasible solutions. The proposed framework is

demonstrated to tackle the two well-known dynamic NP-Hard optimization problems:

multi-item capacitated lot-sizing and multi-dimensional knapsack. The results show

that models trained on shorter and smaller-dimension instances can be successfully

used to predict longer and larger-dimension problems with the presented item-wise

expansion algorithm. The solution time can be reduced by three orders of magnitude

with an average optimality gap below 0.1%. The proposed framework can be

advantageous for solving dynamic mixed-integer programming problems that need

to be solved instantly and repetitively. In the third study, a deep reinforcement

learning-based framework is presented for solving scenario-based two-stage stochastic

programming problems, which are computationally challenging to solve. A general

two-stage deep reinforcement learning framework is proposed where two learning

agents sequentially learn to solve each stage of a general two-stage stochastic

multi-dimensional knapsack problem. The results show that solution time can be

reduced significantly with a relatively small gap. Additionally, decision-making agents

can be trained with a few scenarios and solve problems with a large number of

scenarios. In the fourth study, a learning-based prediction-optimization framework

is proposed for solving scenario-based multi-stage stochastic programs. The issue

of non-anticipativity is addressed with a novel neural network architecture that is

based on a neural machine translation system. Furthermore, training the models

on deterministic problems is suggested instead of solving hard and time-consuming

stochastic programs. In this framework, the level of variables used for the solution

is iteratively reduced to eliminate infeasibility, and a heuristic based on a linear

relaxation is performed to reduce the solution time. An improved item-wise expansion

strategy is introduced to generalize the algorithm to tackle instances with different

sizes. The results are presented in solving stochastic multi-item capacitated lot-sizing

and stochastic multi-stage multi-dimensional knapsack problems. The results show

that the solution time can be reduced by a factor of 599 with an optimality gap of only

0.08%. Moreover, results demonstrate that the models can be used to predict similarly

structured stochastic programming problems with a varying number of periods, items,

and scenarios. The frameworks presented in this dissertation can be utilized to achieve

high-quality and fast solutions to repeatedly-solved problems in various industrial and

business settings, such as production and inventory management, capacity planning,

scheduling, airline logistics, dynamic pricing, and emergency management.

INTEGRATED MACHINE LEARNING
AND OPTIMIZATION APPROACHES

by
Dogacan Yilmaz

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Industrial Engineering

Department of Mechanical and Industrial Engineering

December 2022

Copyright c© 2022 by Dogacan Yilmaz

ALL RIGHTS RESERVED

APPROVAL PAGE

INTEGRATED MACHINE LEARNING
AND OPTIMIZATION APPROACHES

Dogacan Yilmaz

Dr. İ. Esra Büyüktahtakın Toy, Dissertation Advisor Date
Associate Professor of Industrial and Systems Engineering,
Virginia Tech, Blacksburg, VA

Dr. Sanchoy K. Das, Committee Chair Date
Professor of Mechanical and Industrial Engineering, NJIT

Dr. Athanassios Bladikas, Committee Member Date
Associate Professor of Mechanical and Industrial Engineering, NJIT

Dr. Wenbo Cai, Committee Member Date
Associate Professor of Mechanical and Industrial Engineering, NJIT

Dr. David A. Bader, Committee Member Date
Distinguished Professor of Data Science, NJIT

BIOGRAPHICAL SKETCH

Author: Dogacan Yilmaz

Degree: Doctor of Philosophy

Date: December 2022

Undergraduate and Graduate Education:

• Doctor of Philosophy in Industrial Engineering,
New Jersey Institute of Technology, Newark, NJ, 2022

• Bachelor of Science in Industrial Engineering,
Boğaziçi University, İstanbul, Türkiye, 2019

Major: Industrial Engineering

Publications:

Yilmaz, D., and Büyüktahtakın, İ. E. (2022). A non-anticipative learning-
optimization framework for solving multi-stage stochastic programs. In
preparation.

Yilmaz, D., and Büyüktahtakın, İ. E. (2022). A deep reinforcement learning
framework for solving two-stage stochastic programs. In preparation.

Yilmaz, D., and Büyüktahtakın, İ. E. (2022). An expandable learning-optimization
framework for sequentially dependent decision-making. Submitted to European
Journal of Operational Research.

Yilmaz, D., and Büyüktahtakın, İ. E. (2022). Learning optimal solutions via an
LSTM-optimization framework. Submitted to Operations Research Forum.

Guner, G., Yilmaz, D., Eskin, D., and Bilgili, E. (2022). Effects of bead packing limit
concentration on microhydrodynamics-based prediction of breakage kinetics in
wet stirred media milling. Powder Technology, 403, 117433.

Guner, G., Yilmaz, D., and Bilgili, E. (2021). Kinetic and microhydrodynamic
modeling of fenofibrate nanosuspension production in a wet stirred media mill.
Pharmaceutics, 13(7), 1055.

iv

Presentations:

Yilmaz, D., and Büyüktahtakın, İ. E. (2022). Learning to solve multistage
optimization problems with an expendable framework. Institute for Operations
Research and the Management Sciences Annual Meeting, Indianapolis, IN.

Yilmaz, D., and Büyüktahtakın, İ. E. (2022). An expandable learning-optimization
framework for sequentially dependent decision-making. 17th Institute for
Operations Research and the Management Sciences Workshop on Data Mining
and Decision Analytics, Indianapolis, IN.

Yilmaz, D., and Büyüktahtakın, İ. E. (2022). An expandable learning-optimization
framework for sequentially dependent decision-making. Dana Knox Research
Showcase, NJIT, Newark, NJ.

Yilmaz, D., and Büyüktahtakın, İ. E. (2022). An expandable learning-optimization
framework for sequentially dependent decision-making. Institute for Operations
Research and the Management Sciences Computing Society Conference, Tampa,
FL.

Yilmaz, D., and Büyüktahtakın, İ. E. (2021). An expandable learning-optimization
framework for sequentially dependent decision-making. Institute for Operations
Research and the Management Sciences Annual Meeting, Online.

Yilmaz, D., and Büyüktahtakın, İ. E. (2021). An LSTM-optimization framework
to predict the optimal solution of a mixed-integer program. Mixed-Integer
Programming Workshop, Online.

Yilmaz, D., and Büyüktahtakın, İ. E. (2020). An LSTM-optimization framework
to predict the optimal solution of a mixed-integer program. Institute for
Operations Research and the Management Sciences Annual Meeting, Online.

Yilmaz, D., and Büyüktahtakın, İ. E. (2020). An LSTM-optimization framework
to predict the optimal solution of a mixed-integer program. 15th Institute for
Operations Research and the Management Sciences Workshop on Data Mining
and Decision Analytics, Online.

v

I am dedicating this dissertation to my family who was
always there for me. They mean everything to me.

vi

ACKNOWLEDGMENT

First and foremost, I wish to express my most sincere gratitude to my advisor,

Dr. İ. Esra Büyüktahtakın Toy. Her excellent advice and never-ending motivation is

the main reason this dissertation exists. She was always there for me with guidance

and encouragement. I feel lucky that I had Dr. Büyüktahtakın Toy as my advisor. I

will never forget her support and kindness.

I would like to express my appreciation to Dr. Sanchoy K. Das for his decision

to be my committee chair. I would like to expand my deepest thanks to the committee

members, Dr. Athanassios Bladikas, Dr. Wenbo Cai, and Dr. David A. Bader. Their

invaluable insights have enriched my research in many ways that I could not think of.

I had the pleasure of working with Dr. Sabah Bushaj, Dr. Xuecheng Yin, and

Elson Cibaku during my time at the Systems Optimization and Data Analytics Lab.

They were always present for me to discuss ideas and provide suggestions.

I gratefully acknowledge the support of the National Science Foundation

(NSF) CAREER Award co-funded by the Chemical, Bioengineering, Environmental

and Transport Systems/Engineering Environmental Sustainability program and the

Division of Mathematical Sciences in Mathematical and Physical Sciences/NSF under

Grant No. CBET-1554018.

My mother, Sevim and father, Hamit were there for me when I needed them.

Their patience and encouragement were there for me throughout the years. I will

be forever indebted to them. I was lucky enough to have amazing friends who have

been on my side through the years. Finally, I owe my deepest thanks to Gülenay.

I could not have completed this dissertation without the support and strength she

brings every day.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Background . 1

1.1.1 Machine Learning . 2

1.1.2 Machine Learning for Operations Research 5

1.1.3 Operations Research . 8

1.2 Motivation . 9

1.3 Summary of Research Objectives and Contributions 14

1.4 Organization of the Dissertation . 18

2 LEARNING OPTIMAL SOLUTIONS VIA AN LSTM-OPTIMIZATION
FRAMEWORK . 19

2.1 Introduction . 19

2.2 Literature Review and Contributions 22

2.2.1 Literature Review . 22

2.2.2 Key Contributions of the Study 25

2.3 Capacitated Lot-Sizing Problem . 28

2.4 LSTM-Optimization Framework . 29

2.5 Implementation and Experimentation 32

2.5.1 CLSP Instance Generation . 32

2.5.2 LSTM-Opt Implementation Details 33

2.6 Computational Results . 34

2.6.1 Quality of Predictions . 35

2.6.2 Predicting Instances with Same Distribution 37

2.6.3 Results on Generalization . 43

2.6.4 Comparison with Other ML and Exact Algorithms 47

2.6.5 Summary of Results . 53

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

2.7 Conclusions and Future Work . 54

3 AN EXPANDABLE LEARNING-OPTIMIZATION FRAMEWORK FOR
SEQUENTIALLY DEPENDENT DECISION-MAKING 57

3.1 Introduction . 57

3.2 Literature Review and Contributions 60

3.2.1 Key Contributions of the Study 65

3.3 Problems . 67

3.3.1 Multi-item Capacitated Lot-Sizing Problem 67

3.3.2 Multi-stage Multi-dimensional Knapsack Problem 69

3.4 Methodology . 71

3.4.1 Neural Machine Translation and Adaptation 71

3.4.2 The PredOpt Framework . 76

3.4.3 Generalization with Item-wise Expansion 80

3.5 Implementation and Experimentation 81

3.5.1 Instance Generation . 82

3.5.2 Model Training . 83

3.5.3 Evaluation Methodology . 84

3.6 Computational Results . 85

3.6.1 Quality of Predictions for MCLSP 86

3.6.2 Quality of Predictions for MSMK 90

3.6.3 Generalization: Quality of Predictions with Item-wise Expansion
Algorithm . 93

3.7 Conclusions and Future Work . 95

4 A DEEP REINFORCEMENT LEARNING FRAMEWORK FOR SOLVING
TWO-STAGE STOCHASTIC PROGRAMS 97

4.1 Introduction . 97

4.2 Literature Review . 101

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

4.2.1 Key Contributions of the Study 106

4.3 Two-stage Stochastic Knapsack Problem 107

4.4 Two-stage Reinforcement Learning (2SRL) Framework 110

4.4.1 Pointer Networks . 110

4.4.2 Training Paradigm for 2SRL Framework 113

4.5 Implementation and Experimentation Details 124

4.5.1 Generating Two-stage Stochastic Knapsack Problems 124

4.5.2 Model Architecture . 126

4.5.3 Evaluation Methodology . 127

4.6 Computational Results . 128

4.7 Discussion . 133

5 A NON-ANTICIPATIVE LEARNING-OPTIMIZATION FRAMEWORK
FOR SOLVING MULTI-STAGE STOCHASTIC PROGRAMS 135

5.1 Introduction . 135

5.2 Literature Review . 139

5.2.1 Key Contributions of the Study 143

5.3 Problems . 145

5.3.1 Stochastic Multi-item Capacitated Lot-Sizing Problem 145

5.3.2 Stochastic Multi-stage Multi-dimensional Knapsack Problem . 147

5.4 Methodology . 149

5.4.1 Non-anticipative Encoder-Decoder with Attention 149

5.4.2 The ScenPredOpt Framework 155

5.4.3 Generalization with Item-wise Expansion 162

5.5 Implementation and Experimentation Details 165

5.5.1 Instance Generation . 165

5.5.2 Implementation Specifications 166

x

TABLE OF CONTENTS
(Continued)

Chapter Page

5.5.3 Model Training . 167

5.5.4 Evaluation Methodology . 168

5.6 Results . 169

5.6.1 Quality of Predictions for SMCLSP 170

5.6.2 Quality of Predictions for SMSMK 174

5.6.3 Generalization: Quality of Predictions for Item-wise Expansion
Algorithm . 179

5.7 Conclusions and Future Work . 183

6 SUMMARY AND FUTURE DIRECTIONS 185

APPENDIX A MODEL TRAINING TIMES AND FURTHER EXPERIMENTS
FOR CHAPTER 2 . 191

A.1 Results for Training LSTM Models 191

A.2 More Results on the Experiments . 191

A.3 Predicting Instances with Different Distributions 196

APPENDIX B DETAILS OF THE TEST INSTANCES FOR CHAPTER 5 . 200

REFERENCES . 203

xi

LIST OF TABLES

Table Page

2.1 Summary of Experiments for f = 10, 000 and T = 120 38

2.2 Summary of Averages in Tables 2.1, A.2, A.3, and A.4 42

2.3 Summary of Generalization Experiments to Test Datasets with Longer
Planning Horizons . 45

2.4 Summary of Generalization Experiments to Test Datasets with Longer
Planning Horizons Continued . 46

2.5 Computational Results for Comparing LSTM-Opt with Other Machine
Learning Algorithms . 51

2.6 Computational Results for Comparing LSTM-Opt with Different Exact
Methods . 52

3.1 Average Results of Experiments for MCLSP with 8 Items 88

3.2 Average Results of Experiments for MCLSP with 12 Items 89

3.3 Average Results of Experiments for MSMK with 8 Items 92

3.4 Average Results of Experiments for MSMK with 10 Items 92

3.5 Average Results of Item-wise Generalization Experiments for MCLSP . . 94

3.6 Average Results of Item-wise Generalization Experiments for MSMK . . 95

4.1 Average Results of Experiments for 2SRL Trained with 10 Items 130

4.2 Average Results of Experiments for 2SRL Trained with 20 Items 131

4.3 Average Results of Experiments for 2SRL Trained with 30 Items 132

5.1 Average Results of Experiments for SMCLSP with 8 Items 171

5.2 Average Results of Experiments for SMCLSP with 12 Items 172

5.3 Detailed Results of Experiments for SMCLSP with 8 Items 175

5.4 Average Results of Experiments for SMSMK with 8 Items 176

5.5 Average Results of Experiments for SMSMK with 10 Items 177

5.6 Average Results of Experiments for 2SMK with 8 Items 177

5.7 Average Results of Experiments for 2SMK with 10 Items 178

5.8 Average Results of Generalization Experiments for SMCLSP 181

xii

LIST OF TABLES
(Continued)

Table Page

5.9 Average Results of Generalization Experiments for SMSMK 182

A.1 LSTM Training Times for the Model with the Highest Validation
Accuracy (in CPU Seconds) . 192

A.2 Summary of Experiments for f = 1, 000 and T = 90 194

A.3 Summary of Experiments for f = 10, 000 and T = 90 195

A.4 Summary of Experiments for f = 1, 000 and T = 120 197

A.5 Summary of Generalization Experiments to Test Datasets with Different
Characteristics . 198

B.1 Details of Test Instances for SMCLSP 201

B.2 Details of Test Instances for SMSMK . 202

xiii

LIST OF FIGURES

Figure Page

2.1 LSTM-Opt framework. 30

2.2 Bidirectional LSTM is adapted to represent the CLSP multi-period
structure. 31

2.3 Summary of results with optgap(%), inf(%), and timeimp. 40

2.4 Summary of results with different data generation parameters. 41

2.5 Comparison of exact and ML algorithms. 53

2.6 Summary of generalization experiments. 55

3.1 Encoder-decoder with attention. 75

3.2 PredOpt framework. 79

3.3 Progress of CPLEX with (`,S) inequalities and PredOpt objective values
during the first few seconds of the solution process. All solution times
are given in CPU seconds. 90

4.1 Two-stage scenario tree. 100

4.2 2SRL training overview. 116

5.1 An example scenario tree that contains four stages and eight scenarios.
Black dashed rectangular shows the scenario groups with the same
decisions. 152

5.2 Progress of Gurobi and ScenPredOpt objective values during the first few
seconds of the solution process. All solution times are given in CPU
seconds. 173

xiv

CHAPTER 1

INTRODUCTION

1.1 Background

Analytics can be defined as the development and application of scientific method-

ologies to analyze complex systems. Analytics is used to discover, interpret, and

impart patterns in data. Broadly, it consists of three distinct types of analytics.

Descriptive analytics is used for gaining meaningful insight into the past by analyzing

historical data. It is the simplest form of analytics. Predictive analytics is used

to predict the future by looking at historical data. The final frontier of analytics

is prescriptive analytics which is used for decision-making by suggesting actions

that optimize a certain metric. This dissertation is positioned at the intersection

of predictive and prescriptive analytics.

Operations research is the scientific discipline that develops and utilizes

advanced mathematical methods to make better decisions. While optimization is

ageless, as a scientific discipline, the history of modern operations research dates

back to the Second World War, and it has expanded rapidly after that with new

techniques. It can be considered as the mathematical tool used for prescriptive

analytics. Many real-world problems in manufacturing, finance, healthcare, and

logistics can be modeled with the language of operations research and can be solved

with highly developed methodologies to provide insight into optimal decision-making.

Machine learning is a subfield of artificial intelligence. It is the study of

learning by looking at the data. Machine learning is one of the computational

engines of predictive analytics. It aims to identify patterns by analyzing the

data to make predictions. Like operations research, machine learning has a broad

range of applications, including but not limited to speech recognition, product

recommendation, and self-driving cars.

1

In this dissertation, we focus on the intersection of machine learning and

operations research. Specifically, we employ machine learning algorithms to solve

problems that are modeled with the language of operations research. We aim to

provide faster and better solutions to various types of optimization problems by

integrating two unique disciplines. Our motivation is the success of various machine

learning applications in operations research and the potential impact of generating

high-quality solutions fast without a need to craft a special solution methodology.

1.1.1 Machine Learning

Machine learning can be divided into three subfields. Unsupervised learning

focuses on self-discovering important patterns in unlabeled data. Unsupervised

learning examples include k-means clustering, association rule mining, and principal

component analysis. On the other hand, supervised learning algorithms aim to learn a

mapping from inputs to correct outputs using a labeled dataset. Supervised learning

employs a training set to learn, and a test set to independently test its success using

algorithms such as decision trees, support vector machines, and neural networks.

Lastly, reinforcement learning utilizes a different paradigm than unsupervised and

supervised learning. The reinforcement learning agent learns by interacting with the

environment it is in to maximize a cumulative reward, a paradigm similar to how

humans learn.

For the past decade, a subfield of machine learning called deep learning has

dominated the landscape of artificial intelligence fueled by ever-growing computa-

tional power and big data technologies. Some of the most well-known success includes

surpassing human-level accuracy in image recognition (He et al., 2015a), generating

realistic-looking superficial images (Karras et al., 2018), and developing accurate

neural machine translation models (Wu et al., 2016). Deep learning uses artificial

neural networks inspired by the workings of animal brains and biological neural

2

networks. One of the early works on neural networks is the invention of perceptron

by Rosenblatt (1957) and the development of multilayer perceptron, which consists

of two or more layers of artificial neural networks. Each neuron or node in each

layer uses a nonlinear activation function, and its parameters are updated based on a

technique called backpropagation. After going through several so-called winters where

the interest in the research has slowed down, the rise of enthusiasm and optimism has

grown since the 1990s and living the spring since 2010.

Derived from perceptrons, recurrent neural networks allow neurons to make

temporal connections and, therefore, can process sequential data. Invented by

Hopfield (1982), recurrent neural networks share memory between time stages that

allow information to flow through the time steps in the sequence, and error is

backpropagated through time. This structure of recurrent neural networks makes

it the perfect candidate for learning sequential tasks such as speech recognition,

language translation, and time series prediction since it can handle variable-length

input sequences. One of the major problems encountered during the training of

recurrent networks is the vanishing gradient problem during backpropagation, which

makes recurrent neural networks inadequate for learning long-term dependencies.

To combat this vulnerability, gated recurrence architectures have been proposed,

and one of them is Long Short-Term Memory (LSTM) developed by Hochreiter

and Schmidhuber (1997). An LSTM unit is called a memory cell and controls

the flow of information with an input gate, an output gate, and a forget gate.

During the last decade, LSTM has been used within different neural architectures

and achieved tremendous results in various domains such as music composition (Eck

and Schmidhuber, 2002), sentiment analysis (Tang et al., 2015), and drug design

(Gupta et al., 2018).

Sequence-to-sequence learning was another course of study that thrived in the

last decade. Some of these architectures have used the LSTM cell as their computing

3

unit and were initially developed for neural machine translation. They are considered

to be the natural choice for sequential learning because, unlike classical multilayer

perceptrons, they can handle variable input and output sizes. Also, unlike deep

recurrent neural networks, the decision made at the previous time can be an input

to prediction at the current time. In Chapters 2, 3, and 5 of this dissertation, we

utilize sequence-to-sequence learning frameworks to predict the solution of operations

research problems. Sutskever et al. (2014) present an encoder-decoder architecture for

neural machine translation and use LSTMs as their computing cell. The encoder is a

recurrent neural network that encodes the input sequence one at a time. The hidden

state at the last time period of the encoder is a fixed dimensional representation of the

input sequence. The decoder is another recurrent neural network that decodes the

output sequence one at a time, starting with the fixed dimensional representation

of the input sequence generated by the encoder. Cho et al. (2014) present a

similar encoder-decoder architecture with the addition of feeding a fixed dimensional

representation of the input sequence to the decoder at each time step. Bahdanau et al.

(2014) introduce a mechanism called attention for encoder-decoder networks. It is a

structure that enables the decoder to selectively focus on the important information

of the encoder during the prediction time. Therefore, the whole output sequence is

not just generated by the fixed dimensional representation, and long sentences can

be better coped with. Luong et al. (2015) present a local attention model with a

modification of the attention mechanics with three different methods to calculate the

attention scores.

Deep reinforcement learning was the other branch of machine learning that

received much attention in the 2010s. In the reinforcement learning paradigm,

an agent interacts with the environment that it is currently in to maximize the

total reward. It is a setting where learning is done by trial and error (Sutton

and Barto, 2018) and aims to find a balance between current and unexplored

4

knowledge. The roots of reinforcement learning can be traced back to dynamic

programming and Bellman equations (Bellman, 1966). The learning environment

in reinforcement learning can be expressed as a Markov decision process, and

traditional solution algorithms use dynamic programming-based techniques to solve

the system (Büyüktahtakın, 2011). One of the key differences between dynamic

programming and reinforcement learning is that while dynamic programming has the

perfect knowledge of the model, including transition dynamics and reward functions,

reinforcement learning learns by interacting with its environment and observing the

transition and reward values over time (Sutton and Barto, 2018). The artificial

intelligence and computer science communities use the term reinforcement learning

to describe the field. The same field is called neuro-dynamic programming in control

theory, and approximate dynamic programming is the terminology in the operation

research community (Powell, 2009). Deep reinforcement learning integrates the

approximation power of neural networks into reinforcement learning to eliminate the

need for a manually designed state space. Therefore, it can handle large state spaces

and generalize to unseen states. In recent years, deep reinforcement learning has

made a significant and promising impact. In a well-known example, AlphaGo is the

first computer program that defeated the human champion in a complex game of Go

where there are 10170 configurations possible (Silver et al., 2016). Its broad range

of applications includes learning robotic actions directly from images (Levine et al.,

2016), optimizing chemical reactions (Zhou et al., 2017), and self-driving (Sallab et al.,

2017).

1.1.2 Machine Learning for Operations Research

The advancements and promising results of machine learning in the last decade have

gained attention from a broad range of disciplines, including operations research.

Operations research and machine learning has been naturally connected through

5

optimization. The idea of using machine learning for combinatorial optimization

problems is not new. Hopfield and Tank (1985) introduce the idea of solving the

traveling salesperson problem using neural networks. The advancements were limited

during the 1990s due to erratic views of the field and hardware limitations (e.g., see

the survey of Smith (1999)). However, the most recent advancements in machine

learning have caused a spark in solving combinatorial optimization with machine

learning.

Vinyals et al. (2015b) propose a novel neural architecture called pointer networks

to solve the traveling salesperson problem by pointing to an input element at each

decoding step. Khalil et al. (2016) propose a machine learning framework for variable

selection for branch-and-bound decisions during the solution of a mixed-integer

program. Khalil et al. (2017b) propose a learning approach to decide at which nodes a

heuristic should be run so that the overall efficiency of the solver is increased. Fischetti

and Fraccaro (2019) train machine learning models to predict the optimal objective

function value for the offshore wind farm layout problem. Oroojlooyjadid et al.

(2019) present a learning framework by employing neural networks to predict optimal

order quantity for the infamous newsvendor problem. Xavier et al. (2021) utilize

several machine learning techniques to predict unnecessary constraints, good starting

solutions, and likely spaces of solutions for a repeatedly solved mixed-integer program.

Bertsimas and Stellato (2021) present a learning-based framework for predicting a

set of integer variables and tight constraints for convex mixed-integer programs.

Anderson et al. (2022) present a novel learning approach by utilizing generative neural

networks to reduce the solution time of the transient gas optimization problem by

60%. Donti et al. (2021) outline a methodology to enforce constraints, which is a

major challenge with deep learning-based approaches.

Abbasi et al. (2020) present a learning-based approach to solving large-scale

stochastic optimization problems by predicting only the first-stage decision variables

6

since they are immediately actionable variables. Bengio et al. (2020) suggest a novel

approach to solving two-stage stochastic programs by predicting a representative

scenario that can ensure the model gives the optimal solution. Wu et al. (2021)

deploy conditional variational autoencoders to solve two-stage stochastic optimization

problems by scenario reduction and objective prediction. Dumouchelle et al. (2022)

present a neural network framework to approximate the expected second-stage cost

and generate a surrogate model that is easier to solve than the extended two-stage

formulation. Larsen et al. (2022b) present a learning framework using multilayer

perceptrons to predict expected second-stage decisions under imperfect information.

Bello et al. (2016) present a novel framework for solving the traveling salesperson

problem with reinforcement learning. Khalil et al. (2017a) propose a reinforcement

learning framework to solve optimization problems over graphs. Nazari et al. (2018)

develop a reinforcement learning methodology and a novel neural architecture based

on pointer networks to solve the vehicle routing problem. Kool et al. (2018) present a

novel reinforcement learning approach using a neural architecture called transformers

to solve the vehicle routing problem. Deudon et al. (2018) focus on using a multi-

head attention mechanism together with a reinforcement learning-based approach to

solve the traveling salesperson problem. Lu et al. (2019) integrate heuristics and

reinforcement learning to iteratively improve the existing feasible solution. Hubbs

et al. (2020) present detailed results for utilizing reinforcement learning for various

types of optimization problems and an open-source library for further testing. Afshar

et al. (2020) aim to solve a knapsack problem using reinforcement learning with a

state aggregation strategy to reduce the state space of the problem. Li et al. (2021)

present a reinforcement learning methodology to solve multiobjective optimization

problems by a decomposing and parameter transferring strategy.

As previously noted, the literature on the intersection of machine learning and

operations research is growing rapidly. Bengio et al. (2021) review the most recent

7

advances in the field of solving combinatorial optimization with machine learning,

and Mazyavkina et al. (2021) review the same subject with a focus on reinforcement

learning in particular.

1.1.3 Operations Research

This dissertation explores supervised learning and reinforcement learning method-

ologies to solve traditional operations research problems. One of those problems is the

capacitated lot-sizing problem. This NP-hard problem is one of the most important

and difficult problems in production planning and often arises in the production,

medical, and chemical industries (Karimi et al., 2003). The objective of the problem

is the minimization of the sum of production, setup, and inventory holding cost while

satisfying the demand without exceeding production capacity. It can be a single-item

problem or a much more complex multi-item problem (Karimi et al., 2003). The

problem is well-studied in operations research, and the traditional solution algorithms

include dynamic programming (Florian et al., 1980), generating valid inequalities

(Barany et al., 1984), variable redefinition (Eppen and Martin, 1987), and cutting

planes (Hartman et al., 2010; Büyüktahtakın et al., 2018b). Another problem that

we are attempting to solve using machine learning algorithms is a multi-stage version

of the knapsack problem. In this version, the stability of the solution through time is

important. The problem considered is NP-Hard and can be applied in many settings,

including computing capacity management in data centers, where the resource prices

vary over time (Bampis et al., 2022).

Stochastic optimization is a mathematical modeling framework for problems

involving uncertainty. Different from deterministic programming, some or all

parameters of the problem are uncertain at the time of decision-making. The

discipline can be considered at the intersection of operations research, mathematics,

probability, and statistics (Birge and Louveaux, 2011). Since it enables uncertainty

8

to be modeled into the decision-making, stochastic programming is very popular

in a broad range of real-world applications, including water resources management

(Huang and Loucks, 2000), financial planning (Mulvey and Shetty, 2004), and

electricity procurement (Carrión et al., 2007). One of the most common examples of

stochastic programs is the two-stage stochastic programming, originated by Dantzig

(1955). In such a setting, the decisions are made sequentially in two stages,

and uncertainty is observed between stages. Usually, the problem’s objective is

to minimize the first-stage and expected second-stage costs. The uncertainty is

generally modeled by a finite set of realizations called scenarios. Such problems

are usually considered to be hard with three levels of difficulty (Ahmed, 2010):

Firstly, evaluating the second-stage cost for a particular scenario given first-stage

decisions; secondly, evaluation of the expected cost of the second stage given first-stage

decisions; and lastly, minimization of the expected second-stage cost. The solution

approaches include the L-shaped method (Van Slyke and Wets, 1969), regularized

decomposition (Ruszczyński, 1986), and multicut algorithm (Birge and Louveaux,

1988). Multi-stage stochastic programming is an extension of two-stage stochastic

programs to multi-stage settings but is considered harder to solve (Birge and

Louveaux, 2011). The uncertainty is characterized by a scenario tree, and the solution

methodologies include nested decomposition (Ho and Manne, 1974) and L-shaped

method (Louveaux, 1980).

1.2 Motivation

In many practical applications, operations research problems are solved repeatedly.

Usually, problems with the same structures are solved repeatedly with slightly

changing parameters belonging to the same or different distributions. In this

dissertation, we focus on reducing the solution times of sequential decision-making

problems. Two or multi-stage problems materialize in many industrial applications.

9

Such cases of repeatedly-solved problems commonly arise in operations planning and

management, including finance, energy demand-side management, airline scheduling,

and vehicle routing. When solving similarly-structured problems frequently, decision-

makers can benefit significantly from a fast solution approach that can significantly

reduce the solution time. Therefore, we are motivated to address this broad category

of sequential problems to reduce the solution times with learning-based methodologies

when they are needed to be solved frequently. For example, the airline industry

frequently observes disruptions to their planned schedule and can benefit from

fast solutions to aircraft and crew scheduling problems. One option to achieve

that can be a problem-specific solution algorithm, such as a heuristic designed by

an analytics professional. However, this can be time and resource-consuming for

the problem owner. Additionally, depending on the proposed solution, a new or

adapted solution might be required when the problem description changes. That

can trigger a time-consuming makeover or a costly overhaul. We are motivated by

these circumstances that can disrupt or restrict business flow and aspire to eliminate

or reduce the need for crafting problem-specific solution algorithms. Therefore, we

look at the second option and focus on using learning-based frameworks to generate

solutions in a fast manner. By doing so, we hope to generate high-quality solutions

in a fast manner.

We illustrate the results of our learning-based frameworks through well-known

problems: lot-sizing and knapsack. The mentioned problems are utilized highly

in many industries, including traditional mining (Samavati et al., 2017), crypto

mining (Monem et al., 2022), advertising (Hao et al., 2020), agriculture (Cobuloglu

and Büyüktahtakın, 2015b; Boonmee and Sethanan, 2016), ecological conservation

(Büyüktahtakın et al., 2011; Kıbış and Büyüktahtakın, 2017; Onal et al., 2020),

and logistics (Bruno et al., 2014). Therefore, demonstrating our methodologies

through such practical problems is a motivating force for us due to its potential

10

impact. For example, the knapsack problem is at the core of all budget-constrained

resource allocation problems, with applications arising from agriculture and energy

(Cobuloglu and Büyüktahtakın, 2014, 2015a, 2017; Kantas et al., 2015), capital

asset management (Büyüktahtakın et al., 2014b; Büyüktahtakın and Hartman, 2016;

Liu et al., 2021), healthcare (Bushaj et al., 2022b; Coşgun and Büyüktahtakın,

2018; Kıbış and Büyüktahtakın, 2019; Yin et al., 2023), and ecological conservation

(Büyüktahtakın et al., 2011, 2014a; Büyüktahtakin et al., 2014; Büyüktahtakın et al.,

2015; Büyüktahtakın and Haight, 2018). Moreover, lot-sizing and its variations are

fundamental for numerous applications in carbon tax regulations (He et al., 2015b;

Lamba et al., 2019), semiconductor manufacturing (Quadt and Kuhn, 2005; Xiao

et al., 2015), energy systems (Wichmann et al., 2019), dairy production (Kopanos

et al., 2010), and supply chains (Kaminsky and Simchi-Levi, 2003; Pan et al.,

2009). Therefore, practical solutions to the knapsack and lot-sizing problems could

provide a tremendous impact in solving combinatorial optimization problems in many

industrial, business, and social settings. Throughout the dissertation, we work with

the different versions of the mentioned optimization problems that include single item,

multiple items, different numbers of dimensions, and varying levels of uncertainty to

show our proposed learning-based solutions can be utilized for business problems.

Uncertainty is crucial in decision-making. Accounting for it can result in

better capturing of real-world problems and therefore generate better solutions.

However, this task can be challenging. First, the uncertainty often is not easily

quantifiable. However, scenario-based two or multi-stage stochastic programs can

be utilized for this task. Such modeling language is commonly utilized in airline

revenue management, capacity planning, epidemic control planning, and risk-averse

optimization. Second, it can be even harder to solve such problems due to

their substantial size. Stochastic programming is powerful at modeling real-world

problems, but stochastic programs are quite challenging and time-consuming to solve,

11

especially when modeled with binary variables. Therefore, they are not often suitable

for practical applications that are solved commonly, or a speedy solution is needed

unless a special solution methodology is developed. We are encouraged by the vast

applicability of scenario-based problems and motivated to reduce their solution times.

In general, supervised learning algorithms operate like a function that maps

inputs to outputs. In this case, the input is the problem parameters, and the output

is the optimal solution. Even though learners can be trained to learn such pairs,

the predicted solutions might not satisfy the problem requirements of mathematical

optimization. Even with a slight wrong prediction of optimal decision variables,

problems can easily become infeasible and unimplementable. Therefore, we are

inspired by this complex challenge and motivated to develop methodologies that

can ensure the feasibility of predictions. Furthermore, scenario-based multi-stage

problems require a very strict property of non-anticipativity. This property ensures

the decisions up to a certain point should be the same for scenarios that share

uncertainty up until that point. In short, non-anticipativity is a key feature in the

execution of decisions. Hence, we are motivated to certify that our predictions follow

this property.

Even though some advancements have been achieved with newly developed

architectures and algorithms, a research gap still exists in integrating recent progress

in machine learning and traditional optimization solvers like CPLEX or Gurobi.

Such integration can enhance to performance of both tools and eliminate or

reduce the drawbacks of using one of them. By integrating both branches of

knowledge, a powerful tool can be constructed to achieve fast and good solutions.

Furthermore, introducing the heuristics to this picture can further increase the

chance of an improved methodology and enhance the solution by capturing knowledge

about problem characteristics. This powerful potential inspires us to pursue this

collaboration.

12

Additionally, many learning algorithms have the potential to generalize to

different types of instances. If generalization can be established, learning from

easier instances to solve harder instances can be highly beneficial for three reasons.

First, generating training instances can be cumbersome. Supervised learning requires

optimal solutions to problems for learning. Specifically, neural networks are known

for their large amounts of data requirements. Solving millions of hard instances

can be impractical or intractable. Therefore, generating training data using easier

instances can ease the computational requirements for the training dataset. Second,

model training time can be reduced significantly if the model can learn from

small-sized problems. Neural networks can be challenging to train and require

computationally-demanding hyperparameter optimization. When a model is trained

using a small-sized dataset, there will be simply fewer data and fewer operations.

Therefore, the model training will be faster, which can make a meaningful impact

during the overall training paradigm. Third, many applications can require a certain

amount of flexibility. The trained model and its performance should be robust to

perturbations in the distributions of the input data. Also, the models should be

robust to changes in the number of stages, items, scenarios, and other problem

dimensions. Otherwise, training models from scratch at each slight change would

be impractical. While generalization can be challenging, the mentioned benefits can

provide tremendous advantages. Therefore, such potential promise motivates us to

pursue generalization in various dimensions.

As mentioned in the previous section, there has been a significant increase in

the literature on using machine learning for operations research. Encouraging results

have been achieved in solving various types of problems, including knapsack, vehicle

routing, and traveling salesperson problems. However, there is still a gap exists in

learning-based frameworks. We are motivated by the promising advancements in

supervised and reinforcement learning for sequential optimization problems.

13

1.3 Summary of Research Objectives and Contributions

This dissertation aims to develop novel methodologies for solving combinatorial

and stochastic optimization problems by exploring and developing state-of-the-art

machine learning algorithms. Also, we integrate the learning paradigm into the

preexisting and computationally-advanced mathematical solver to harness the power

of both domains.

The research objective in Chapter 2 is to present an LSTM-based optimization

approach to solve sequential decision-making problems. The decisions are highly

interrelated between the problem periods. Therefore, a machine learning approach

that considers sequential dependency, like LSTM, is used. Our goal is to reduce

the solution time when numerous similar problems are solved repeatedly. To our

knowledge, this study is the first to use LSTM to predict a binary variable for

the lot-sizing problem and partially utilizes predictions when solving the problem

with CPLEX to reduce the solution times. We compare our LSTM-Optimization

framework with logistic regression and random forest to show that LSTMs can capture

sequential dependency. We compare our framework with traditional operations

research approaches, including dynamic programming (Florian et al., 1980), dynamic

programming-based inequalities (Hartman et al., 2010), and (`,S) inequalities (Barany

et al., 1984), and show that even though those exact approaches may reduce the

solution times, they are not able to find solutions very fast. We define metrics to

measure the efficiency of algorithms in terms of feasibility and optimality. To increase

the feasibility of the solutions, we propose to use predictions partially with CPLEX.

The trained models can reduce the solution times by an order of magnitude for the

instances with the same distribution. Moreover, we test the generalization properties

of our framework and report that a model trained with smaller periods can be used

to predict instances with a large number of periods to achieve a significant time gain.

For example, the average solution time of 70 CPU hours can be reduced to only 2

14

minutes with a 0.8% optimality gap without an infeasible solution. Our framework

can be used in settings where practical and recurring sequential decision-making

problems with similar structures are solved, such as power generation scheduling,

energy demand-side management, and pricing optimization. The work based on this

chapter is under review in Yilmaz and Büyüktahtakın (2022b).

The objective of the study presented in the third chapter is to reduce the solution

times while guaranteeing the feasibility of the solutions when solving sequential

decision-making problems. The presented framework improves on the one presented

in Chapter 2 by developing an encoder-decoder model with sliding attention windows

to specifically expand in the time dimension. To our knowledge, this is the first

study that develops an encoder-decoder model to predict multi-period optimization

problems and use the predictions within a mathematical solver. Our approach

employs a local attention window to capture problem dynamics over a long planning

horizon. This structure enables the model to selectively focus on a few nearby periods

near the current decision period. Furthermore, the proposed framework can learn

from instances with a small number of periods and generate high-quality solutions

for problems that have a large number of periods. Additionally, we present an

item-wise expansion algorithm to expand the model’s predictive capabilities in the

item dimension. This algorithm enables the model to learn from problems with a

few items and predict the problems with a much larger set of items. Therefore,

a significant time gain in training set generation and training time is achieved

without sacrificing the solution quality. We propose a novel methodology to tackle

the challenge of infeasible predictions. In this approach, we iteratively reduce the

prediction level used during the solution of the problem until a feasible solution is

found. For this reason, we generate a relaxation of the problem using a trained neural

network to significantly reduce the feasibility checking time. We present the results

of our framework on two fundamental operations research problems: Multi-item

15

Capacitated Lot-Sizing Problem and Multi-stage Knapsack Problem. We generate

benchmark instances and compare the solution quality of our prediction-optimization

framework with commercial solver, heuristics, and (`,S) inequalities of (Barany et al.,

1984). The results show that the framework can generate all-feasible solutions and

reduce the solution time by a factor of 7,236 with an optimality gap of only 0.11%.

Also, the item-wise expansion algorithm allows the trained model to predict instances

that have 10 times more items than they are trained with. The presented framework

outperforms the utilized heuristics in terms of both solution time and quality. Our

framework can be utilized to solve problems with similar structures repeatedly to

achieve noteworthy reductions in solutions time with a generalization potential in

both time and item dimensions. The work based on Chapter 3 is under review in

Yilmaz and Büyüktahtakın (2022a).

In Chapter 4, we aim to develop a deep reinforcement learning-based framework

to solve scenario-based two-stage stochastic programming problems to reduce the

solution times. In recent years reinforcement learning has been used to generate

impressive results, including operations research. However, there is still a lack of

novel methodologies to solve various types of operations research problems, including

scenario-based stochastic programs. To the best of our knowledge, this is the first

study that utilizes deep reinforcement learning to solve scenario-based two-stage

stochastic programs with a stage-based learning strategy. We are motivated by

the broad range of applications of two-stage problems and the promising results of

reinforcement learning. Our methodology involves training two different learners for

each stage of the problem, in which both learners are trained based on the actor-critic

paradigm. Specifically, Agent 1 is utilized to solve the first stage of the problem while

Agent 2 generates the second-stage solution. This provides high levels of flexibility

with different solutions characteristics of both problem stages. Also, the trained model

can be utilized to solve instances with a different number of scenarios and items. In

16

this framework, we are inspired by cutting plane algorithms in traditional solution

approaches to solve scenario subproblems. Agent 2 is trained before Agent 1 to solve

second-stage subproblems given first-stage decisions. We present a detailed training

algorithm for Agent 2 with a scenario sampling approach to reduce the correlations

during the training. Agent 1 is trained with the feedback of Agent 2 since the

decisions are interconnected through the stages. This feedback is provided with a

novel gradient calculation methodology. We present the detailed training strategy

for Agent 1 and show how the actor and critic networks of Agent 2 are used during

Agent 1 training. We show a comparison of our result with a commercial solver,

state-of-the-art stochastic programming solution methodology, and heuristics. The

results show that solution time can be reduced up to five orders of magnitude with

sufficiently good optimality gaps of around 7%. Considering the vast state and action

space of the problem of interest, the results show a promising direction for generating

fast solutions without expert knowledge.

In Chapter 5, we address a very hard category of operations research problems

known as scenario-based multi-stage stochastic programs. Our aim here is to propose

a framework that can provide a major solution time reduction while maintaining a

good quality solution. In this chapter, we propose a non-anticipative learning-based

prediction-optimization framework for solving scenario-based multi-stage stochastic

programs. In such problems, the property of non-anticipativity is crucial to ensure

the implementability of decisions throughout stages. We address the complication of

non-anticipativity by proposing a novel model architecture based on a neural machine

translation system: Non-anticipative Encoder-Decoder with Attention. To the best

of our knowledge, this is the first study that makes use of encoder-decoder models

to solve scenario-based multi-stage stochastic programs by integrating learning,

heuristics, and commercial solver. Also, we suggest training the models on

single-scenario deterministic problems instead of stochastic programs, which would

17

be intractable to solve at large numbers for training purposes. We propose a

framework for solving multi-stage stochastic problems by building on the framework

presented in Chapter 3. We integrate our novel neural network that can handle

non-anticipativity and a general linear programming-based heuristic approach. The

presented framework is designed to tackle any multi-stage problem involving binary

variables by integrating decisions made by learning models, heuristics, and commercial

solvers. We present the results on two sequential combinatorial optimization problems

under uncertainty: stochastic multi-item capacitated lot-sizing and stochastic multi-

stage multi-dimensional knapsack. The results show that the proposed framework

outperforms heuristics, and the solution time can be reduced with a factor of 599 with

a gap of 0.08%. Furthermore, we present an improved item-wise expansion algorithm

that considers prediction variability to solve a broad range of instances with a varying

number of periods, items, and scenarios. Our non-anticipative learning-optimization

approach can be used when similarly structured stochastic programming problems

are solved repeatedly in a fast setting.

1.4 Organization of the Dissertation

The remainder of the dissertation is as follows. Chapter 2 presents the details of the

LSTM-based framework. Chapter 3 describes the developed prediction-optimization

framework to solve two fundamental combinatorial optimization problems based

on encoder-decoder neural network architecture. Chapter 4 presents a new deep

reinforcement learning approach for solving scenario-based two-stage stochastic

programming problems. Chapter 5 introduces a study for solving scenario-based

multi-stage stochastic problems based on a novel attention-based encoder-decoder

neural network. Finally, Chapter 6 outlines the contributions and main findings

together with promising future research directions.

18

CHAPTER 2

LEARNING OPTIMAL SOLUTIONS VIA
AN LSTM-OPTIMIZATION FRAMEWORK

2.1 Introduction

In the recent decade, significant progress has been achieved with the use of machine

learning (ML) in various fields, such as image recognition and natural language

processing. A subfield of ML, deep learning, has inspired much success over the

last decade and has led to a growing interest in research and practice. ML and

operations research (OR) are historically interconnected through optimization, but

only recently the use of ML for OR has received more attention. In this study, we

will focus on this direction. Specifically, we will leverage deep learning algorithms

to predict solutions to an OR problem by taking advantage of previously solved

problems. In various applications in operations planning and management, such as

energy demand-side management, airline scheduling, and vehicle routing, problems

with the same structures must be solved repeatedly with different parameters within

a very short period of time. In such settings, a reduced solution time obtained by

fast algorithms can be highly beneficial for improving the efficiency and performance

of businesses.

One complex and recurring problem for industrial companies is to determine the

amount and timing of production over a planning horizon under resource constraints.

It is an important challenge in industry and supply chain management because a

production plan directly impacts companies’ output and their ability to compete

in operational costs and customer service levels (Gicquel et al., 2008). Production

planning is also a highly complex task because firms strive to optimize multiple

conflicting objectives, such as minimizing production and inventory costs, while

maximizing customer satisfaction under tight constraints on resources, such as budget,

raw materials, and machine availability.

19

In this study, we present a general prediction framework to learn optimal

solutions of combinatorial optimization problems, while focusing on tackling one

core production planning problem: the single-item Capacitated Lot-Sizing Problem

(CLSP). The practical importance of the CLSP is apparent from numerous examples

of its application in various production and manufacturing industries, including but

not limited to the textile industry, oil and gas companies, car manufacturers, and

pharmaceutical industry (Karimi et al., 2003; Gicquel et al., 2008). The CLSP

determines the optimal production and inventory levels that meet periodic demand

under a given production capacity by minimizing the sum of production, setup,

and inventory holding cost over a finite planning horizon. In the mixed-integer

programming (MIP) formulation of the CLSP, the decision of whether to produce or

not is represented by a binary variable. Thus, the CLSP with time-varying capacity

is NP-hard, a very difficult problem to optimize (Bitran and Yanasse, 1982; Hartman

et al., 2010). In this research, we focus on tackling the computational difficulty of the

CLSP and provide an ML-based optimization framework to solve its MIP formulation

more efficiently. Thus, we study the CLSP at a high formulation level rather than

focusing on a specific real-life application.

The CLSP is a sequential decision-making problem because, in each time

period, the production level is determined to meet the periodic demand, and any

additional produced items not used for current demand are placed in inventory to be

used for future demand. Therefore, demand, capacity, cost inputs, and production

decisions constitute highly correlated temporal sequences that the classical supervised

classification might not capture. Thus, the CLSP can be treated as a sequence labeling

task where a recurrent neural network (RNN) is applicable.

The RNN is a specialized type of neural network that can process sequential

data by enabling information flow through various time steps. The neural network

with the same parameters is applied at each time step of the sequence. Input to layer

20

at each time step consists of data at that time step and the network activations from

the previous step. As a result, RNNs allow previous inputs to affect the output rather

than just the current input. Developed by Hochreiter and Schmidhuber (1997), Long

Short-Term Memory (LSTM) is a specialized RNN that can store information for long

time steps, which can be challenging to handle by a classical RNN (Bengio et al.,

1994). Bidirectional RNN (BRNN) allows using input information of future time

steps rather than processing information in sequential order (Schuster and Paliwal,

1997). The main idea is to train two separate RNNs in both time directions that

connect to the same output layer. Bidirectional LSTM is an extension of BRNNs by

using LSTM architecture (Graves and Schmidhuber, 2005). The LSTM architecture

might be preferable to the classical RNN due to its ability to capture long-term

dependencies that come at a computational cost. We train the bidirectional LSTM

network on datasets with different characteristics and evaluate the quality of resulting

predictions in terms of feasibility and optimality. Our computational results show

that a significant reduction in solution time can be achieved without much loss in

feasibility and optimality.

Our main contribution is to develop an LSTM-based framework for learning

optimal solutions to CLSP quickly. We propose using bidirectional LSTM to predict

the binary production decision variable. Bidirectional LSTM can process information

in both time directions, which is critical to predicting solutions to various OR

problems with dynamic nature and where data is available for the planning horizon.

Also, instead of using all the predicted variables, we propose using them partially to

reduce the number of infeasible solutions. We present the results on how the quality

of the predictions changes regarding feasibility and optimality with different levels of

predicted variables. Additionally, we show the results of generalization on instances

with different characteristics and instances with longer time horizons and compare

21

them with those of traditional dynamic programming and cutting plane algorithms

and well-known learning algorithms: logistic regression and random forest.

2.2 Literature Review and Contributions

2.2.1 Literature Review

In recent years, significant results have been achieved in various fields by deep

learning, which is a sub-field of ML. As a result, there has been a growing literature

on the interaction between ML and OR. In this study, we focus on the use of ML

to improve solving OR problems, particularly focusing on the CLSP. The origin of

the interest in using ML algorithms for OR can be traced back to the 1980s when

Neural Computation was used for solving Combinatorial Optimization problems (see,

e.g., the survey of Smith (1999) on this topic). The approaches in the literature

are structured into two parts: approaches that use ML for predicting the solutions

directly from inputs and approaches that predict valuable pieces of information to

utilize in the solution algorithms.

In one of the studies, which focuses on predicting the optimal solution directly,

Larsen et al. (2022b) propose a new methodology to predict solution descriptions of

a stochastic load planning problem using deep learning. According to the authors,

a solution can be described at different levels. The most detailed solution describes

the values taken by each variable, and the least detailed solution gives the value

of the objective function. Their desired level of description is somewhere in the

middle. At the time of the prediction, using a deterministic optimization model is not

possible because the information available is imperfect, and the computational budget

is limited. They generate training data by solving a large number of deterministic

problems offline and combining solutions to the desired level of description at the

prediction time. They train feedforward neural networks using this generated data

and predict the actual problem instances. With a similar approach, Fischetti and

Fraccaro (2019) use various ML techniques, including neural networks, to estimate

22

the optimal value of the offshore wind farm layout optimization problem. Their goal

is to determine the optimal allocation of the wind turbines in a site to maximize

park power production. The authors argue that ML can be used as a fast tool to

estimate the optimal value of the problem for pre-selecting between candidate wind

farm sites. The optimization model can be evaluated at these promising sites instead

of all candidates. Based on their findings, a fast ML+OR tool can dramatically

increase the number of sites and turbine types investigated.

In a recent study, Bertsimas and Stellato (2022) use neural networks to

exploit the repetitive nature of online optimization, where problems with different

parameters are solved frequently. They utilize the structure of mixed-integer

quadratic optimization problems using neural networks to predict the strategy, which

is defined as a tuple of indexes of tight inequality constraints and values of the integer

variables. At the time of prediction, they do not require a solver. They evaluate a

single neural network prediction and a single linear system solution.

Oroojlooyjadid et al. (2019) utilize deep neural networks to determine the

optimal order quantity in the newsvendor problem. They establish an algorithm

that integrates demand forecasting with deciding optimal order quantity rather than

doing both separately. The input data consists of features of demand, and the output

is the optimal order quantities. Additionally, they modify the loss function of the

neural network as the newsvendor objective.

In the group of studies where ML is used to generate vital information to use

in solution algorithms, Khalil et al. (2016) propose an ML framework for strong

branching decisions, leading to significantly smaller search trees. In Khalil et al.

(2017b), authors use ML to decide if a primal heuristic should be run at which nodes

during the branch-and-bound tree search so that the overall performance of the solver

is optimized. The reader is referred to the survey of Lodi and Zarpellon (2017) on

learning algorithms to improve branch-and-bound decisions. Xavier et al. (2021)

23

propose the usage of ML algorithms to improve the computational performance of

MIP solvers by predicting redundant constraints, reasonable initial feasible solutions,

and affine subspaces where the optimal solution is likely to lie. Kruber et al. (2017)

address whether or not a reformulation should be performed and which decomposition

method to choose when several are possible using ML algorithms. Bonami et al. (2018)

suggest a methodology that determines the linearization decision for a mixed-integer

quadratic programming problem.

The CLSP has been widely studied in the OR literature by developing exact

and heuristic algorithms. Florian et al. (1980) provide a solution methodology

based on dynamic programming (DP) for lot-sizing. An exact solution approach

presented by Barany et al. (1984) involves generating valid (`,S) inequalities and

adding them to the formulation with a separation algorithm. Eppen and Martin

(1987) redefine variables to generate a graph representation of the problem which has

a tighter linear relaxation than the original formulation. More recently, DP-based and

partial-objective inequalities have been proposed for the single-item CLSP (Hartman

et al., 2010) and multi-item CLSP (Büyüktahtakın et al., 2018b), respectively. For a

detailed discussion of the exact and heuristic approaches to different versions of the

lot-sizing problem, we refer the readers to the excellent review of Pochet and Wolsey

(2006).

Readers are referred to Goodfellow et al. (2016) for a detailed discussion on

deep learning algorithms. We refer to Graves (2012) for a detailed discussion on

RNN, LSTM, and sequence labeling. Readers are referred to Karimi et al. (2003)

and Pochet and Wolsey (2006) for an extensive survey on the capacitated lot-sizing

problem, their variants, and exact and heuristic approaches for their solution.

There has been a growing interest in using ML algorithms to help solve

OR problems in recent years. Despite all the advancements in the ML-OR

integration, there is still a research gap in learning optimal solutions to MIP problems,

24

including CLSP from previously-solved instances and evaluating the effectiveness and

generalization of the learning-based optimization approach.

2.2.2 Key Contributions of the Study

To our knowledge, none of the former studies have used a deep learning algorithm,

such as LSTM, to capture the sequential nature of CLSP and predict their optimal

solution. Decisions are closely linked over multiple periods in a multi-stage or

sequential problem. Thus, an ML approach that does not consider patterns across

time may not capture the dynamic nature of the problem. The LSTM, on the

other hand, is a recurrent network capable of understanding long and short-term

dependencies and temporal differences in the data of optimal solutions given specific

problem characteristics.

In this study, we present a new deep learning LSTM-Optimization (LSTM-Opt)

architecture to learn the optimal solutions for one of the most famous combinatorial

optimization problems and a classic example of a sequential decision-making problem,

CLSP. Our goal here is to reduce the solution time, where numerous similar CLSP

need to be solved repetitively and in a fast manner with a small optimality gap. Our

specific contributions are described next.

To our knowledge, this is the first study that utilizes an LSTM approach to make

predictions from the optimal solutions of CLSP instances and use those predictions

to solve similar CLSP with different data. Specifically, we propose an LSTM-Opt

framework, which predicts binary decision variables of the CLSP problem. The

bidirectional LSTM learns optimal solutions to sequential decision-making problems

where the input data is available for the planning horizon. We compare the

computational performance of our algorithm with other ML approaches, such as

logistic regression and random forest. We show that the LSTM networks capture the

25

time-wise dependency in sequential decision-making and thus are superior compared

to those ML algorithms.

We evaluate the effectiveness of predictions in terms of their feasibility and

optimality for the original CLSP by defining optimization-based metrics, such as the

optimality gap and the percent of feasibly-predicted instances in the test set. The

use of all predictions could help reduce the solution time but also may increase the

infeasibility in the test set. To improve the feasibility of the solutions, we propose

using the predictions partially as an input into the MIP solver, CPLEX (IBM ILOG,

CPLEX, 2016). This approach provides a significant reduction in solution time

while improving the optimality gap and the feasibility of solutions. To remedy the

infeasibility problem, additional methods, such as the CPLEX user cuts, are utilized

to solve the problem with a reasonable optimality gap with no infeasibility.

We utilize benchmark CLSP instances in the literature to demonstrate the

efficiency of our LSTM-Opt approach. In addition to comparing with direct solutions

of CLSP by CPLEX, we utilize a dynamic programming formulation (Florian et al.,

1980), dynamic programming-based inequalities (Hartman et al., 2010), and (`,S)

inequalities (Barany et al., 1984) to show that the LSTM-Opt can be beneficial

to reduce the solution time even when compared with these traditional exact OR

methodologies proposed for solving the CLSP more efficiently. Our LSTM-Opt

framework helps decrease the CPLEX solution time by multiple orders of magnitude

when predicting CLSP instances. Furthermore, this prediction architecture provides

more time-gain benefits as the CLSP instances get harder, i.e., for the most difficult

test problems that are generated with the same distribution as training instances, the

solution time is reduced by a factor of 13 without any infeasibility or an optimality

gap.

We investigate if the trained LSTM model can predict instances with different

underlying data distributions or instances with a larger planning horizon. The results

26

imply that one must be careful in picking the prediction level to solve instances

with different characteristics. The computational results also show that the trained

LSTM model can successfully predict longer and, thus harder instances without

extra training. As an example, in those generalization experiments to predict longer

planning horizons, using a prediction level of 25%, we have reduced an average solution

time of 70 CPU hours to only 2 CPU minutes with a 0.8% optimality gap, which is

a quite significant computational achievement.

Once an LSTM model is trained from previously solved instances, predictions

to new problems can be generated in milliseconds in an online setting. Thus, our

LSTM-Opt approach could, in particular, be useful for solving practical and recurring

sequential decision-making problems, such as power generation scheduling, energy

demand-side management, and pricing optimization, where the same problem formu-

lations are solved repeatedly over time with updated parameters. Our LSTM-Opt

framework is generalizable since it does not assume any specific information about

CLSP. Thus, it can be applied to other MIPs, such as the Binary Knapsack problem,

one of the most well-known MIP formulations. The Binary Knapsack problem is also

a relaxation of the CLSP.

The remainder of the study is as follows. Section 2.3 presents the MIP

formulation of the CLSP. Section 2.4 describes the proposed LSTM-Opt framework.

Section 2.5 describes the details of implementation and experimentation. Section 2.6

presents the computational results on datasets with different characteristics and a

comparison with other ML and exact approaches. Section 2.7 concludes the chapter

with future research directions. Appendix A.1-A.3 provides a discussion on the LSTM

training time and more results with different datasets and characteristics, respectively.

27

2.3 Capacitated Lot-Sizing Problem

CLSP is a fundamental problem in production planning. The CLSP determines

the production and inventory levels in a multi-period planning horizon to fulfill

the deterministic demand without back-ordering to minimize the sum of production,

setup, and inventory holding costs. The CLSP with time-varying capacity is NP-Hard,

and it has numerous variations and applications in the production and manufacturing

industries (Quadt and Kuhn, 2007).

To formulate the CLSP as an MIP, the following parameters and decision

variables are defined. Let T be the number of periods considered in the planning

horizon. For each period t ∈ {1, 2, . . . , T} demand dt is known in advance. For each

period t ∈ {1, 2, . . . , T} associated costs are unit production cost pt, setup cost ft,

and unit inventory holding cost ht. Note that setup cost ft is not per unit based. For

each period t ∈ {1, 2, . . . , T} production capacity is denoted by ct. Without loss of

generality, all parameters can be assumed to be non-negative. The number of units

produced and ending inventory in period t is represented by non-negative variables xt

and st, respectively. Binary variable yt takes value 1 if there is production in period

t, and takes value 0 otherwise. The CLSP can be formulated as:

min
T∑
t=1

(ptxt + ftyt + htst) (2.1a)

s.t. st−1 + xt − dt = st ∀t = 1, 2, . . . , T (2.1b)

xt ≤ ytct ∀t = 1, 2, . . . , T (2.1c)

xt, st ≥ 0 ∀t = 1, 2, . . . , T (2.1d)

yt ∈ {0, 1} ∀t = 1, 2, . . . , T. (2.1e)

The objective function (2.1a) minimizes the sum of production costs, setup costs, and

inventory holding costs over all periods t ∈ {1, 2, . . . , T}. Constraints (2.1b) ensure

the inventory flow over multiple periods. Specifically, the demand in period t must be

28

satisfied by inventory at the end of period t− 1 and units produced in period t. The

remaining amount is the inventory at the end of period t. Constraints (2.1c) limit

the production by capacity and ensure that a fixed cost of production is incurred in

the objective function if there is production in period t. Constraints (2.1d) enforce

that the amounts of units produced and kept in inventory are non-negative. Finally,

constraints (2.1e) ensure that yt are binary variables. The parameter s0 represents

the initial inventory and is assumed to be zero.

2.4 LSTM-Optimization Framework

In this section, we present the LSTM-Opt framework that we develop to predict

the optimal solution of the CLSP. Using the LSTM-Opt framework, we only predict

the binary decision variables yt that correspond to a production decision instead

of predicting all decision variables. As depicted in Figure 2.1, the LSTM-based

framework starts with data generation. The datasets with different characteristics are

constructed according to the data-generation scheme described in Section 2.5.1. The

resulting datasets are divided into three categories involving the training, validation,

and test sets, which consist of 64%, 16%, and 20% of the data, respectively. The

LSTM network parameters are optimized using a training set. This is done by

minimizing a loss function that measures the performance of the model’s predictions

compared to actual values. The binary cross-entropy is a common choice as a

smooth loss function for binary classification because it leads to faster training with

a better generalization performance than the sum of squares error (Bishop, 1995).

The objective function of the CLSP given by Equation (2.1a) is not minimized by

the LSTM network. In the training step, we minimize the binary cross-entropy loss

function given in the following Equation (2.2):

L(y∗, ŷ) = − 1

T
×

T∑
t=1

(y∗t × log(ŷt) + (1− y∗t)× log(1− ŷt)) (2.2)

29

where y∗ represents the optimal values of the binary decision variables, and ŷ

represents predicted values of the binary decision variables of a CLSP instance. The

binary cross-entropy loss function in Equation (2.2) measures the discrepancy between

y∗ and ŷ.

Figure 2.1 LSTM-Opt framework.

The LSTM model consists of several bidirectional LSTM layers that can process

the information in both time directions and an output layer with a sigmoid activation

function. Figure 2.2 shows the flow of information in the forward and backward

layers in bidirectional LSTM. The input layer for LSTM consists of available features

for that period: unit production cost pt, setup cost ft, production capacity ct, and

demand dt for t ∈ {1, 2, . . . , T}. Note that we omitted the holding cost ht because

it is taken as constant. For period t, information is carried from period t − 1 in

the forward layer and used to generate output in period t. In the backward layer,

information is carried from period t+ 1 to period t, and it is used to generate output

together with inputs in period t. The outputs of forward and backward layers are

30

combined to generate prediction ŷt. After each hidden layer, a dropout layer is added

for regularization.

Figure 2.2 Bidirectional LSTM is adapted to represent the CLSP multi-period
structure.

We compare the models with different parameters, using the instances in the

validation set, in a method known as hyperparameter tuning. We then choose the

model with the highest validation accuracy, which is the proportion of the correctly

predicted variables. Note that the validation set is not used to minimize the binary

cross-entropy in Equation (2.2); it is only used to compare LSTM networks with

different hyperparameters, such as learning rate, number of layers, hidden nodes, and

dropout rate. Then for each instance in the test set, a prediction is generated using the

picked model. The framework described does not provide results on the feasibility of

the resulting prediction and how good it is compared to the objective function value.

The resulting predictions are added to problem (2.1) as constraints, and then CLSP

is resolved using CPLEX. The described approach can deliver optimal solutions fast

and accurately without much loss in feasibility and optimality, as demonstrated in

the computational results under Section 2.6.

CLSP is an MIP because of the binary decision variables. Predicting all binary

decision variables and then fixing the predicted values in the MIP formulation (2.1)

makes the problem a linear program, which yields a significant reduction in the

31

solution time. This approach often leads to infeasibility due to its strict nature.

Instead, predicting some of the binary decision variables results in more flexibility

when resolving the problem instance and reduces the number of infeasible problems

while still improving the solution time.

Additionally, the integral nature of the other two decision variables is preserved

by solely predicting the binary variable because once the binary variables are fixed in

the CLSP, it reduces to a linear program (Pochet and Wolsey, 2006). Also, predicting

the binary variable carries an interpretable meaning of the production decision and

its timing. Once the decision of whether to produce or not is determined and fixed

in a period, the MIP solver determines the amount of production and the inventory

levels.

Our integrated ML+OR tool can be beneficial for real-time applications where

problems with different parameters are solved repeatedly. Lot-sizing and its variants

commonly arise in the energy, pharmaceutical, electronics, food, processing, and

consumer goods industries (Copil et al., 2017). After an ML model is trained, it

is not necessary to update the trained model after each prediction. Therefore, once

an ML model is trained, predictions can be achieved in milliseconds by an LSTM

forward pass to solve many CLSP instances in a quite fast manner.

2.5 Implementation and Experimentation

This section presents the CLSP instance generation scheme and the implementation

details of our LSTM-Opt framework. All the codes are written in C++ and Python

to generate CLSP instances and run the LSTM-Opt framework.

2.5.1 CLSP Instance Generation

The training, validation, and testing data were generated by the scheme presented in

Atamtürk and Muñoz (2004). The difficulty of problems was determined by two main

factors: tightness of the capacities with respect to demand and the ratio between setup

32

and holding cost. Following the parameters used in Büyüktahtakın and Liu (2016),

instances are generated from capacity-to-demand ratios c ∈ {3, 5, 8}, setup-to-holding

cost ratios f ∈ {1, 000, 10, 000} and the number of periods T ∈ {90, 120}. The

parameters regarding demand dt, unit production cost pt, production capacity ct, and

setup cost ft are generated from integer uniform distribution with the ranges dt ∈

[1, 600], pt ∈ [1, 5], ct ∈
[
0.7cd̄, 1.1cd̄

]
, ft ∈

[
0.9fh̄, 1.1fh̄

]
, where d̄ = 1

T

(∑T
t=1 dt

)
and h̄ = 1

T

(∑T
t=1 ht

)
, respectively. Unit inventory holding cost ht is set at one at

each period.

For each of the 12 combinations of parameters c, f , and T as described above,

100,000 instances (problems) are generated, resulting in a total of 1,200,000 instances.

All instances are solved using CPLEX. Infeasible problems are eliminated and replaced

by feasible instances by regenerating new instances. The training, validation, and

test set consists of 64,000, 16,000, and 20,000 CLSP instances, respectively, for each

combination of parameters.

2.5.2 LSTM-Opt Implementation Details

Before the training, the data is standardized by subtracting the feature mean and

dividing by the feature standard deviation as a preprocessing step, which is often

practically useful for faster convergence if different inputs have typical values that

differ significantly (LeCun et al., 2012). In the hyperparameter tuning step, we

compared LSTM models with different parameters, such as learning rate, number of

layers, hidden nodes, and dropout rate using the validation set. The values considered

are [2, 6] for the number of hidden layers, [10, 150] for the number of units in hidden

layers, [0.1, 0.5] for the dropout rate, and [0.1, 0.001] for the learning rate. The selected

LSTM model contains three hidden LSTM layers, each with 40 hidden units in each

time direction. Therefore, bidirectional LSTM for each layer has 80 hidden units.

After each LSTM layer, a dropout layer with a drop rate of 0.3 is added to regularize

33

the network. We used Adam optimizer with an initial learning rate of 0.01, which is

an adaptive learning rate optimization algorithm that has been shown to work well

in practice (Kingma and Ba, 2014).

For each instance in the test set, the values of binary variables are predicted.

For each period t ∈ {1, 2, . . . , T}, the LSTM network generates a prediction in the

range of [0, 1] for each yt. The value of max(ŷt, 1− ŷt) for t ∈ {1, 2, . . . , T}, where ŷt

represents the predicted value of the binary variable yt, is calculated and ordered in

decreasing order. Predicted variables are selected up to the desired level, and ŷt is

labeled as 0 or 1 using a cut-off value of 0.5. Those variables can be interpreted as

the ones closest to either zero or one, and thus we are more confident in the LSTM

model’s prediction. Let D ⊆ T be the set of indices of those binary decision variables

predicted and selected using the max(ŷt, 1 − ŷt) function and a pre-set prediction

percentage. Finally, those values are added as a constraint to the original model

(2.1), as shown in the following modified problem (2.3):

min
T∑
t=1

(ptxt + ftyt + htst) (2.3a)

s.t. Constraints (2.1b)− (2.1e) (2.3b)

yt = ŷt ∀t ∈ D. (2.3c)

Problem (2.3) is solved again to assess the quality of the LSTM predictions.

2.6 Computational Results

This section presents results from computational experiments performed using

the LSTM-Opt framework described in Section 2.4 on randomly generated CLSP

instances with various characteristics, as defined in Section 2.5. All experiments are

performed on a computer running Windows 10 Intel i7 with 3.6 GHz GPU and 64 GB

of memory. The CLSP instances are solved with IBM ILOG CPLEX 12.7.1. All of

34

the results regarding the test-set solution times are presented in CPU seconds. The

detailed results for training LSTM models are presented in Appendix A.1.

We solve problem (2.1) instances using the default CPLEX as a benchmark

to compare the performance of our LSTM-Opt framework for solving similar and

different CLSP instances. The test dataset consists of 20,000 CLSP instances for

each combination of the parameters f , T , and c.

As an alternative to solving problem (2.3), where we fix the predicted values in

the CLSP formulation (2.1) as constraints, we utilize two CPLEX solver methods–

AddUserCuts and AddMIPStart methods of CPLEX to eliminate infeasibility as

described below:

• 100(UC): AddUserCuts method of CPLEX, which enable CPLEX to add cuts
into the user cut pool and use the cuts as needed.

• 100(MS): AddMIPStart method of CPLEX, which enable CPLEX to provide
a starting solution to the model with a user cut pool.

2.6.1 Quality of Predictions

Here, we present a number of metrics with their formal definitions that are used to

evaluate the effectiveness of our LSTM-Opt framework. Specifically, those metrics

assess the proposed method to solve optimization instances with respect to the

improvement in the solution time as well as the feasibility and optimality of the

resulting solutions. The following metrics are used in Tables 2.1-2.6 and A.2-A.5:

• timeCPX: Mean solution time of a CLSP instance of the problem (2.1) in CPU
seconds without any predictions using default CPLEX.

• timeML: Mean solution time of the LSTM-Opt framework, including the
prediction generation time by the LSTM model.

• pred(%): Percent of binary variables predicted by the LSTM-Opt framework.

Additionally, we provide the following metrics and their formal definitions and

use a combination of them to present the results:

35

Definition 2.6.1 The solution time factor improvement factor obtained by fixing the

predicted variables as a constraint (or using AddUserCuts and addMIPStart) is given

by:

timeimp =
timeCPX

timeML
. (2.4)

Definition 2.6.2 The percent solution time gain obtained by fixing the predicted

variables as a constraint (or using AddUserCuts and addMIPStart) is given by:

timegain(%) =
(timeCPX − timeML)

timeCPX
× 100. (2.5)

Definition 2.6.3 The percent infeasibility of a test set resulted from using predicted

binary variables is given by:

inf(%) =
m̂

m
× 100, (2.6)

where m̂ represents the number of CLSP instances that become infeasible by adding

predictions as a constraint and m represents the total number of CLSP instances in

the test set.

Definition 2.6.4 Let (x∗, y∗, s∗) be the optimal solution for the original MIP problem

(2.1) that is obtained by the CPLEX solver and Z(x∗, y∗, s∗) be the corresponding

optimal objective value. Let ŷ be the partial or full prediction of binary variables,

(x̃, ỹ, s̃) be the optimal solution obtained by CPLEX using predictions ŷ in problem

(2.3), and Z(x̃, ỹ, s̃) be the resulting objective function value. Note ỹ is equivalent to

ŷ when a full prediction is made. The optimality gap due to using solutions in our

LSTM-Opt prediction framework is defined over feasibly-solved instances as follows:

optgap(%) =
(Z(x̃, ỹ, s̃)− Z(x∗, y∗, s∗))

Z(x∗, y∗, s∗)
× 100. (2.7)

In the next section, we present computational results to demonstrate the

effectiveness of our prediction-optimization method, using the training and test

instances with the same distribution. The predictions fed into the CPLEX solver

may not be feasible for the CLSP instance. The test set instances for which the

36

LSTM prediction leads to an infeasible solution are not included in the calculations

of timeML, timeimp, timegain(%), and optgap(%).

2.6.2 Predicting Instances with Same Distribution

Each row of Tables 2.1, 2.3, A.2, A.3, A.4, and A.5 presents the averages of 20,000

instances, whereas Tables 2.4, 2.5, and 2.6 present the mean result for 10 instances due

to long solution times for each c value and each f −T pair. Table 2.1 presents results

for instances with T = 120 with f = 10, 000. The dataset of c = 3 is harder than the

dataset with c = 5 and c = 8. Both 25% and 50% prediction levels achieve all-feasible

predictions that do not increase the objective function value. With the 50% prediction

level, the mean solution time decreases by more than 10-fold. As the prediction level

increases, the time factor improvement increases as well. Predictions at the 75% level

reduce the solution time by a factor of 50 with an infeasibility of the test set below

0.3% and without any optimality gap. However, as the prediction levels increases,

predictions lead to more infeasible instances in the test set. At the full prediction

level (pred(%)=100), more than half of the predictions result in infeasible solutions to

problem (2.3); however, the issue of infeasibility is remedied by the CPLEX’s user cuts

approach (AddUserCuts), which eliminates the infeasible solutions in the cut pool.

The user cuts (UC) approach provides a significant solution time factor improvement

of 68 with an optimality gap of over 1% without any infeasibility in the test set. The

detailed results of experiments with f = 10, 000, T = 90 and f = 1, 000, T = 90, 120

are presented in Tables A.2-A.4 in Appendix A.2.

Figure 2.3a-2.3d summarize the results with the optgap(%), inf(%), and timeimp

for changing c for instances with T = 90, 120 and f = 1, 000, 10, 000. Figure 2.3a-2.3d

show that as the level of predicted variables increases, the time improvement also

increases at the price of an increased optimality gap and infeasibility in the test

set. The problems are harder when c = 3 (f = 10, 000) compared to c = 8 (f =

37

Table 2.1 Summary of Experiments for f = 10, 000 and T = 120

c pred(%) timeCPX timeML timeimp timegain(%) inf(%) optgap(%)

3 25 22.6 6.9 3 69.3 0.0 0.0

50 1.7 13 92.5 0.0 0.0

75 0.4 50 98.0 0.3 0.0

85 0.3 84 98.8 1.7 0.1

90 0.2 94 98.9 4.3 0.3

95 0.2 104 99.0 13.5 0.8

100 0.1 208 99.5 57.5 2.1

100(MS) 0.3 68 98.5 0.0 1.3

100(UC) 0.3 68 98.5 0.0 1.3

5 25 3.0 2.1 1 28.7 0.0 0.0

50 1.3 2 56.0 0.0 0.0

75 0.5 6 83.5 0.0 0.0

85 0.3 9 88.6 0.3 0.0

90 0.3 11 90.7 0.8 0.1

95 0.2 12 91.6 3.0 0.2

100 0.1 33 97.0 24.0 1.7

100(MS) 2.8 1 8.4 0.0 0.0

100(UC) 0.3 9 89.2 0.0 0.7

8 25 1.4 1.0 1 29.4 0.0 0.0

50 0.6 2 56.7 0.0 0.0

75 0.4 3 69.9 0.0 0.0

85 0.4 4 72.7 0.1 0.0

90 0.3 4 77.5 0.1 0.0

95 0.3 5 81.3 0.4 0.0

100 0.1 17 94.1 5.4 1.1

100(MS) 1.3 1 10.1 0.0 0.0

100(UC) 0.3 4 77.6 0.0 0.4

38

1, 000) for the same T . Predicting at lower levels provides good results for harder

problems with significant time improvement without causing much optimality gap

and infeasibility, e.g., a time improvement factor of 13 is achieved with the 50%

prediction level without any infeasibility or optimality gap for instances with c = 3,

T = 120, and f = 10, 000 (Figure 2.3d). The time improvement factor is the highest

when using the 100% prediction. For instances with f = 1, 000, the full (100%)

prediction results in less than a 1.5% infeasibility. However, it could provide high

levels of infeasibility in the test set for harder problems with f = 10, 000. On the

other hand, the 50% prediction level provides over a time factor improvement of 3 and

reduces the infeasibility to 0.01% and the optimality gap to zero (Figure 2.3b). When

f = 1, 000, time improvement increases significantly with the level of prediction, but

the increase in the optimality gap and infeasibility is much less than the counterpart

instances with f = 10, 000, e.g., an infeasibility of 0.4% and optimality gap of zero is

obtained for instances with c = 5, T = 90, and f = 1, 000 compared to an infeasibility

of 23.3% and optimality gap of 1.2% is observed for instances with c = 5, T = 90,

and f = 10, 000, using full predictions.

Figure 2.4a-2.4d show averages for changing c, f , and T , and the overall

average. As the value of c increases, the optimality gap, infeasibility, and time

improvement generally decrease (Figure 2.4a). Figure 2.4b shows that the value

of f has a significant impact on results. The optimality gap and infeasibility are

significantly lower when f = 10, 000, with lower-level predictions. Also, the time

factor improvement is significantly greater at all prediction levels when f = 10, 000.

Both the optimality gap and time improvement are slightly higher when T = 120

compared to the instances with T = 90. Figure 2.4d shows that using a prediction

level of around 85% can balance all evaluation metrics by providing a solution time

factor improvement of 9.

39

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0.00

0.05

0.10

op
tg
ap

(%
)

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0.0

0.5

1.0

1.5

in
f(%

)
25 50 75 85 90 95 100 MS UC

predicted(%)

0

1

2

3

tim
ei
m
p

c=3 c=5 c=8

c=3 c=5 c=8

(a) T = 90, f = 1, 000.

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0.0

0.5

1.0

1.5

op
tg
ap

(%
)

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0

20

40

in
f(%

)

25 50 75 85 90 95 100 MS UC
predicted(%)

0

10

20

tim
ei
m
p

c=3 c=5 c=8

c=3 c=5 c=8

(b) T = 90, f = 10, 000.

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0.00

0.05

0.10

op
tg
ap

(%
)

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0.0

0.5

1.0

in
f(%

)

25 50 75 85 90 95 100 MS UC
predicted(%)

0

1

2

3

tim
ei
m
p

c=3 c=5 c=8

c=3 c=5 c=8

(c) T = 120, f = 1, 000.

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0

1

2

op
tg
ap

(%
)

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0

20

40

60

in
f(%

)
25 50 75 85 90 95 100 MS UC

predicted(%)

0

100

200

tim
ei
m
p

c=3 c=5 c=8

c=3 c=5 c=8

(d) T = 120, f = 10, 000.

Figure 2.3 Summary of results with optgap(%), inf(%), and timeimp.

Table 2.2 shows the averages presented in Tables 2.1, A.2, A.3, and A.4 for the

LSTM-Opt 85% prediction level, the 100(MS), and the 100(UC). When f = 1, 000,

both the average infeasibility and the optimality gap are zero with the 85% prediction

level. The UC provides a similar average time improvement without infeasibility.

When f = 10, 000, the average time improvement is around 6 and 27 for the instances

with T = 90 and T = 120, respectively, with the prediction level of 85%. The

infeasibility is slightly higher than the instances with f = 1, 000 since the higher-

level predictions increase percent infeasibility for the harder test instances. The UC

40

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0.0

0.5

1.0

op
tg
ap

(%
)

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0

10

20

in
f(%

)
25 50 75 85 90 95 100 MS UC

predicted(%)

0

20

40

60

tim
ei
m
p

c=3 c=5 c=8

c=3 c=5 c=8

(a) Averages for c.

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0.0

0.5

1.0

op
tg
ap

(%
)

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0

10

20

in
f(%

)

25 50 75 85 90 95 100 MS UC
predicted(%)

0

20

40

tim
ei
m
p

f=1,000 f=10,000

f=1,000 f=10,000

(b) Averages for f .

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0.00

0.25

0.50

0.75

op
tg
ap

(%
)

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0

5

10

15

in
f(%

)

25 50 75 85 90 95 100 MS UC
predicted(%)

0

20

40

tim
ei
m
p

T=90 T=120

T=90 T=120

(c) Averages for T .

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0.00

0.25

0.50

0.75

op
tg
ap

(%
)

25 50 75 85 90 95 10
0

M
S UC

predicted(%)

0

5

10

15

in
f(%

)
25 50 75 85 90 95 100 MS UC

predicted(%)

0

10

20

tim
ei
m
p

(d) Overall averages.

Figure 2.4 Summary of results with different data generation parameters.

remedies the infeasibility problem and improves the solution time with a factor of 6

and 28 and with an optimality gap of around 0.7% and 0.8% for the instances with T =

90 and T = 120, respectively. Also, the UC outperforms the MS in time gain for all

cases. When looking at the overall averages in Table 2.2, the LSTM-Opt predictions

at the 85% level reduce the CPLEX solution time by a factor of 9 on average for over

240,000 test instances with an infeasibility below 0.4% and an optimality gap of less

than 0.05%. The UC provides a similar time gain without any infeasibility and a

slightly higher optimality gap of 0.4% than the 85% level of prediction.

41

Table 2.2 Summary of Averages in Tables 2.1, A.2, A.3, and A.4

f T predicted(%) timeCPX timeML timeimp timegain(%) infeasible(%) optgap(%)

1,000 90 85 0.4 0.3 1 18.3 0.0 0.0

100(MS) 0.3 1 3.1 0.0 0.0

100(UC) 0.3 1 25.5 0.0 0.0

10,000 90 85 1.8 0.3 6 83.3 0.8 0.1

100(MS) 2.1 1 -12.3 0.0 0.0

100(UC) 0.3 6 83.2 0.0 0.7

1,000 120 85 0.4 0.3 1 21.0 0.0 0.0

100(MS) 0.4 1 1.8 0.0 0.0

100(UC) 0.3 1 25.4 0.0 0.0

10,000 120 85 8.8 0.3 27 96.2 0.7 0.1

100(MS) 1.4 6 83.9 0.0 0.4

100(UC) 0.3 28 96.4 0.0 0.8

Avg. 85 2.8 0.3 9 54.7 0.4 0.0

100(MS) 1.1 2 19.1 0.0 0.1

100(UC) 0.3 9 57.6 0.0 0.4

In summary, the level of predictions used to get the best results varies notably

between datasets with different characteristics. This level should be adjusted carefully

considering the trade-off between time gain, infeasibility, and optimality gap. Using

an appropriate level of predicted variables leads to major reductions in solution time

up to an order of magnitude without increasing any infeasibility or optimality gap. It

is beneficial to use lower prediction levels for harder instances and higher prediction

levels for easier instances, but a prediction level of around 85% can be a reasonable

level for all instances considered in this study. Also, the UC outperforms the MS

in terms of providing lower optimality gaps. The UC can also be an alternative to

the approach that uses predictions as constraints because it achieves zero infeasibility

at the cost of a slightly higher optimality gap. As the c, f , and T increase, i.e.,

the instances get harder, and we observe a higher time factor improvement using the

LSTM-Opt framework, highlighting the potential of our approach for solving instances

with varying sizes and distributions, as discussed in the next section.

42

2.6.3 Results on Generalization

Here, we present the results on the generalization of our approach to instances with

a larger planning horizon T . It is not uncommon to have long production planning

periods for industries where daily (even hourly) production planning is necessary,

such as large-scale semiconductor manufacturing, and energy production Uzsoy et al.

(1992); Shrouf and Miragliotta (2015). Results on different data distributions are

presented in Appendix A.3. We omit the results with the MS approach in favor of

UC due to its lack of performance. Generalization is a desired property because it

might be beneficial to train the LSTM model in a relatively small horizon to predict

instances with a larger planning horizon, saving from the training time. Specifically,

the time to train the LSTM model is shorter than the training time for the instance for

which the prediction is made due to the smaller number of model parameters. We also

compare our framework with two other well-known ML algorithms (logistic regression

and random forests) and the state-of-the-art cutting plane algorithms proposed for

the CLSP.

Predicting Instances with Longer Horizons Table 2.3 presents the results for

predicting datasets with longer planning horizons. The predictions for a larger horizon

are generated by concatenating the smaller LSTM predictions obtained by the LSTM

model, which has a shorter planning horizon. For example, in the second block of

rows in Table 2.3, the LSTM model with c = 3, f = 1, 000, and T = 90 is used to

generate predictions for the dataset with the same c and f , and T = 360. Here, four

separate prediction sets, each with 90 periods, are concatenated into a single set of

predictions for generating a prediction for the test set with T = 360.

For those instances, predicting 85% of variables results in a time improvement of

3, with a 0.3% optimality gap and zero infeasibility in the test set of 20,000 instances.

The dataset with c = 5, f = 10, 000, and T = 180 is predicted with the LSTM model

43

trained using instances with the same c and f but a half-length planning horizon

of T = 90, as shown in the third block of rows in Table 2.3. For those instances,

predicting 50% of variables yields a significant time improvement of 9 and all feasible

solutions in the test set at the cost of an optimality gap, which is below 0.5%. The

dataset with c = 8, f = 10, 000, and T = 480 constitutes the hardest instances

presented in Table 2.3 with the mean solution time over 40 seconds and is predicted

using the LSTM model trained with T = 120. Here, we observe significant solution

time factor improvements over CPLEX using our LSTM-Opt framework. Predictions

at the 75% level reduce the CPLEX solution time by a factor of 25 with no infeasibility

and an optimality gap of 1%.

Table 2.4 presents the results for predicting datasets with significantly longer

planning horizons; therefore, the test instances are much harder than the training

instances. The predictions are generated using the model trained with c = 8, f =

10, 000, and T = 120. The test sets for all three datasets consist of 10 instances,

instead of 20,000 as previously presented, due to computational complexity and long

solution times. For the first dataset with T = 600, problems are solved 70 times faster

than the default CPLEX using predictions at the 50% level without any infeasibility

and with an optimality gap below 1%. The mean CPLEX solution time for the next

dataset with T = 720 is more than 8 CPU hours. Here, the solution time of 8 hours

is reduced to under 1 minute, with the predictions used at the 25% level without any

infeasibility and with an optimality gap below 1%. Predictions used at 75% reduce

the solution time by more than four orders of magnitude from more than 8 CPU

hours to 2.5 CPU seconds without infeasibility and with an optimality gap below 2%.

The last test dataset with c = 8, f = 10, 000, and T = 960 constitutes the hardest

instances presented with a mean solution time of over 70 hours using CPLEX at its

default settings. For those instances, predictions at the 25% level reduce the solution

time of 70 CPU hours to only 79 CPU seconds with an optimality gap of 0.8% and

44

Table 2.3 Summary of Generalization Experiments to Test Datasets with Longer
Planning Horizons∗

LSTM Train Test Data pred timeCPX timeML timeimp timegain inf optgap

c f T c f T (%) (%) (%) (%)

3 1,000 90 3 1,000 180 25 0.5 0.5 1 7.6 0.0 0.1

50 0.4 1 20.5 0.0 0.1

75 0.4 1 29.1 0.0 0.2

85 0.4 1 33.3 0.0 0.2

90 0.3 2 38.2 0.0 0.2

95 0.3 2 44.2 0.1 0.2

100 0.1 6 82.4 1.0 0.4

100(UC) 0.3 2 36.2 0.0 0.4

3 1,000 90 3 1,000 360 25 1.2 1.0 1 19.7 0.0 0.1

50 0.7 2 41.6 0.0 0.2

75 0.5 2 59.6 0.0 0.2

85 0.4 3 64.2 0.0 0.3

90 0.4 3 66.4 0.0 0.3

95 0.3 3 71.4 0.2 0.3

100 0.1 12 91.9 1.3 0.5

100(UC) 0.4 3 62.8 0.0 0.5

5 10,000 90 5 10,000 180 25 19.0 6.2 3 67.2 0.0 0.3

50 2.2 9 88.4 0.0 0.5

75 0.7 28 96.4 0.1 0.5

85 0.4 46 97.8 0.3 0.6

90 0.3 59 98.3 0.9 0.7

95 0.2 78 98.7 2.8 0.9

100 0.1 166 99.4 27.5 3.5

100(UC) 0.4 49 98.0 0.0 1.6

8 10,000 120 8 10,000 480 25 42.4 11.6 4 72.7 0.0 0.6

50 4.3 10 89.9 0.0 0.9

75 1.7 25 96.1 0.0 0.9

85 0.8 55 98.2 0.0 0.9

90 0.5 86 98.8 0.1 1.0

95 0.4 112 99.1 0.4 1.0

100 0.1 364 99.7 5.2 2.8

100(UC) 0.6 71 98.6 0.0 1.5
∗Experiments include 20,000 test instances.

45

without any infeasibility. Predictions at the 50% level reduce the solution time by

more than a factor of 16,000, with an optimality gap of 1.2% and zero infeasibility.

Table 2.4 Summary of Generalization Experiments to Test Datasets with Longer
Planning Horizons Continued∗

LSTM Train Test Data pred timeCPX timeML timeimp timegain inf optgap

c f T c f T (%) (%) (%) (%)

8 10,000 120 8 10,000 600 25 409 31.1 13 92.4 0.0 0.6

50 5.8 70 98.6 0.0 0.9

75 2.5 161 99.4 0.0 1.2

85 1.2 343 99.7 0.0 1.5

90 0.9 476 99.8 0.0 1.7

95 0.6 712 99.9 0.0 2.0

100 0.2 1,990 99.9 0.0 3.0

100(UC) 6.0 68 98.5 0.0 1.6

8 10,000 120 8 10,000 720 25 30,038 54.5 552 99.8 0.0 0.9

50 7.2 4,168 100.0 0.0 1.2

75 2.5 12,014 100.0 0.0 1.7

85 1.0 28,888 100.0 0.0 2.1

90 0.8 38,788 100.0 0.0 2.5

95 0.6 51,267 100.0 0.0 3.0

100 0.2 164,035 100.0 10.0 6.4

100(UC) 9.7 3,150 100.0 1.4 2.5

8 10,000 120 8 10,000 960 25 252,186 78.6 3,208 100.0 0.0 0.8

50 15.2 16,543 100.0 0.0 1.2

75 3.1 80,922 100.0 0.0 1.6

85 1.3 199,593 100.0 0.0 2.0

90 0.8 310,612 100.0 0.0 2.3

95 0.6 411,262 100.0 0.0 2.7

100 0.2 1,245,361 100.0 0.0 5.6

100(UC) 14.3 17,678 100.0 0.0 2.3
∗Experiments only include ten test instances due to long solution times.

Generating 100,000 instances for training data with c = 8, f = 10, 000, and

T = 120 takes 140,170 seconds whereas the LSTM training time takes 52,724 seconds.

In this specific example, it can be concluded that generating training data, training

the LSTM model, and resolving with predictions for a single instance takes 16 hours

46

less than solving the instance with CPLEX. For such hard problems, our LSTM-Opt

framework achieves a significant time reduction even in the case where just a single

instance must be solved. The results discussed above highlight that our approach

could be generalizable to predict larger instances with substantial benefits in reducing

the solution time of those hard CLSPs with the cost of a small optimality gap.

2.6.4 Comparison with Other ML and Exact Algorithms

Table 2.5 presents the computational comparison of our LSTM-Opt framework with

two other machine learning approaches that perform a binary classification task and

shows that their prediction quality is not comparable to LSTM-Opt. Additionally, the

comparison with two other exact approaches is presented in Table 2.6 to show that

the LSTM-Opt framework could produce good-quality solutions in much less time

compared to those exact approaches. The machine learning and exact approaches

used to compare with the LSTM-Opt are defined as follows.

ML Approaches:

• Logistic Regression (LR): An extension of linear regression, which is more
interpretable than the tree-based ensemble methods such as random forest at
the cost of accuracy.

• Random Forest (RF): One of the best algorithms for classification tasks
(Fernández-Delgado et al., 2014) in terms of classification accuracy at the cost
of reduced interpretability.

Exact Approaches:

• CPLEX (CPX): Direct solution of the CLSP formulation (2.1a)-(2.1e) with
default CPLEX.

• Dynamic programming-based inequalities (DPineq) of Hartman et al. (2010):
We used the weaklu strategy to create a tighter CLSP polyhedron. The
generated inequalities are added to the formulation (2.1), and the proposed
algorithm is shown to outpace the dynamic programming algorithm by Hartman
et al. (2010) for some cases. In the experiments, we generate cuts for the first
100 periods with c = 3, for the first 75 periods with c = 5, and for the first 50
periods with c = 8 for instances with T = 360 to combat the growing DP-based
inequality generation time with increasing c.

47

• The (`, S) inequalities (LSineq) of Barany et al. (1984): Implemented with a
separation algorithm since the number of (`, S) inequalities grow exponentially.
The separation algorithm is iterated five times which is inclined to give the best
computational achievements (Büyüktahtakın et al., 2018b).

• Dynamic programming (DP) solution approach for CLSP (Hartman et al.,
2010; Florian et al., 1980): Results are omitted from the tables due to lack
of performance. For example, while the mean solution times of c = 3, 5, 8
instances with CPLEX were 22.4, 3.3, and 1.3 seconds, respectively, the dynamic
programming solution times were 610.7, 1054.9, and 1938.8 seconds for the
same first 20 instances presented in Table 2.1. Additionally, the dynamic
programming approach has a complexity of O(TD2

T) where DT =
∑T

t=1 dt. We
do not further include the dynamic programming solution to compare with the
LSTM-Opt framework since CPLEX is superior for the considered instances.

Table 2.5 presents a set of instances that are tested for the comparison of LSTM-

Opt, LR, and RF. Here, we have utilized a different structure to generate our test

instances. For the instances with c = 3, 5, a solution time limit of 86,400 CPU

seconds (24 CPU hours) is set for CPLEX to restrict the solution time. The metrics,

including time improvement, time gain, and optimality gap, are calculated based

on the best solution found by CPLEX within the solution time limit. The IGap =

100×(objCPX−objLP)/objCPX, where objCPX is the objective function value of

the best feasible solution to the original problem and objLP is the objective function

to its linear programming relaxation, is 7.5%, 16.1%, and 27.7% for the instances

with c = 3, 5, and 8, respectively. CPLEX reports an MIP optimality gap of 0.64%,

0.06%, and 0.00% on average for test instances with c = 3, 5, and 8, respectively, with

a one-day time limit. For the same instances with c = 3, 5, our preliminary results

revealed that the test problems were still computationally very expensive to solve

without a time limit with the 25% prediction level. Therefore, the results with the

25% prediction level are omitted from the results in this section.

In Table 2.5, for the c = 3 instances, predictions at the 50% level improve the

solution time by more than a factor of 7,500 by reducing the limited average solution

time from one day to only 12 seconds, without any infeasibility and with an optimality

48

gap of 0.8%. Predictions of more than 50% lead to some infeasibility in the test set,

while the predictions at the 100% level lead to all infeasible predictions, and thus

the corresponding results are presented in a “-” in the first-row block of results in

Table 2.5. For the same instances solved at the 50% prediction level, LR and RF

have caused an infeasibility of 70% and 50%, respectively, since neither considers

sequential dependency like the LSTM networks. The optimality gaps of the feasible

instances were significantly higher than the 0.8% of the LSTM-Opt framework at

1.9% and 2.3%, respectively, for both LR and RF. Also, the time improvements are

not as big as the ones of the LSTM-Opt framework. For the instances with c = 5,

predictions using LSTM-Opt at the 50% level decrease the limited solution time from

1-day to 20 CPU seconds and reduce the solution time by more than a factor of

4,000, including the prediction generation time without any infeasibility and with an

optimality gap of 0.9%. The 85% level with LSTM-Opt reduces the solution time by

five orders of magnitude without infeasibility and with an optimality gap of 2.3%. For

the same prediction level, both the LR ad RF causes all infeasible predictions. The

datasets with c = 8 constitute significantly faster to solve compared to instances with

c = 3, 5, and the results resemble the structure with easier instances. The LR and RF

cause high infeasibility in all prediction levels compared to the LSTM-Opt framework.

Table 2.5 shows that a significant solution time reduction of around four to five orders

of magnitude is achieved by LSTM-Opt without any infeasibility, depending on the

desired optimality gap. We anticipate that the solution time gains would have further

increased if the original solution time was not limited to 24 hours. Additionally, both

the LR and RF cause higher infeasibility, a higher optimality gap, and a lower time

improvement.

Table 2.6 presents a comparison of LSTM-Opt at the 50% prediction level with

two exact approaches, namely (`, S) valid inequalities (LSineq) and DP-based cutting

planes (DPineq). The solution time is limited by 1 hour, including the inequality

49

generation time for both approaches. Here, the time improvement metric has been

calculated with respect to the set solution time of 1-hour. The optimality gap metric

has been calculated with respect to the best integer solution found by the CPLEX

within a 1-day solution time limit. For the c = 3 instances, the LSTM-Opt framework

achieves a 1.6% optimality gap. The objective function value is reduced below the

1-day limited CPLEX solution value with a 1-hour time limit in both formulations

with DP-based and (`, S) inequalities, resulting in a negative optimality gap of -0.01%.

Therefore, both types of inequalities are effective at reducing the optimality gap, but

they cannot solve the CLSP very fast though they speed up the solution for harder

instances of c = 3, 5. Even though the LSTM-Opt framework has an optimality gap

of 0.8%, the solution was found 322 times faster than CPLEX, showing that the

LSTM-Opt can solve those problems very fast. The results with c = 5 show a similar

pattern, and the LSTM-Opt framework has an optimality gap of 0.9% on top of the

CPLEX gap. The results with c = 8 show that the LSTM-Opt framework can achieve

a time improvement of 3 while inequality-based methods increase the solution time

for easier instances.

Figure 2.5a and 2.5b present a summary of the results for the instances presented

in Tables 2.5 and 2.6, for c = 3 and 5, respectively. Both DPineq and LSineq improve

over the CPLEX gap in Figure 2.5a with c = 3 instances. LSTM achieves a solution

with a slightly larger optimality gap much faster than those exact inequality methods

and also is faster than LR and RF with a lower gap. The latter two algorithms

result in high infeasibility of 70% and 50%, respectively, while LSTM-Opt achieves

all-feasible predictions. The results show similarity for the c = 5 instances in Figure

2.5b, with the exception that both exact methods do not improve over the CPLEX

gap or solution time. Even though LR and RF have a higher time improvement than

LSTM-Opt, both lead to high and unpractical infeasibility rates of 60% and 40%,

respectively.

50

T
ab

le
2.
5

C
om

pu
ta
ti
on

al
R
es
ul
ts

fo
r
C
om

pa
ri
ng

LS
T
M
-O

pt
w
it
h
O
th
er

M
ac
hi
ne

Le
ar
ni
ng

A
lg
or
it
hm

s∗

Tr
ai
n

Te
st

pr
ed

ti
m
eC

P
X

ti
m
e

ti
m
ei
m
p

in
f(
%
)

op
tg
ap

(%
)

ti
m
e

ti
m
ei
m
p

in
f(
%
)

op
tg
ap

(%
)

ti
m
e

ti
m
ei
m
p

in
f(
%
)

op
tg
ap

(%
)

c
f

T
T

(%
)

LS
T
M
-O

pt
LR

R
F

3
10

,0
00

90
36

0
50

86
,4
15

11
.3

7,
67

5
0.
0

0.
8

42
.7

2,
02

4
70

.0
1.
9

76
.6

1,
12

9
50

.0
2.
3

75
1.
4

63
,1
89

10
.0

2.
0

0.
6

14
6,
45

9
90

.0
17

.3
-

-
10

0.
0

-

85
0.
6

13
9,
04

2
20

.0
2.
9

-
-

10
0.
0

-
-

-
10

0.
0

-

90
0.
5

15
9,
64

7
30

.0
3.
6

-
-

10
0.
0

-
-

-
10

0.
0

-

95
0.
4

19
3,
40

3
50

.0
4.
5

-
-

10
0.
0

-
-

-
10

0.
0

-

10
0

-
-

10
0.
0

-
-

-
10

0.
0

-
-

-
10

0.
0

-

5
10

,0
00

90
36

0
50

86
,7
63

20
.4

4,
25

3
0.
0

0.
9

8.
2

10
,5
52

60
.0

1.
4

13
.4

6,
49

1
40

.0
1.
9

75
2.
5

34
,3
71

0.
0

1.
6

0.
7

12
4,
88

3
80

.0
25

.8
0.
6

14
5,
41

5
90

.0
24

.2

85
0.
8

10
2,
72

7
0.
0

2.
3

-
-

10
0.
0

-
-

-
10

0.
0

-

90
0.
7

11
8,
18

9
0.
0

2.
7

-
-

10
0.
0

-
-

-
10

0.
0

-

95
0.
5

19
0,
86

5
10

.0
3.
3

-
-

10
0.
0

-
-

-
10

0.
0

-

10
0

0.
2

41
6,
68

0
60

.0
14

.2
-

-
10

0.
0

-
-

-
10

0.
0

-

8
10

,0
00

90
36

0
50

7.
5

2.
6

3
0.
0

1.
6

3.
2

2
40

.0
0.
5

3.
1

2
30

.0
1.
0

75
1.
0

8
10

.0
1.
9

0.
7

8
80

.0
14

.3
0.
7

8
90

.0
22

.5

85
0.
7

11
10

.0
2.
2

0.
4

14
90

.0
11

1.
1

-
-

10
0.
0

-

90
0.
6

13
20

.0
2.
4

-
-

10
0.
0

-
-

-
10

0.
0

-

95
0.
5

16
20

.0
2.
8

-
-

10
0.
0

-
-

-
10

0.
0

-

10
0

0.
2

38
20

.0
3.
8

-
-

10
0.
0

-
-

-
10

0.
0

-
∗ E

xp
er

im
en

ts
on

ly
in

cl
ud

e
te

n
te

st
in

st
an

ce
s

du
e

to
lo

ng
so

lu
ti

on
ti

m
es

.

51

T
ab

le
2.
6

C
om

pu
ta
ti
on

al
R
es
ul
ts

fo
r
C
om

pa
ri
ng

LS
T
M
-O

pt
w
it
h
D
iff
er
en
t
E
xa

ct
M
et
ho

ds
∗

Tr
ai
n

Te
st

pr
ed

in
f

ti
m
e

ti
m
ei
m
p

op
tg
a
p(

%
)

c
f

T
T

(%
)

C
P
X

D
pi
ne
q

LS
in
eq

LS
T
M
-O

pt
D
pi
ne
q

LS
in
eq

LS
T
M
-O

pt
C
P
X

D
pi
ne
q

LS
in
eq

LS
T
M
-O

pt

3
10
,0
00

90
36
0

50
0.
0

3,
60
2

3,
60
9

3,
60
2

11
.2

1
1

32
2

0.
03

-0
.1

-0
.1

0.
8

5
10
,0
00

90
36
0

50
0.
0

3,
60
2

3,
42
1

3,
60
0

20
.3

1
1

17
7

0.
05

0.
0

0.
0

0.
9

8
10
,0
00

90
36
0

50
0.
0

7.
5

72
0

14
6

2.
5

0
0

3
0.
00

0.
0

0.
0

1.
6

∗ E
xp

er
im

en
ts

on
ly

in
cl

ud
e

te
n

te
st

in
st

an
ce

s
an

d
lim

it
ed

w
it

h
1-

ho
ur

ti
m

e
lim

it
du

e
to

lo
ng

so
lu

ti
on

ti
m

es
.

52

CP
X LS DP

LST
M LR RF

Methodology

0

100

200

300

tim
ei
m
p

in
f:
0%

in
f:
70

%

in
f:
50

%

0

1

2

op
tg
ap
(%

)

(a) Instances with c = 3, f = 10, 000,

and T = 360.

CP
X LS DP

LST
M LR RF

Methodology

0

100

200

300

400

tim
ei
m
p

in
f:
0% in
f:
60

%

in
f:
40

%

0.0

0.8

1.6

op
tg
ap
(%

)

(b) Instances with c = 5, f = 10, 000,

and T = 360.

Figure 2.5 Comparison of exact and ML algorithms.

2.6.5 Summary of Results

The results presented on generalization experiments show that a network trained on

a smaller planning horizon can be used to successfully predict the optimal solutions of

the instances with larger horizons without any additional training. The solution time

can be reduced up to six orders of magnitude without increasing the optimality gap

or infeasibility much, especially in harder problems. Also, LSTM-Opt can capture

sequential dependencies while LR and RF cannot. Classical exact approaches cannot

produce very fast solutions like the LSTM-Opt.

Figure 2.6a-2.6f present the results for datasets for longer planning horizons.

The results for T = 360 in Figure 2.6a are similar to dataset where LSTM model

is trained with c = 3, f = 1, 000, and T = 90, as shown in Figure 2.3a. For the

dataset with c = 8, f = 10, 000, and T = 720 in Figure 2.6c, using predictions at

the 50% level reduces the solution time from more than 8 hours to under 8 seconds

without any infeasibility and with an optimality gap of 1.2%. Figure 2.6d constitutes

the instances with the longest solution times. The instances with c = 8, f = 10, 000,

and T = 960 have a mean solution time over 70 hours. Predictions at the 25% and

50% levels reduce the solution time of those instances by more than a factor of 3,000

53

and 16,000 with an optimality gap of 0.8% and 1.2%, without any infeasibility in the

test set, respectively.

Overall averages in Table 2.4 show that the solution time can be decreased with

a factor of more than 9,000, with an infeasibility in the test set of only 0.5% and an

optimality gap of approximately 2.1%. The UC reduces the solution time by more

than a factor of 90,000 on average without infeasibility in the test set and an average

optimality gap of around 3.5%. Overall, predictions at the levels between 25% and

85% provide significant time improvements with less than a 1% optimality gap and

without any infeasibility in the test set. Specifically, predictions at the 85% level can

balance a high solution time factor improvement with infeasibility and optimality gap

at reasonable levels when predicting for longer periods using the LSTM model trained

with instances of shorter and, thus easier instances.

2.7 Conclusions and Future Work

In this study, we present a new LSTM-Opt framework to predict the optimal

solution of the CLSP, a fundamental production planning problem in various industry

settings. Our ML approach could be beneficial in reducing the solution time for many

practical problems that are solved repeatedly with different parameters. We utilize

bidirectional LSTMs to process information in both time directions. The metrics,

defined as time factor improvement, infeasibility, and optimality gap, are presented

to assess the quality of the predictions. The results for the CLSP instances with the

same characteristics show that a time factor improvement of more than an order of

magnitude can be achieved without much loss in feasibility or the optimality gap if the

level of predictions used to solve the problem is well adjusted. Also, we tested if the

trained LSTM models could generalize to instances with different data distributions

or longer planning horizons. The results show that one should be careful in selecting

the prediction level for predicting instances with different data distributions. The

LSTM models trained on shorter planning horizons achieve great success in predicting

54

25 50 75 85 90 95 10
0 UC

predicted(%)

0.2

0.4

op
tg
ap

(%
)

25 50 75 85 90 95 10
0 UC

predicted(%)

0.0

0.5

1.0

in
f(%

)
25 50 75 85 90 95 100 UC

predicted(%)

0

5

10

tim
ei
m
p

(a) LSTM trained with c = 3, f = 1, 000,
T = 90 predicts c = 3, f = 1, 000, T =
360.

25 50 75 85 90 95 10
0 UC

predicted(%)

1

2

3

op
tg
ap

(%
)

25 50 75 85 90 95 10
0 UC

predicted(%)

0

10

20

in
f(%

)

25 50 75 85 90 95 100 UC
predicted(%)

0

50

100

150

tim
ei
m
p

(b) LSTM trained with c = 5, f =
10, 000, T = 90 predicts c = 5, f =
10, 000, T = 180.

25 50 75 85 90 95 10
0 UC

predicted(%)

2

4

6

op
tg
ap

(%
)

25 50 75 85 90 95 10
0 UC

predicted(%)

0

5

10

in
f(%

)

25 50 75 85 90 95 100 UC
predicted(%)

0

50000

100000

150000

tim
ei
m
p

(c) LSTM trained with c = 8, f =
10, 000, T = 120 predicts c = 8, f =
10, 000, T = 720.

25 50 75 85 90 95 10
0 UC

predicted(%)

2

4

op
tg
ap

(%
)

25 50 75 85 90 95 10
0 UC

predicted(%)

0

in
f(%

)

25 50 75 85 90 95 100 UC
predicted(%)

0

500000

1000000

tim
ei
m
p

(d) LSTM trained with c = 8, f =
10, 000, T = 120 predicts c = 8, f =
10, 000, T = 960.

50 75 85 90 95 UC

predicted(%)

2

4

op
tg
ap

(%
)

50 75 85 90 95 UC

predicted(%)

0

20

40

in
f(%

)

50 75 85 90 95 UC
predicted(%)

0

100000

200000

tim
ei
m
p

(e) LSTM trained with c = 3, f =
10, 000, T = 90 predicts c = 3, f =
10, 000, T = 360.

50 75 85 90 95 10
0 UC

predicted(%)

5

10

op
tg
ap

(%
)

50 75 85 90 95 10
0 UC

predicted(%)

0

20

40

60

in
f(%

)

50 75 85 90 95 100 UC
predicted(%)

0

200000

400000

tim
ei
m
p

(f) LSTM trained with c = 5, f =
10, 000, T = 90 predicts c = 5, f =
10, 000, T = 360.

Figure 2.6 Summary of generalization experiments.

55

instances with longer planning horizons with any prediction level and reducing the

solution time up to six orders of magnitude with a small optimality gap. Specifically,

we observe the highest computational benefit from our LSTM-Opt approach when

predicting the hardest set of instances. Also, the LSTM-Opt framework outperforms

classical ML algorithms in terms of the quality of the solution and exact approaches

with respect to the solution time improvement.

Our LSTM-Opt framework can be especially useful for reducing the solution

time of dynamic combinatorial optimization problems that are solved in a repetitive

setting. In this study, we have used the CLSP as a specific case to show that

deep learning approaches have great potential for learning optimal solutions to

MIP problems. Future research could further investigate the generalizability of our

approach to instances with a larger planning horizon and different distributions in

more detail. Another possible research direction is to develop methods to eliminate

infeasible predictions. Additionally, the developed LSTM-Opt framework can be

extended to solve more complex versions of the CLSP, such as the multi-item or

multi-level CLSP, as well as other sequential decision-making problems.

56

CHAPTER 3

AN EXPANDABLE LEARNING-OPTIMIZATION FRAMEWORK
FOR SEQUENTIALLY DEPENDENT DECISION-MAKING

3.1 Introduction

The goal of this study is to contribute to bridging the gap between two traditionally

distinct research areas, Operations research (OR) and Machine learning (ML), to

solve NP-hard sequential decision-making problems. OR is a discipline that aims

to find the best decisions for complex problems through mathematical modeling

and optimization, while ML focuses on learning from the data without explicitly

programming it. In this study, we tackle a very hard category of OR problems

known as combinatorial optimization problems by innovatively combining a machine

translation learning framework with an optimization-learning framework.

Our objective is to substantially reduce the solution times of such combinatorial

problems while providing high-quality feasible solutions, which could be very useful in

practical applications. In most industrial settings, such as finance, health, energy, and

manufacturing systems, OR problems with the same structures are solved repeatedly

with different parameters. For such settings, a reduced solution time can provide

an immense advantage to decision-makers. In this study, we present an expandable

framework based on a sequence-to-sequence neural machine translation system to

solve sequentially dependent optimization problems with all feasible predictions,

which are either optimal or very close to optimal.

In Chapter 2, we present one of the pioneering studies that utilize an

ML-based prediction methodology to reduce the solution times of repeatedly-solved

combinatorial problems in a multi-period setting. Specifically, in Chapter 2, we

harness bidirectional Long Short-Term Memory (LSTM) networks to predict binary

decision variables that denote the production decision in the capacitated lot-sizing

problem. Models are trained using the solutions of the problems that are solved to

57

optimality using CPLEX. Then, predictions are generated using the trained model for

new instances and added to the problem as constraints to be resolved using CPLEX.

The results show that depending on the hardness of the problem, solution time can

be decreased by up to six orders of magnitude without a significant increase in the

infeasibility or optimality gap, especially when problems with longer planning horizons

are considered. In Chapter 2, predictions for problems with longer planning horizons

are generated by concatenating the predictions generated by models trained using

problems with shorter planning horizons, e.g., predictions for 270-period problems are

generated as three independent prediction sets first from 1 to 90, second from 91 to

180, and third from 181 to 270 using the model that trained 90 periods with. However,

this approach disregards the dependence between consecutive sets, e.g., prediction sets

1 to 90 and 91 to 180 are generated independently, which may impact the quality of the

predictions. Also, it does not provide a methodology to accommodate problems with

periods that are not exact multiples of the training periods. In this study, we integrate

the attention-based encoder-decoder network presented in Luong et al. (2015) into a

prediction-optimization framework to overcome those sequential dependence problems

since the output sequence is allowed to be of variable size.

Furthermore, in Chapter 2, we show that the percentage of predicted binary

variables that are added to the problem can have a major impact on the quality of the

solutions. In other words, using high-level predictions may lead to high infeasibility

since the predicted values are fixed in the problem. In Chapter 2, we state that fixing

all predictions of binary variables may cause infeasibility in one of the two problems

in some cases, which is highly undesirable. We propose an iterative algorithm to

eliminate infeasible predictions to overcome this issue. Another important research

question has been the generalizability of such ML approaches to predict optimal

solutions. For example, could a smaller dimensional model with a few items be used

to predict a higher-dimensional problem with a larger set of items? In this chapter,

58

we develop new algorithms to tackle those main research challenges in utilizing ML

approaches to predict optimal solutions to NP-Hard problems.

In practice, combinatorial optimization problems are solved frequently with

changing input data. In this study, we focus on solving two core NP-Hard problems

where decisions are made over a time horizon: Multi-item Capacitated Lot-Sizing

Problem (MCLSP) and Multi-stage Multi-dimensional Knapsack Problem (MSMK).

In MCLSP, sequentially-dependent decisions are made to determine the production

and inventory levels for the planning horizon, considering the changing costs, demand,

and capacity. The lot-sizing is one of the most important and difficult problems in

production planning. Its variants have a wide range of applications in numerous fields,

including production, medical and chemical industries (Karimi et al., 2003). Another

example of dynamic combinatorial optimization problems is when the stability over

the solution can possess significant importance since it might incur setup costs

frequently, i.e., turning on and off an electricity plant can be costly. In such settings,

maintaining the stability of the current solution for successive periods is desired.

Examples of such problems include MSMK, the core resource allocation problem with

stability constraints (Bampis et al., 2022), the multi-stage facility location problem

(Eisenstat et al., 2014), and multi-stage prize-collecting traveling salesperson (Bampis

et al., 2020).

Our main contribution is to develop an extendable prediction-optimization

(PredOpt) framework for sequential decision-making problems to address the key

issues of sequential dependence, infeasibility, and generalization in ML prediction for

OR. We have innovatively adapted a local attention-based encoder-decoder network,

a deep learning tool originally developed for neural machine translation, to learn the

optimal solutions for sequentially dependent optimization problems. The sequential

nature of the considered combinatorial optimization problems is captured with

recurrent neural networks and a sliding-attention window. The models can be trained

59

on short-period problems to learn long-period problems. Furthermore, we present a

specific prediction algorithm that enables the trained models with smaller items to

be generalized to predict instances with much larger items. Additionally, we develop

an iterative algorithm for quickly checking the feasibility of predicted solutions and

determining the optimal level of predictions. The resulting predictions practically

eliminate the possibility of infeasible solutions resulting from predictions. We

demonstrate our general framework to tackle MCLSP and MSMK without assuming

any specific details of the problem and, therefore, without tailoring it to a specific

problem. We show the computational efficiency of the PredOpt framework and the

quality of the predictions in terms of the solution time reduction and optimality gap

metrics.

3.2 Literature Review and Contributions

The use of ML for OR has recently gained much interest with successful ML

applications in different problems. The closest study to ours is by Frejinger and Larsen

(2019). They use a similar approach in which an attention-based encoder-decoder

neural network architecture of Bahdanau et al. (2014) was used to predict solutions

fast to a combinatorial optimization problem under imperfect information. They

demonstrate creating input and output vocabularies to represent the optimization

problem as a pair of input and output languages. Our study differs significantly from

Frejinger and Larsen (2019) in several key points. First, our focus is on predicting

the binary variables solely to use in the Mixed-integer Linear Programming (MILP)

solver to reduce the solution time of the problem. We achieve this objective with a

methodology to determine the highest level of prediction that will not cause infeasible

predictions. On the other hand, Frejinger and Larsen (2019) have predicted only

tactical decisions since fully detailed solutions are not needed at the time of prediction.

Therefore, the type and the usage of decision variable predictions made are different.

60

Although Frejinger and Larsen (2019) present results on generalizability to different

instances, we specifically focus on training using shorter and smaller-dimension

instances to predict longer and higher-dimension, therefore harder problems. We also

propose a specially designed item-wise expansion algorithm for generalization and

present detailed computational results to demonstrate the generalization capability

of our PredOpt framework. Additionally, Frejinger and Larsen (2019) utilize the

neural machine translation model presented by Bahdanau et al. (2014), whereas

we employ the architecture presented in Luong et al. (2015) with local attention

to capturing the sequential dependencies. In another study, Larsen et al. (2022b)

focus on solving the same optimization problem as Frejinger and Larsen (2019) with

a similar motivation. Rather than a language translation system, they use multilayer

perceptrons to predict the tactical descriptions of operational solutions in a less

detailed aggregation compared to Frejinger and Larsen (2019).

In a recent study, Bertsimas and Stellato (2021) use optimal classification trees

to learn insights into the solution strategies of optimization problems. They built their

methodology by defining the strategy, consisting of the values of decision variables

and active constraints. In other words, the strategy is the complete information that

can be used to generate the solution by creating a smaller problem. They predict

the three most-likely strategies. Even though their approach to defining the strategy

and predicting it to use in the solution shows similarities with our study, several

key differences exist in the overall frameworks presented. First, they use machine

learning to identify the most probable several strategies to directly use in the solution

and use all predictions of discrete variables with only tight constraints. In contrast,

our framework predicts a single strategy to determine the prediction level required

to eliminate the infeasibility of the predictions. Then we consider all constraints,

not just the predicted tight constraints, with partial use of predictions of discrete

variables when retrieving the solution. Additionally, in our study, the tightness of the

61

constraints is defined differently, dissimilar ML algorithms are used, and the focus on

generalization is distinct compared to Bertsimas and Stellato (2021). The results show

that fast solutions can be achieved with low infeasibility or suboptimality. Bertsimas

and Stellato (2022) build upon that framework to solve parametric mixed-integer

quadratic optimization problems without requiring a solver. They obtain the solution

with a KKT-based linear system solution. They also define strategy pruning to reduce

the number of strategies.

Anderson et al. (2022) present a generative neural network design to reduce

solution times of repetitively solved optimization problems. The presented framework

contains two neural networks: A generator to predict the values of binary decision

variables and a discriminator to predict the objective function value when those

variables are fixed. Although their motivation is similar to ours, the methodology

they developed is quite different from ours. They utilize a model based on generative

adversarial networks, whereas we employ an encoder-decoder network. While both

studies predict binary decision variables’ values, their usages are dissimilar. Anderson

et al. (2022) feed predictions to a discriminator to obtain a prediction of the objective

when those variables are fixed in the problem and then use them as a warm start for

the optimizer. We utilize predictions of binary variables in a feasibility check loop to

determine the optimal prediction level and solve the problem with the fixed variables

at a determined level. They show their framework for the transient gas optimization

problem, and they are able to reduce the solution time by 60.5%. We demonstrate

our prediction framework for solving MCLSP and MSMK.

Zamzam and Baker (2020) utilize neural networks to learn from the optimal

solutions of an AC optimal power flow problem. They also emphasize the feasibility

of the generated predictions. They train the model with only feasible solutions and

restrict the output of the network to satisfy the generation and voltage limits. While

this approach secures the feasibility of the predicted variables, power flow equations

62

are solved to secure the feasibility of the overall problem. The solution time can be

reduced up to a factor of 16 with a small infeasibility and optimality gap. In Pan et al.

(2019), a neural network-based framework is presented to handle the infeasibility of

the predictions when solving the optimal power flow problem. They ensure feasibility

by adjusting the limits of the constraints during training. Another methodology

to eliminate infeasibility is presented in Donti et al. (2021). They achieve this by

enforcing the constraints during training for the AC optimal power flow problem.

They predict variables partially and then solve for the remaining variables to ensure

that the constraints are satisfied. Guha et al. (2019) present a methodology to learn

solutions to the AC optimal power flow problem. In addition to predicting optimal

solutions, they predict the active constraints so that they can be used together in a

warm start with predictions.

Masti and Bemporad (2019) present a framework to learn the binary variables

for multi-parametric mixed-integer quadratic programming problems that are usually

solved with branch and bound methods. Their learner is classical artificial neural

networks due to their small computational footprint. In order to reduce the

infeasibility of the predictions, they add a compartment punishing infeasibility to

the loss function used during training. They also propose a new branch and bound

design to eliminate infeasible predictions in solution time. They initially start by

fixing all binary variables to their predictions and recursively unfix variables until

a feasible solution is found. Their solution approach can be used to find a global

optimum with fewer computations or improve the quality of the solutions with a

fixed number of iterations. Even though their study shares the same ideas as us as

predicting binary variables and iteratively eliminating predictions, the methodologies

presented in both studies are significantly different.

In Bengio et al. (2020), the authors present a framework to find near-optimal

solutions to two-stage stochastic integer programs. Their framework tries to find a

63

representative scenario to aggregate all scenarios so that the solution of the two-stage

problem with the representative scenario is the same as the solution of the original

two-stage problem. The authors note that the first stage’s feasibility is ensured since

the learning algorithm does not directly predict the solution. They demonstrate their

framework through a two-stage stochastic capacitated facility location problem by

using linear regression and artificial neural networks as their learners.

Vinyals et al. (2015b) introduce pointer networks to solve combinatorial

optimization problems such as the traveling salesperson and planar convex hull

problem. The encoder-decoder architecture uses an attention mechanism as a pointer

to select an input element as output at each decoding time step. The proposed

architecture is suitable for combinatorial optimization problems where the size of the

output depends on the size of the input sequence. Even though their seminal work

shares the same motivation as ours, our problem of interest is to have a time-wise

extendable framework with a constant-sized output rather than a mapping to the

input elements to handle variable-sized output when decoding.

In a recent study, Bello et al. (2016) present a methodology to use reinforcement

learning as an alternative to the pointer networks presented in Vinyals et al. (2015b),

where supervised learning is not desired. The proposed framework can achieve

solutions close to optimal when solving the traveling salesperson problem. Nazari

et al. (2018) generalize the framework presented in Bello et al. (2016) to handle more

complex problems in that system dynamics change over time. The authors show

that the learned policy can achieve near-optimal solutions for the capacitated vehicle

routing problem.

Kool et al. (2018) present a new model based on attention and a methodology

for training. They follow a transformer architecture with multi-head attention instead

of the encoder-decoder with recurrent neural networks. Their attention-based model

64

focuses on learning heuristics for solving the traveling salesperson and vehicle routing

problem and achieving a performance level close to highly-specialized algorithms.

3.2.1 Key Contributions of the Study

While there has been a significant advancement in the use of ML for OR in recent

years, as discussed above, an extensive research gap exists in the literature. In

particular, frameworks that utilize time-dependent learning models and algorithms

to enforce the feasibility and integration of advanced computation capabilities of

OR solvers with promising results of ML can be further investigated to solve hard

mathematical programs. Those research limitations inspire our study. Our motivation

is to develop new algorithms that innovatively adapt neural translation deep learning

architectures to predict optimal solutions to NP-hard optimization problems. Our

goal is to reduce the solution times while ensuring feasible and near-optimal solutions

where problems with similar structures are repeatedly solved. Our key contributions

are explained next.

To our knowledge, this is the first study to explore an encoder-decoder approach

to predict optimal solutions to sequential decision-making problems by integrating

with a mathematical solver. Specifically, we have designed the PredOpt framework

based on an encoder-decoder with an attention mechanism to capture the dynamic

relationship between input parameters and optimal solutions to MCLSP and MSMK

problems. Our machine learning approach involves a local attention structure with a

time window to better capture the association among the problems’ periods since the

current prediction period is more closely related to the preceding and succeeding

several periods than the entire sequence. This reduces the computational cost

compared to the global attention mechanism as in the classical LSTM and enables

selectively focusing on a few close-by periods near the decision point, which better

suits the sequentially-dependent problems.

65

The presented PredOpt framework with an encoder-decoder mechanism learns

from shorter problems to solve much longer ones. Further, we have developed a new

generalization algorithm to create predictions abstracted from small problems to be

used for larger problems. Specifically, we have shown that the models trained are

generalizable by training them with a few items to predict problems with a large

number of items. This approach results in a significant time gain in training set

generation and training time. This is also critical because once a model with a

smaller dimension is trained, it can be used for solving numerous problems with

larger dimensions.

We tackle the problem of infeasibility in ML predictions by proposing a new

iterative methodology to find feasible predictions and a favorable prediction level

that decreases the solution time. This algorithm includes predicting tight constraints,

which in turn is used to create a relaxed problem to check the feasibility quickly. We

then utilize a second iteration to ensure that the prediction level determined by the

relaxation is updated if necessary.

We generate benchmark MCLSP and MSMK instances and compare the

computational performance of the PredOpt framework with the state-of-the-art

commercial solver CPLEX version 20.1.0 and heuristics in terms of the optimality

gap and solution time. Our results show that the solution time can be improved

up to a factor of 7,236 with an optimality gap of only 0.11% on average while

ensuring that predictions used to obtain solutions are all feasible. The presented

PredOpt framework can be quite beneficial for applications where problems with

similar structures are solved repeatedly, which are common in various industries from

manufacturing to electronics, energy and healthcare systems, and the public good

(Finnah et al., 2022; Büyüktahtakın et al., 2018a; Yin et al., 2023; Bushaj et al.,

2022a).

66

The remainder of the chapter is as follows. Section 3.3 presents the formulations

for MCLSP and MSMK. Section 3.4 presents the encoder-decoder model and the

PredOpt framework. Section 3.5 explains the implementation steps, experimentation

environment, and the metrics used to measure the quality of the PredOpt framework.

Section 3.6 presents the results obtained by using the PredOpt framework. Section

3.7 concludes the chapter with future directions.

3.3 Problems

In this section, we present the problem formulations of the two problems of specific

interest in this study: The Multi-item Capacitated Lot-Sizing Problem (MCLSP) and

the Multi-stage Multi-dimensional Knapsack Problem (MSMK).

3.3.1 Multi-item Capacitated Lot-Sizing Problem

MCLSP is an extension of the single-item CLSP, where multiple items compete for a

shared capacity at each time period in a production planning setting. MCLSP decides

on the production and inventory amount for each item at each period by minimizing

the sum of costs, which includes production, setup, and inventory costs. The demand,

which is known in advance, is satisfied for each item and period pair if possible, and

back-ordering is not allowed. MCLSP is NP-Hard (Bitran and Yanasse, 1982), and

it has variations that include setup times, pricing decisions, lost sales, shortage costs,

safety stocks, and demand uncertainty that is used in production and manufacturing

industries (Maes and Wassenhove, 1988).

MCLSP is formulated as a mixed-integer program (MIP), where T is the number

of periods in the planning horizon, and I is the number of items considered. For

each item i ∈ {1, . . . , I} and period t ∈ {1, . . . , T} pair, problem parameters are

demand dit, unit production cost pit, setup cost fit, and unit inventory holding cost hit.

Production capacity ct is the total capacity available for each period t ∈ {1, 2, . . . , T}.

All parameters of the MCLSP are assumed to be non-negative. The decision variables

67

xit and sit denote the number of units produced and the ending inventory of item i

at period t, respectively. The decision to produce is binary yit, which is set to be 1 if

the item i is produced at period t and 0 otherwise. The MCLSP formulation:

min
I∑
i=1

T∑
t=1

(pitxit + fityit + hitsit) (3.1a)

s.t. si,t−1 + xit − dit = sit ∀i = 1, . . . , I, ∀t = 1, . . . , T (3.1b)
I∑
i=1

xit ≤ ct ∀t = 1, . . . , T (3.1c)

xit ≤ yitct ∀i = 1, . . . , I, ∀t = 1, . . . , T (3.1d)

xit, sit ≥ 0 ∀i = 1, . . . , I, ∀t = 1, . . . , T (3.1e)

yit ∈ {0, 1} ∀i = 1, . . . , I, ∀t = 1, . . . , T. (3.1f)

The sum of production, setup, and holding costs is minimized in the objective

function (3.1a) over each item i ∈ {1, . . . , I} and period t ∈ {1, . . . , T}. The flow of

inventory is established with constraints (3.1b). Specifically, the demand in period t

for item i is fulfilled with the inventory at the end of period t− 1 and units produced

in period t, and the remaining units are set to be the inventory at the end of period

t. Constraints (3.1c) ensure that the sum of items produced of all types is limited

by capacity for each period t. Constraints (3.1d) assert related setup cost if the

item i is produced in period t. Finally, constraints (3.1e) enforce non-negativity,

and constraints (3.1f) ensure yit are binary. The parameter si0 represents the initial

inventory for item t and is assumed to be zero.

Both single and multi-item versions of the lot-sizing problem have been widely

studied in the literature. For example, Florian et al. (1980) provide an exact solution

approach based on dynamic programming. Another exact solution approach is

developed by Barany et al. (1984), where valid (`,S) inequalities are added to the

problem using a separation algorithm. In recent years, inequalities based on dynamic

68

programming and partial-objective inequalities were proposed to solve the multi-item

capacitated lot-sizing problem (Hartman et al., 2010; Büyüktahtakın et al., 2018b).

We refer to the excellent review by Pochet and Wolsey (2006) for exact and heuristic

solution methodologies and discussion on the different versions and modifications of

the lot-sizing problem. In this study, we utilize the valid (`,S) inequalities presented

by Barany et al. (1984) with a strategy presented by Büyüktahtakın et al. (2018b) to

show that our PredOpt framework performs well even when compared to hand-crafted

special solution algorithms. Also, relax-and-fix heuristics are commonly used to solve

MCLSP and its variations (Helber and Sahling, 2010; Toledo et al., 2015; Absi and

van den Heuvel, 2019; Pochet and Wolsey, 2006). Absi and van den Heuvel (2019)

present the famous relax-and-fix heuristic for MCLSP, which we adopt to compare

with our framework.

3.3.2 Multi-stage Multi-dimensional Knapsack Problem

MSMK is a dynamic version of the classical knapsack problem where the profit and

constraints vary over time. In the multi-stage multi-dimensional knapsack problem,

the aim is to find stable solutions over the planning horizon that maximizes profit and

satisfies the capacity constraints. In Bampis et al. (2022), the authors state that even

the multi-stage single-dimensional knapsack is strongly NP-Hard when T is not fixed.

Potential applications involve energy production planning and data center operations

where the problem parameters, such as prices, energy, raw materials, and resources,

change frequently.

MSMK can be formulated as an integer program (IP) where the number of

periods considered is denoted by T , and the number of items available for the knapsack

is denoted by I. For each period t ∈ {1, . . . , T}, binary variable xit takes the value

1 if item i ∈ {1, . . . , I} is added to the knapsack and takes the value 0 otherwise. In

order to maintain the stability of the solution at each time stage, a binary variable

69

yit is defined for each item i ∈ {1, . . . , I} and period t ∈ {1, . . . , T − 1}. The variable

yit takes value 1 if items i’s decision was unchanged from period t to t + 1, i.e.

xit, xi,t+1 = 0, or xit, xi,t+1 = 1, otherwise it takes value 0 if the decision is changed

from period t to t+ 1, i.e. xit = 0, xi,t+1 = 1 or xit = 1, xi,t+1 = 0. The profit of each

item i at period t is denoted by pit, and the bonus for stability is denoted by bit. The

number of available knapsack constraints is denoted by J , and the capacity is set to be

cjt for each resource constraint j ∈ {1, . . . , J}, and period t ∈ {1, . . . , T}. The weight

is denoted by wijt for each item i ∈ {1, . . . , I}, resource constraint j ∈ {1, . . . , J}, and

period t ∈ {1, . . . , T}. We adapt the formulation in Bampis et al. (2022) to include

multiple resource constraints and formulate the MSMK as:

max
I∑
i=1

T∑
t=1

pitxit +
I∑
i=1

T−1∑
t=1

bityit (3.2a)

s.t.
I∑
i=1

wijtxit ≤ cjt ∀t = 1, . . . , T, ∀j = 1, . . . , J (3.2b)

yit ≤ −xi,t+1 + xit + 1 ∀i = 1, . . . , I, ∀t = 1, . . . , T − 1 (3.2c)

yit ≤ xi,t+1 − xit + 1 ∀i = 1, . . . , I, ∀t = 1, . . . , T − 1 (3.2d)

xit ∈ {0, 1} ∀i = 1, . . . , I, ∀t = 1, . . . , T (3.2e)

yit ∈ {0, 1} ∀i = 1, . . . , I, ∀t = 1, . . . , T − 1. (3.2f)

The sum of profit and stability bonus is maximized in the objective function

(3.2a). Constraints (3.2b) ensure that for each knapsack j and time period t, the

total weight of selected items is less than the capacity cjt. Constraints (3.2c) and

(3.2d) determine the association between xit, xi,t+1, and yit variables. Specifically,

those constraints are linear relaxations of yit = 1 − |xi,t+1 − xit|. Constraints (3.2e)

and (3.2f) enforce that xit and yit are binary variables.

Solution approaches for traditional multi-dimensional knapsack problems include

exact algorithms and heuristic or metaheuristic algorithms, which we refer to

70

the review of Varnamkhasti (2012) for further details. Bertsimas and Demir

(2002) present an algorithm named adaptive fixing heuristic to solve the general

multi-dimensional knapsack problem. Since their heuristic approach achieves good

quality solutions (Wilbaut et al., 2008), we adopt the heuristic presented by Bertsimas

and Demir (2002) to generate a benchmark solution for MSMK.

3.4 Methodology

In this section, we first discuss the machine translation model used to learn the

optimal solutions to optimization problems. Here, the encoder-decoder model with

attention adapted from Luong et al. (2015) is presented with modifications made.

Then, the developed PredOpt framework is introduced. We then present an algorithm

for generalization with item-wise expansion.

3.4.1 Neural Machine Translation and Adaptation

A machine translation system is used to translate the input sequence x1, x2, . . . , xm

from the source language to output sequence y1, y2, . . . , yn to the target language,

where m and n give the size of the input and the output sequences, respectively.

For optimization problems that we are tackling, the size of the input and the output

sequences is the same, i.e., m = n. For MCLSP, the input sequence consists of dit, pit,

fit, hit, ct, and the output sequence is yit and an (I + 1)T -dimensional binary vector

that defines tight constraints. For MSMK, the input sequence consists of pit, bit, wijt,

cjt, and the output sequence is xit and a JT -dimensional binary vector labeling tight

constraints.

The main idea of a neural machine translation system is to utilize neural

networks to fit a parameterized model to maximize the probability conditioned upon

input sequence and past output elements: P (y | x) =
∏n

t=1 P (yt | yi|i<t, x). We refer

to Stahlberg (2020) for a detailed review of neural machine translation approaches.

While our neural machine translation architecture is similar to that of Luong et al.

71

(2015), we modify their attention mechanism to accommodate the requirements of the

combinatorial optimization problem better. At each prediction time step, the hidden

states of the top forward and backward LSTM layers are concatenated as presented

in Bahdanau et al. (2014) and used to calculate the attention scores as presented in

Luong et al. (2015). This is different than the approach presented by Luong et al.

(2015), where they use the hidden states from the top hidden layer to calculate the

attention scores.

The encoder is a recurrent neural network that reads the input sequence one at a

time. In the frame of neural machine translation, at each time step, the encoder reads

a word from the input sequence x1, x2, . . . , xm. For the encoder, we used bidirectional

LSTM networks, which ideally capture the representation of the input sequence by

processing with the forward and backward layers. The hidden states of both forward

and backward LSTMs are used to calculate the attention score and the context to

predict the next work in the decoder.

The decoder is also a recurrent neural network that produces the output

sequence. At each time step, the decoder input is the prediction from the previous

time step. The attention mechanism enables the neural machine translation model

to use the information from the encoder hidden states when decoding by determining

which parts of the encoder hidden states relate more to the current decoder hidden

state. It is a mechanism that enables focusing more on the selected parts of the

input sequence. This is done by calculating the so-called context, which is a weighted

average of the hidden states of the encoder. The context is used together with the

decoder hidden state to output the prediction for each time step.

The encoder-decoder network with attention is appropriate to make predictions

for sequentially dependent optimization problems for various reasons. First and

foremost, it can capture the time-wise dependent relationship between the decisions

made throughout the problem’s horizon. Even though the size of decisions made

72

is constant for each period of the optimization problem, treating these sequential

decisions as independent for each period by using a classical machine learning model

may lead to a poorer performance compared to recurrent models, as demonstrated in

Chapter 2. Using a sequence-to-sequence mapping model ensures that the knowledge

is transferred through the problem’s planning horizon. Secondly, recurrence-based

attention models have performed highly well in various tasks, including neural

machine translation (Bahdanau et al., 2014), image captioning (Mnih et al., 2014),

and speech recognition (Chorowski et al., 2015). In Chapter 2, we use classical LSTMs

in predicting the optimal solutions. However, a performance increase in the predictive

power of the model can lead to less infeasibility, a smaller optimality gap, and

increased solution time improvement. Therefore, by using a more advanced model,

the solutions to harder and more complex problems can be learned. Additionally,

with the use of the decoder, the decisions made in the previous period are directly

considered when predicting for the next period, which is not the case in regular

LSTMs. Furthermore, the attention structure enables to focus on not just the current

prediction period’s hidden states, but it rather enables to selectively focus on all

periods’ hidden states, which is a desirable feature in sequential prediction tasks.

The building blocks of the encoder-decoder model are LSTMs that are developed

by Hochreiter and Schmidhuber (1997). However, the sequence-to-sequence model

presented in Luong et al. (2015), as described below, better suits our problem

compared to the LSTM. Firstly, we consider monotonic alignment (local) for the

attention calculations rather than global attention scores. In global attention, the

context is calculated by taking a weighted average of the hidden states of all periods in

the whole input sequences. In the local attention mechanism, a few previous and later

periods are considered for the attention score calculation for the period a prediction

is made rather than the whole input sequence. In other words, if a prediction is being

made for period t, the attention score, therefore, the context is calculated using the

73

hidden states of the encoder from period t−D to t+D, where D represents the size

of the window for the local-D attention.

There are two advantages to that choice. First, the combinatorial optimization

problems we are trying to predict can be far longer than the problems used in training.

Our predictions benefit from focusing on a time window of production and inventory

decisions. In such cases, the initial periods have little to no effect on the final periods’

decisions, considering the length and characteristics of the problems to reset the

production amount with each production decision. For example, in MCLSP, once a

prediction decision is made, the production amount is usually such that the demand is

fully covered for a few subsequent periods. The inventory at the end of the last covered

period is often reduced to zero to avoid the inventory holding cost. Then the process

repeats itself by resetting the production amount. In this setting, the period that a

prediction is being made has a more intertwined relationship with a few predecessor

and successor periods rather than far away periods or the whole sequence. Second,

local-D attention is less computationally expensive compared to global attention, and

the training and prediction times can be reduced by using local-D attention compared

to full-sequence attention.

Figure 3.1 shows an encoder-decoder model with attention used for a period

t. The encoder takes input sequence x1, x2, . . . , xm but focuses on sequence

xt−D, . . . , xt, . . . , xt+D at time t with a time window of size D. If the boundaries

of the input sequence exceed the problem’s time horizon, the part outside of the

window is ignored. The whole input sequence is processed at once with the forward

and backward LSTM layers to generate the hidden states, but for the attention

calculation, only a portion of this series is considered for the current period t. For a

period t, the hidden state of the encoder generated by the forward layer LSTM e
forward

is denoted by
−→
h e
t , and the hidden state of the encoder generated by the backward

layer LSTM e
backward is denoted by

←−
h e
t . Hidden states are the output vectors of LSTM

74

Figure 3.1 Encoder-decoder with attention.

that carry processed information related to the current period with the desired size.

Those hidden states are calculated as:

−→
h e
t−D, . . . ,

−→
h e
t , . . . ,

−→
h e
t+D = LSTM e

forward(xt−D, . . . , xt, . . . , xt+D) (3.3a)
←−
h e
t−D, . . . ,

←−
h e
t , . . . ,

←−
h e
t+D = LSTM e

backward(xt−D, . . . , xt, . . . , xt+D) (3.3b)

For the current prediction period t, the decoder hidden state
−→
h d
t is generated with

the output yt−1 from previous period t− 1 using the decoder network LSTMd:

−→
h d
t = LSTMd(yt−1) (3.4)

Then a comparison is made between the current hidden state of the decoder
−→
h d
t with all encoder hidden states in the attention window t − D to t + D. The

encoder hidden states of forward and backward LSTM layers from each period t

in the attention windows are concatenated as
−→
h e
t ,
←−
h e
t to calculate attention scores

together with the hidden state of the decoder
−→
h d
t as given below:

ai =
exp(score(

−→
h d
t , [
−→
h e
i ,
←−
h e
i]))∑t+D

t′=t−D exp(score(
−→
h d
t , [
−→
h e
t′ ,
←−
h e
t′]))

∀i = t−D, . . . , t+D. (3.5a)

75

where scores are calculated as:

score(
−→
h d
t , [
−→
h e
i ,
←−
h e
i]) =

−→
h d
t

ᵀ
Wα[
−→
h e
i ,
←−
h e
i], (3.6a)

where Wα is a vector of learned parameters to calculate attention.

After the scores are calculated for each period in the attention window, the

context cnt, which ideally accumulates all relevant information of the input sequence,

is calculated by taking a weighted average: cnt =
∑t+D

i=t−D ai ∗ [
−→
h e
i ,
←−
h e
i]. Then context

cnt is concatenated with the current decoder hidden state
−→
h d
t , and passed through

a linear layer with tanh activation function. Finally, predictions are generated by

passing the activated output to another linear layer with a sigmoid activation function.

The details of the model can be found in Luong et al. (2015).

3.4.2 The PredOpt Framework

Training and Validation. Our prediction approach to learning optimal solutions

starts with data generation. We randomly generate all parameters for the optimization

problem that is of interest. Then, the problems generated are solved using CPLEX.

The resulting data set is divided into two following the standard schema for learning

(Alpaydin, 2020): training and validation sets. Both training and validation data sets

include the parameters of an instance and its optimal solution for a set of instances.

Using the training set, the parameters of the neural machine translation model are

optimized to create an output mapping to the optimal solutions for the problem

of interest. Then models with different hyperparameters are evaluated using the

validation set. A third independent test set of instances with a higher number of

periods is generated to measure the effectiveness of the proposed PredOpt framework.

Testing. The PredOpt framework presents a strategy to eliminate infeasible

predictions in a fast manner. In Chapter 2, the predictions of the decision variables are

fixed in the solution, and the results show that predictions can cause solutions that are

76

infeasible at a significant rate. In Chapter 2, we state that infeasibility depends on the

prediction level and can be adjusted empirically. This can be a rather computationally

challenging process and does not guarantee the feasibility of the predictions. The main

idea in the PredOpt framework is to construct a feasibility-check loop to determine the

highest level of predictions that will not lead to an infeasible solution. In the PredOpt

framework, the prediction level is not constant for each instance as in Chapter 2, but

it is determined with a feasibility check loop and a relaxation of the original problem,

as described in the next two sub-sections.

Predicting Tight Constraints and Forming the Relaxation Problem A

relaxation of the original problem is formed by identifying the tight and close-to-tight

constraints to reduce the feasibility checking time of the PredOpt framework. For

brevity, we will refer to those inequalities as tight even if the inequality is not held

strictly. Those constraints that are identified as tight are included in the relaxation

of the formulation, and those that are identified as not tight are removed from the

relaxation.

During the training, the model is not only used to learn the values of the optimal

binary decision variables but is also used to learn the tight constraints. Thus, before

training starts, using the optimal solutions from the training data sets, we determine

tight constraints and label them so that the trained model can learn which constraints

are tight in the test set. For example, given that x∗it and y∗it are the optimal solutions

to an MCLSP (3.1) training instance, constraints (3.1c) are identified to be tight with

a predetermined tightness coefficient η ∈ [0, 1] if
∑I

i=1 x
∗
it ≥ η ∗ ct and identified to be

non-tight otherwise. The constraints (3.1d) are identified to be tight if x∗it ≥ η ∗ y∗itct

and identified to be non-tight otherwise. For the MSMK presented in formulation

(3.2), constraints (3.2b) are tight if
∑I

i=1wijtx
∗
it ≥ η ∗ cjt and non-tight otherwise.

The constraints (3.2c), (3.2d), and (3.2f) are discarded from the relaxation since they

77

do not affect the feasibility of the knapsack constraints presented. The relaxation

involves the binary decision variables for both MCLSP and MSMK.

As explained above, the full training data set includes both the optimal solutions

to the problem and the tight constraints that were identified from those optimal

solutions. In MCLSP, at each period t, the network predicts a total of 2 · I + 1

variables, where I of them are used to predict variables yit and I number of variables

is used to predict the tightness of I constraints (3.1d). Then the additional variable

represents the tightness prediction for the single constraint (3.1c) at time t. Similarly,

in MSMK, for each period t, a total of I + J predictions are made where the first I

represents the decision variables xit and the remaining J predicts if the constraints

(3.2b) are tight or not. While the sizes of the output dictionaries are 2 · I + 1 and

I + J for MCLSP and MSMK, respectively, in neural machine translation, at each

period, a single element in the output dictionary is predicted. In PredOpt, unlike

neural machine translation, the problem is a multi-label binary classification problem.

Therefore, at each period, a subset of the output dictionary, possibly with multiple

elements, is selected.

Feasibility Check and Infeasible Elimination Loop As previously discussed,

an attentional encoder-decoder model is used to learn both optimal solutions and

tight constraints of the problem of interest. Then during the testing phase, a strategy

is applied to determine the appropriate level of prediction for each instance. Figure

3.2 presents the PredOpt framework in detail. In the left side of the figure (Feasibility

Check and Infeasible Elimination), for each instance in the test set, a set of predictions

are generated using the trained network. Using the set of predicted tight constraints,

a relaxation of the original model is generated for a fast feasibility check. Then

predLevel% of predicted variables are fixed in the relaxed formulation. This is done by

calculatingmaximum(ŷ, 1−ŷ), ordering decreasingly, and taking the top predLevel%

78

to fix in the model where ŷ represents predictions. In this process, variables are

ordered based on their closeness to either 0 or 1, and the first predLevel% of them

are fixed in the relaxed problem. If a feasible solution is found by solving the relaxed

instance with fixed variables using CPLEX, the loop is exited, and the determined

level of prediction is used in the original formulation to determine other variables’

values and the optimal objective function value. If a feasible solution is not found,

the predLevel% is reduced by reduceLevel%, which cannot be lower than zero, and

the feasibility check is repeated with new predLevel% until a feasible solution is

found.

Figure 3.2 PredOpt framework.

Once a feasible solution is found, a new loop begins to solve the complete

formulation of the test instance, as demonstrated on the right side of Figure 3.2

(Resolution). The determined level of prediction is fixed in the original formulation,

which is attempted to be solved with CPLEX. If a feasible solution is found, the

loop is exited, and the optimal solution is used to report the quality of the proposed

framework. The relaxation of the problem from the first loop of Figure 3.2 does

79

not necessarily guarantee a prediction level that gives a feasible solution since it is

only a relaxation. Thus, if a feasible solution is not found by solving the original

problem with fixed values, similar to the first loop on the left side, predLevel% is

reduced by reduceLevel%, and the loop continues until a feasible solution is found.

Computational results show that the number of iterations in the second loop is very

few compared to the number of iterations made in the first loop, highlighting the high

quality of the relaxation problems in the first loop.

3.4.3 Generalization with Item-wise Expansion

In this section, we discuss the generalization of the trained models to predict longer

and higher-dimensional problems. The encoder-decoder can be inherently used to

predict for the longer instances than they are trained with since the size of the

predictions is not limited by the length of training instances. The attention structure

helps with the collection of encoder information and passes it to the decoder without a

limitation on the input length. Therefore, the encoder-decoder with attention is able

to keep up with the increasing number of periods, and thus, the time-wise expansion

of the prediction framework is straightforward. The key question we address here is if

models trained with a few items can be used to predict problems with a large number

of items. For example, a significant time reduction can be achieved if an 8-item model

can successfully predict a 32-item problem. Therefore, we can solve instances with a

small number of items to predict instances with a larger number of items. This would

allow us to perform training only once to solve instances generated from the same

distribution without retraining if the number of items considered changes. Also, it

can reduce the training instance generation and the training time.

Here, our strategy includes making multiple forward passes using the trained

model with a subset of the items instead of predicting all decision variables at once.

In Algorithm 1, we present our strategy for generating predictions for instances with

80

a larger set of items. In step 1, we initialize the prediction counter for each item

i, γi, as zero. The algorithm is continued until each item i has been predicted at

least δ = 10 times. At each iteration, we select a subset S of items such that the

size of the subset S is equal to IM , representing the number of items the model

is trained with. For example, if a prediction is made using an 8-item model, then

only |S| = 8 items are selected in step 3. Then, in step 4, we make a forward pass

with the model M using the input data αS of selected subset S of items to generate

predictions θ̂S. Here, the right-hand sides of the constraints are scaled down with the

proportion of selected items aiming to mimic the original problem. For MCLSP, we

modify the right-hand side of constraint (3.1c) as ct = ct ×
∑

i∈S dit∑I
i=1 dit

, ∀t = 1, . . . , T .

For MSMK, we modify the right-hand side of constraint (3.2b) as cjt = cjt×
∑

i∈S wijt∑I
i=1 wijt

,

∀t = 1, . . . , T, ∀j = 1, . . . , J . Then predictions are saved in step 5 by summing

current predictions θ̂i and previous prediction β̂i for each item i in the subset S.

Then, in step 6, the count of prediction γi is increased for each item i in the subset

S. Finally, the final prediction β̂i for each item i in the whole test set is calculated

as dividing the sum of predictions β̂i by their respective counts γi.

3.5 Implementation and Experimentation

In this section, we present the details of instance generation, encoder-decoder

parameters, and metrics used in measuring the performance of the PredOpt

framework. The MCLSP and MSMK instances are solved using Python 3.8.5 with

DOcplex API and CPLEX 20.1.0. The generation of training and test instances,

model training, and testing with PredOpt are completed on a high-performance

computing cluster running Linux 3.10.0 with Intel Xeon Gold 6226R 2.90 GHz, 96

GB of memory, and NVIDIA Tesla T4 GPU with Python 3.8.5. The encoder-decoder

model is trained with PyTorch 1.7.1 on GPU.

81

Algorithm 1 Item-wise Generalization Prediction Algorithm
Input: Trained model M , number of items during model training IM , input data

of the test set α, set of items in the test set i ∈ {1, . . . , I}, and threshold prediction

count δ

Output: Predicted value for item ∀i ∈ {1, . . . , I}, β̂i, for the test set

Item-wise Generalization

1: Initialize prediction count of each item to be zero: γi = 0, ∀i ∈ {1, . . . , I}
2: while ∃ γi ≤ δ i ∈ {1, . . . , I} do

3: Sample a subset of items, S, with the number of items in the subset equal to

the number of items in the trained model IM : S ⊂ {1, . . . , I} and |S| = IM

4: Make a forward pass using the input data of the selected subset S of items:

θ̂S = M(αS)

5: Save predictions for subset S of selected items: β̂i := β̂i + θ̂i, ∀i ∈ S
6: Increase prediction counts for subset S of selected items: γi = γi + 1, ∀i ∈ S
7: end while

8: Calculate the final prediction value for each item i ∈ {1, . . . , I} by dividing the

sum of saved predictions with respective counts: β̂i := β̂i ÷ γi.

3.5.1 Instance Generation

MCLSP Instances: To generate instances, we employ the scheme presented

in Büyüktahtakın et al. (2018b). Two underlying parameters can simulate the

problems of varying hardness levels: capacity-to-demand ratios c ∈ {10, 14} and

setup-to-holding cost ratio f = 1, 000. The uniform integer distribution between a

and b is denoted by U [a, b]. The shared capacity ct between items is sampled from

U
[
0.8cd̄, 1.2cd̄

]
where d̄ is the overall average demand. The unit production cost pit

is sampled from U [1, 200], the holding cost hit is sampled from U [1, 100], and the

demand dit is sampled from U [500, 1500]. The periodic setup cost is sampled from

U
[
0.9fh̄, 1.1fh̄

]
where h̄ is the overall average holding cost. A planning horizon

of T = 40 with the number of items of I = 8 and T = 30 with I = 12 are used

in the training of two different encoder-decoder models. First model with I = 8

82

is used to predict instances with T ∈ {40, 60, 80, 100, 150, 200}. Also, the first

model is used to predict item-wise generalization instances with I ∈ {32, 40, 80}

and T ∈ {200, 150, 100}. Second model with T = 30 with I = 12 is used

to predict instances with T ∈ {30, 50, 75, 100, 125, 150}. Also, the second model

is used to predict item-wise generalization instances with I ∈ {36, 48, 60} and

T ∈ {125, 100, 80}. For MCLSP, a total of 18 sets of instances are used for testing,

each containing 20 instances.

MSMK Instances: The instances are solved by sampling the problem parameters

from the following integer uniform distributions. The profit pit of each item i at period

t is sampled from U [1, 1000], the stability bonus bit from U [1, 1000], item weights

wijt from U [1, 1000], and the capacity cjt from U
[
0.5
∑I

i=1wijt, 0.8
∑I

i=1 wijt

]
. The

number of periods for training is T = 30 and the number of items is I ∈ {8, 10}.

For the first model with I = 8, testing instances with T ∈ {30, 50, 80, 100, 150, 200}

are used. Additionally, item-wise generalization test instances with I ∈ {16, 24, 32}

and T ∈ {30, 20, 15} are used. For the second model with I = 10, testing instances

with T ∈ {30, 50, 70, 80, 90, 100} and the item-wise generalization test instances with

I ∈ {20, 30, 40} and T ∈ {30, 20, 15} are used. For MSMK, 18 test sets are also

generated in total with each having 20 instances.

3.5.2 Model Training

In this section, we discuss the specific architectural details and hyperparameters of

the trained models. In these models, the number of layers is two, and the number of

hidden units in the encoder is 128 for Table 3.1, 64 for Table 3.2, 256 for Table 3.3,

and 128 for Table 3.4. The decoder for each model is twice the size of the encoder.

Our choice of attention score mechanism is based on the general score calculations.

Our choice of optimizer for the model training is the well-known Adam Optimizer

(Kingma and Ba, 2014), with an initial learning rate of 0.01 for Tables 3.1 and 3.2

83

and 0.001 for Tables 3.3 and 3.4. We have utilized the dropout technique with a

rate from {0.25, 0.30, 0.35}. It is a commonly used approach to prevent overfitting

(Srivastava et al., 2014). We have also utilized a label smoothing approach to achieve

a better generalization (Müller et al., 2019). Our models are trained with 3,500,000

instances for each problem type. Training times are 18 and 30 hours for MCLSP with

8 and 12 items, respectively. Training times are 24 and 8 hours for MSMK with 8

and 10 items, respectively.

3.5.3 Evaluation Methodology

In this section, we present the metrics used in evaluating the performance of the

PredOpt framework. The metrics are intended to evaluate the success of the PredOpt

framework with respect to the optimality gap and reduction in solution time for the

test set. We mainly follow the success metrics defined in Chapter 2:

• timeCPX: Average solution time of an optimization problem in CPU seconds
with CPLEX at default setting without using any predictions.

• timePredOpt: Average solution time of an optimization problem in CPU
seconds with CPLEX at default setting using predictions determined by
PredOpt framework, including the prediction generation and infeasibility
elimination time.

• timeLS: Average solution time of an MCLSP in CPU seconds with CPLEX
using valid (`,S) inequalities of Barany et al. (1984).

• timeHeur: Average solution time in CPU seconds with the relax-and-fix
heuristic of Absi and van den Heuvel (2019) for MCLSP or adaptive fixing
heuristic of Bertsimas and Demir (2002) for MSMK.

• accuracy(%): Percentage of binary variables correctly predicted by the
PredOpt framework compared to the optimal solution determined by CPLEX.

Also, the following metrics are defined to assess the quality of the PredOpt

framework:

Definition 3.5.1 Let x∗ be the optimal solution of the problem of interest and

Z(x∗) be the corresponding optimal objective function value. Let x̂∗ be the solution

84

determined by the PredOpt framework (or solution determined by a heuristic for calcu-

lating optGapHeur(%)) and Z(x̂∗) be the corresponding optimal objective function

value. The optimality gap is defined as:

optGapPredOpt(%) =
|Z(x̂∗)− Z(x∗)|

Z(x∗)
× 100. (3.7)

Definition 3.5.2 The solution time improvement factor achieved by the PredOpt

framework (timeImpLS for CPLEX with (`,S) inequalities and timeImpHeur for

heuristic time) with respect to the default CPLEX is given by:

timeImpPredOpt =
timeCPX

timePredOpt
. (3.8)

Definition 3.5.3 The p-value is calculated based on a one-sided Wilcoxon signed-

rank test (Wilcoxon, 1945). It is a statistical test that measures if the differences

between the two distributions are symmetric around 0. It is a non-parametric version

of a paired T-test. The null and alternative hypotheses are:

H0 : median(timeHeur − timePredOpt) < 0 (3.9a)

H1 : median(timeHeur − timePredOpt) > 0 (3.9b)

If the p-value is less than 0.01, the null hypothesis is rejected, implying that PredOpt

performs statistically better than the corresponding heuristic in terms of solution time.

3.6 Computational Results

In this section, we present the computation results of the PredOpt framework for

solving a variety of MCLSP and MSMK instances and compare the results to the

direct solution with CPLEX. We also compare the performance of the PredOpt

algorithm with the state-of-the-art heuristics: the heuristic of Absi and van den

Heuvel (2019) for MCLSP and the heuristic of Bertsimas and Demir (2002) for

MSMK. In the heuristic of Absi and van den Heuvel (2019), at each iteration, the

number of fixed periods is taken as T
20
, and the number of periods with binary decision

variables is set to be T
10
.

85

For each problem, we have created 18 different test sets, each consisting of 20

instances. The initial prediction level is set at 80% for MCLSP and 60% for MSMK,

which are effective at estimating the prediction level that eliminates infeasibility.

Within the PredOpt framework, the time of generating predictions and finding a

prediction level that leads to a feasible solution for the relaxed problem is below

one second, which is very fast compared to solving the full-sized problem with the

determined prediction level. All computational results referring to solution times are

presented in CPU seconds.

3.6.1 Quality of Predictions for MCLSP

Table 3.1 presents the results for a set of MCLSP instances. Here the model is trained

only with T = 40-period instances, but it is used to test instances from T = 40

up to T = 200. This shows that the trained models can easily generalize in time

dimension with the presented local attention structure. The first set of test instances

with T = 40 are solved with a mean solution time of 2.3 seconds with CPLEX. In all

instances in this test set, the time to generate predictions and infeasibility elimination

loop is fairly short compared to the optimization (resolution) loop of the PredOpt

framework shown in Figure 3.2. For example, for the first two sets of instances with

T = 40, 60 in Table 3.1, the optimal level of predictions that do not cause infeasibility

is calculated within 0.01 seconds using the relaxation of the problem. Then, with

the 80% prediction level, the first set of instances are solved in 9-fold solution time

faster than CPLEX with only a 0.01% optimality gap. The PredOpt reaches the

same average objective function value over 20 test instances faster when compared

with the solution strengthened with the (`,S) inequalities or the heuristic of Absi and

van den Heuvel (2019). We do not report an optimality gap with the (`,S) inequalities

since they solve the test instances to optimality without a solution time limit, but the

optimality gap of the heuristic is much higher than the optimality gap of PredOpt.

86

The PredOpt is statistically faster than the heuristic since the p-value is smaller than

0.001.

For all periods, the time of the PredOpt framework is much less than the CPLEX

solution time. The time improvements increase as the number of periods increases and

problems get harder. For example, in the last data set with T = 200, the solution time

is reduced from more than 10 minutes to slightly above 3 seconds with an optimality

gap of 0.02%. Also, the accuracy of the models does not deteriorate as the number

of periods multiplies, confirming that the encoder-decoder with the local attention

structure is able to capture the problem characteristics. The optimality gap is kept

under 0.03% for all cases in the test sets used in Table 3.1.

As a summary of Table 3.1, our model trained with shorter periods can predict

5-fold longer problems with the local attention structure. For all test instances,

the PredOpt provides a faster solution than the CPLEX, (`,S) inequalities and the

heuristic with a better optimality gap than that of the heuristic. The optimality gap

stays constant over all test instances with an average of 0.02%, and the PredOpt

captures the characteristics of the problem even if the size of the test instances grows

significantly.

Table 3.2 presents a harder set of test instances with 12 items. The model is

only trained using T = 30 and I = 12 instances, but the results are presented for

solving models with periods ranging from T = 30 to T = 150. Similar to Table 3.1,

the time improvements get significantly better as the number of periods in the test

problem multiplies. For example, the data set with T = 125 is solved with an average

of more than 1 hour using CPLEX at the default setting. The PredOpt reduces

the solution time to under 7 seconds with an optimality gap below 0.1% without

infeasibility in the test set. For the last data set with T = 150, the solution time is

reduced from almost 7 hours to just under 5 seconds with an optimality gap of 0.11%.

This translates into a solution time reduction with a factor of 7,236. For all test sets,

87

Table 3.1 Average Results of Experiments for MCLSP with 8 Items

T 40 60 80 100 150 200

timeCPX 2.3 4.2 4.9 30.9 62.2 659.2

timePredOpt 0.3 0.4 0.6 1.2 2.1 3.4

timeLS 3.0 5.6 7.5 12.5 35.9 66.6

timeHeur 10.6 10.5 12.0 13.1 19.9 23.7

timeImpPredOpt 9 12 8 22 28 183

timeImpLS 1 1 1 1 1 6

timeImpHeur 0 0 0 2 3 32

p-value ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001

accuracy(%) 99.6 99.7 99.7 99.6 99.7 99.7

optGapPredOpt(%) 0.01 0.01 0.02 0.03 0.02 0.02

optGapHeur(%) 1.08 1.11 1.03 1.08 0.41 1.05

the accuracy is maintained as the time period increases. Also, the p-value for the

Wilcoxon signed-rank test is fairly small with a lower optimality gap compared to the

heuristic for all cases, showing that the PredOpt reaches a better objective function

value in a shorter time than the heuristic. While (`,S) inequalities are effective in

reducing the solution time for harder instances, they are still significantly slower than

the PredOpt at the cost of a very small optimality gap.

To sum up the results in Table 3.2, the increase in the time improvement factors

increases significantly for harder problems. The optimality gap stays quite steady as

we increase the number of periods in the test set, which highlights the potential of

the PredOpt framework to successfully predict for much longer instances. Also, the

PredOpt framework is faster and better than the specially-designed heuristic for the

MCLSP.

PredOpt Reduces Objective Value Faster than CPLEX It is important to

compare the solution speed of the PredOpt with CPLEX since, in some cases, CPLEX

88

Table 3.2 Average Results of Experiments for MCLSP with 12 Items

T 30 50 75 100 125 150

timeCPX 1.1 10.3 80.9 86.8 3,982.5 25,085.3

timePredOpt 0.3 0.6 1.5 2.0 6.3 4.6

timeLS 2.4 5.9 12.0 18.2 2,259.4 53.1

timeHeur 18.0 14.9 17.5 18.7 22.2 27.6

timeImpPredOpt 4 14 47 40 696 7,236

timeImpLS 0 2 4 5 49 453

timeImpHeur 0 1 4 5 172 867

p-value ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001

accuracy(%) 99.5 99.3 99.2 99.0 99.0 98.9

optGapPredOpt(%) 0.04 0.05 0.06 0.10 0.09 0.11

optGapHeur(%) 0.52 0.86 0.83 1.14 0.87 0.43

quickly identifies a good solution but takes a long time to prove the optimal one

(Accorsi et al., 2022). In Figure 3.3, the progress during the solution process, in

terms of a normalized objective function value averaged over 20 test instances, is

presented to visualize the improvement of the PredOpt framework over CPLEX with

(`,S) inequalities. Figure 3.3a-3.3b present the progress for Table 3.1’s second and

third sets of test instances with T = 60, 80. Figure 3.3c-3.3d present the progress

for Table 3.2’s second and third sets of test instances with T = 50, 75. As discussed

in the previous results, Figure 3.3 demonstrates that the time of PredOpt is less

than that of CPLEX with (`,S) inequalities to reach a particular objective function

value. The graphs show that PredOpt reduces the objective function value much

faster than CPLEX with (`,S). In all solution progress plots, the objective values and

solution times for PredOpt and CPLEX with (`,S) are visually quite distinguished,

showing that the PredOpt framework helps improve the objective function quicker

than CPLEX even in the first few seconds of the solution process.

89

(a) 8 items with 60 periods. (b) 8 items with 80 periods.

(c) 12 items with 50 periods. (d) 12 items with 75 periods.

Figure 3.3 Progress of CPLEX with (`,S) inequalities and PredOpt objective values
during the first few seconds of the solution process. All solution times are given in
CPU seconds.

3.6.2 Quality of Predictions for MSMK

This section presents the results for the MSMK, similar to Section 3.6.1. Table 3.3

presents the results for the model trained with the 8 items, 30 periods, and 5 resource

constraints. The model is used to predict the optimal solution of instances with a

wide range of periods from T = 30 up to T = 200. Unlike Section 3.6.1, we do

not compare with an exact algorithm like (`,S) inequalities but compare the solution

performance with the CPLEX performance and the heuristic of Bertsimas and Demir

(2002). In Table 3.3, the solution time of 30-period instances is reduced by a factor

of 6 with respect to the CPLEX solution time. As the instances become harder,

the time improvement increases significantly. For the last data set with 200 periods,

90

solution time is reduced from more than 3.5 hours to 3 seconds with four orders of

magnitude solution time reduction by PredOpt over CPLEX. The accuracy of the

variables selected by the PredOpt framework is somewhat lower than the MCLSP

instances presented in Tables 3.1 and 3.2. Therefore, the resulting optimality gaps

are at a slightly higher level. We believe that the harder combinatorial nature of the

MSMK possesses a larger learning challenge. Also, the existence of multiple tighter

constraints with pure binary variables per period for MSMK, i.e., Equation (3.2b),

compared to a single binding constraint per period involving continuous variables, i.e.,

Equation (3.1c), for MCLSP, makes MSMK a more challenging problem to predict.

However, the optimality gaps are still below 0.98%, which is a much better solution

performance than the heuristic, which gives an optimality gap above 2.7%. Also, the

PredOpt achieves a better objective function statistically faster than the heuristic

since all p-values for the Wilcoxon signed-rank test are smaller than 0.001.

As a summary of Table 3.3, the PredOpt framework outperforms the heuristic in

both time and optimality gap aspects. The solution time is reduced by four orders of

magnitude with respect to CPLEX and one-to-two orders of magnitude with respect

to the heuristic. This shows that our framework is beneficial for tackling instances

that are hard to solve.

In Table 3.4, results for the model trained with the 10 items, 30 periods, and

4 resource constraints are presented. These results show similarities with the results

presented in Table 3.3. The solution times are reduced significantly for all test

instances with periods from T = 30 to T = 100. In the final data set with T = 100,

the solution time is limited by four hours with CPLEX, resulting in an optimality

gap of 0.002%. The solution time is reduced from 4 hours to under a second with an

optimality gap of 0.68%, resulting in a very significant solution time reduction. For

the same data set, the heuristic can only achieve a solution with a 2.4% optimality

gap in 4 seconds. To sum up Table 3.4, the p-values for the Wilcoxon signed-rank

91

Table 3.3 Average Results of Experiments for MSMK with 8 Items

T 30 50 80 100 150 200

timeCPX 0.9 4.1 67.7 772.8 4,579.8 12,862.5

timePredOpt 0.2 0.2 0.4 2.4 0.5 2.7

timeHeur 7.7 14.1 24.2 43.2 73.6 121.3

timeImpPredOpt 6 22 207 2,854 12,449 15,218

timeImpHeur 0 0 3 17 62 107

p-value ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001

accuracy(%) 92.9 93.6 92.9 91.6 92.3 93.8

optGapPredOpt(%) 0.75 0.67 0.80 0.91 0.98 0.71

optGapHeur(%) 2.74 2.92 3.07 3.01 2.87 2.94

test are very small for the instances that are hard to solve, ensuring that the PredOpt

framework performs better than the heuristic in both the time and optimality gap

aspects.

Table 3.4 Average Results of Experiments for MSMK with 10 Items

T 30 50 70 80 90 100

timeCPX 2.5 41.7 1,051.4 4,408.8 9,057.8 14,409.7

timePredOpt 0.2 0.4 0.5 0.5 52.5 0.7

timeHeur 8.0 14.9 22.2 30.9 34.2 40.9

timeImpPredOpt 14 170 2,027 8,673 12,580 28,451

timeImpHeur 0 3 49 138 262 355

p-value ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001

accuracy(%) 93.0 92.5 92.4 93.1 91.2 93.2

optGapPredOpt(%) 0.80 0.81 0.67 0.72 1.29 0.68

optGapHeur(%) 2.46 2.37 2.35 2.49 2.51 2.40

92

3.6.3 Generalization: Quality of Predictions with Item-wise Expansion
Algorithm

In this section, we present results for item-wise generalization by applying Algorithm

1 presented in Section 3.4.3. Table 3.5 presents the results of the item-wise

generalization for MCLSP. The first three test sets in Table 3.5 are solved by using the

trained model with T = 40 and I = 8, and the last three test sets are solved by using

the trained model with T = 30 and I = 12. For example, the model trained with 8

items and 40 periods is used to predict the test set with 32 items and 200 periods in

the first column of results. Using Algorithm 1 within the PredOpt, the solution time

is reduced by a factor of 62 with only a 0.01% optimality gap. The overall results show

similarities with previously presented tables. The time improvements get better as

problems get harder. In the fourth data set, solution time is reduced from more than

75 minutes to under 15 seconds with an optimality gap of only 0.05%. This translates

into a solution time reduction with a factor of 406. Also, all p-values are smaller than

0.01, ensuring that PredOpt can achieve a statistically faster solution time when

compared to the relax-and-fix heuristic of Bertsimas and Demir (2002). These results

highlight that the PredOpt framework can be successfully used to predict instances

with both longer planning horizons and a larger number of items.

Table 3.6 presents a set of results for the item-wise expansion results for the

MSMK, similar to the results of item-wise generalization for MCLSP in Table 3.5.

The first three sets of results in Table 3.6 are calculated using the trained model used

in Table 3.3, and the remaining three sets of results are calculated with the trained

model used in Table 3.4. Here, we reduce the number of periods as we increase

the number of items for both cases to test the limits of our periodical attention-based

learning framework. Compared to the item-wise generalization of MCLSP, the MSMK

has a slightly growing optimality gap as the number of items increases and the period

decreases. For example, the third data set with 32 items achieves an optimality gap

93

Table 3.5 Average Results of Item-wise Generalization Experiments for MCLSP

Train Items 8 12

Test Items 32 40 80 36 48 60

T 200 150 100 125 100 80

timeCPX 1,045.1 73.2 27.9 4,624.2 1,020.6 115.8

timePredOpt 17.5 9.6 6.3 12.4 13 8.9

timeLS 290.3 95.9 52.4 68.4 46.5 31.8

timeHeur 36.2 34.6 38.3 28.1 27.6 26.6

timeImpPredOpt 62 7 5 406 73 11

timeImpLS 3 1 1 74 23 3

timeImpHeur 28 2 1 163 35 4

p-value ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001

accuracy(%) 99.8 99.8 99.9 99.3 99.5 99.6

optGapPredOpt(%) 0.01 0.01 0.01 0.05 0.03 0.03

optGapHeur(%) 1.18 0.45 1.20 0.94 1.18 1.2

of 1.33% with the PredOpt framework and model trained with 8 items. However, this

result is obtained in a very small fraction of CPLEX solution time, i.e., 74 minutes

of CPLEX compared to 0.3 seconds with PredOpt. For all experiments, PredOpt is

significantly faster than the heuristic since all p-values are smaller than 0.01. Also,

the optimality gaps of PredOpt are lower than the heuristic except for the third and

sixth data sets. The increased optimality gap in the third and sixth data sets occurs

because a lower number of periods in the test set reduces the effectiveness of the

attention mechanism, and the increasing number of items reduces the success of the

item-wise generalization algorithm. On the other hand, PredOpt performs better

than CPLEX and the heuristic for all instances in terms of the solution time. These

94

Table 3.6 Average Results of Item-wise Generalization Experiments for MSMK

Train Items 8 10

Test Items 16 24 32 20 30 40

T 30 20 15 30 20 15

timeCPX 466.1 827.6 4,494.3 3,964.5 6,225.0 4,210.7

timePredOpt 0.4 0.3 0.3 0.5 0.5 0.3

timeHeur 9.5 7.5 5.8 10.2 6.7 5.1

timeImpPredOpt 1,130 3,149 14,728 9,029 13,268 13,536

timeImpHeur 49 104 780 372 955 874

p-value ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001

accuracy(%) 91.2 90.7 88.7 94 93.2 90.5

optGapPredOpt(%) 0.93 1.18 1.49 0.66 0.67 1.77

optGapHeur(%) 1.88 1.33 1.14 1.5 1.25 1.02

results show that PredOpt is a good alternative to exact solvers and heuristics to use

when a fast and accurate solution is needed.

3.7 Conclusions and Future Work

In this study, we present a learning-based framework to solve sequentially dependent

decision-making problems. Our PredOpt framework can help solve optimization

problems in an industrial setting where problems with similar structures are needed

to be solved frequently with slightly different parameters. We proposed a learning

framework based on a neural machine translation architecture. In the PredOpt

framework, we present a strategy to eliminate any infeasible predictions of decision

variables in a fraction of a second. To achieve that, a fast feasibility check is performed

with a relaxed and smaller problem, which is also generated by using the same trained

neural network. Once the best prediction level is determined, the problem is solved in

an integrated way with the commercial solver. Also, we have shown that the models

trained on shorter-period problems can be successfully used to predict instances that

95

have multiple times longer periods using a local attention mechanism. The results

show that the solution time can be reduced up to three orders of magnitude with an

optimality gap below 0.1%. Also, a statistical test confirms that the solution time of

the PredOpt framework is faster than the heuristics. Furthermore, we develop and

implement an item-wise generalization algorithm and show that the models trained

on a small number of items can predict instances with a much larger number of items.

Our PredOpt framework shows a promising direction in integrating learning-

based frameworks with state-of-the-art commercial solvers. The learners can be used

to make the easier decisions, and harder decisions can be left to exact approaches to

solve. In this spirit, future studies that integrate ML together with traditional OR

approaches have the potential to bring out the best of both worlds. Also, we have

shown that ML has a potential for generalization from different directions, such as

time and number of items. Further studies can focus on performing learning from

solutions of smaller and easier problems and extend this knowledge to solve larger and

harder problems. Another future direction could be further generalizing the PredOpt

framework to predict instances with different underlying distributions.

96

CHAPTER 4

A DEEP REINFORCEMENT LEARNING FRAMEWORK FOR
SOLVING TWO-STAGE STOCHASTIC PROGRAMS

4.1 Introduction

The objective of this study is to develop a deep reinforcement learning methodology

for solving scenario-based two-stage stochastic programs. Stochastic programming is

the field of mathematical optimization that offers solutions to stochastic systems

(Prékopa, 2013). The roots of optimization under uncertainty date back to the

1950s, and it is a multidisciplinary area at the intersection of operations research,

statistics, probability, economics, and mathematics. We refer to the book by Birge

and Louveaux (2011) for methodologies used in stochastic programming. Since many

real-world applications involve some degree of uncertainty, stochastic programming

approaches are prevalent in many fields, including but not limited to finance, energy

planning, transportation, telecommunications, and agriculture.

Reinforcement learning is a subfield of machine learning where a decision-making

agent learns to take actions to maximize a reward signal. Historically, reinforcement

learning has been a major focus area in many disciplines, including operations

research, control theory, and game theory, with different names. In general, the

reinforcement learning environment can be described with a Markov decision process

and can be modeled with a 4-tuple containing the set of states, set of actions, state

transition function, and reward function. Dynamic programming algorithms can be

utilized when there is perfect knowledge of the model. However, when the exact

mathematical model is unavailable, or the dynamic programming-based solution has

a large computation footprint due to the large state and action space, reinforcement

learning can approximate state-value or action-value functions. Deep reinforcement

learning makes use of neural networks to learn policies by trial and error. The field

of deep reinforcement learning is expanded significantly in recent years and has been

97

used for successfully solving some of the core problems in the operations research

literature, including the traveling salesperson problem (Bello et al., 2016), knapsack

problem (Afshar et al., 2020), and vehicle routing problem (Nazari et al., 2018).

In this study, with similar motivation, we harness the power of deep reinforcement

to introduce an end-to-end learning methodology to solve scenario-based two-stage

stochastic problems. For that cause, we develop and present two-stage reinforcement

learning (2SRL) framework.

Two-stage problems are one of the most famous cases of stochastic programs

originated by Dantzig (1955). The decisions in the system are made in two stages, and

uncertainty is observed between these two stages. In the first stage, a decision is made

without the observation of the uncertain element of the system. Then the realization

of the uncertainty is observed, and a second-stage decision is made accordingly. The

objective function of the two-stage stochastic programs involves the minimization of

the first-stage cost and the expected second-stage cost. Usually, this uncertainty is

modeled with the scenarios. A distinct second-stage decision would be taking place

for each scenario, but the first-stage decision should be the same for all scenarios.

This is owing to the fact that the first-stage decision is a decision made before the

observation of uncertainty. Figure 4.1 shows this sequential dependency as a scenario

tree graph where the uncertainty is modeled with S scenarios in total. The probability

of the realization of each scenario can be equal to 1
S
or generated using a different

probability distribution.

This approach of modeling stochastic programming problems with scenario trees

has been used widely in a broad range of problems, including disaster management

(Barbarosoǧlu and Arda, 2004), supply chain management (Marufuzzaman et al.,

2014; Gao and You, 2015), transportation (Liu et al., 2009), biofuel production

(Cobuloglu and Büyüktahtakın, 2017), nurse staffing (Kim and Mehrotra, 2015),

water resources management (Guo et al., 2010), airline scheduling (Yen and Birge,

98

2006), waste management (Maqsood and Huang, 2003), airport runway scheduling

(Solveling et al., 2011), energy systems planning (Skar et al., 2014; Liu et al.,

2010) and risk-averse optimization (Tajeddini et al., 2014; Bushaj et al., 2022a).

Stochastic programming, particularly two-stage scenario-based stochastic programs,

is a powerful way of modeling many systems. However, stochastic programs involving

integers are often NP-hard and require specially designed solution methodologies

such as cutting planes and decompositions with complex implementations (Linderoth

and Wright, 2003; Fábián and Szőke, 2007). Therefore, there is still a lack of

solution approaches for online applications such as ride-sharing (Feng et al., 2021) and

electric vehicle charging (Wu and Sioshansi, 2017), where a solution is needed quickly.

Online problems commonly arise in revenue management, internet advertising, and

scheduling appointments in health care (Hwang et al., 2021). Achieving fast solutions

to two-stage stochastic programs can be even life-saving in settings like disaster

management (Grass et al., 2020). Furthermore, those developed algorithms must

run from scratch for each problem, making it impractical for large-scale real-time

applications.

There have been previous attempts to achieve near-optimal solutions to

stochastic programs such as vehicle routing problem (Nazari et al., 2018), traveling

salesperson problem (Kool et al., 2018), and bin packing problem (Balaji et al., 2019)

by applying deep reinforcement learning techniques. However, in many safety-critical

applications, including energy systems and disaster management, certain stochastic

elements and realizations must be explicitly considered with scenarios to solve

by the mathematical model. In this study, our goal is to develop a framework

that can provide satisfactory solutions to such a complex system with the help of

deep reinforcement learning. Therefore, we aim to replace the tedious process of

hand-crafting heuristics with a deep reinforcement learning framework that can get

99

very close to optimal solutions in a fraction of a second only by learning without any

domain-specific information.

Due to their complex nature, two-stage scenario-based stochastic problems are

known to be computationally challenging to solve using off-the-shelf solvers such as

CPLEX or Gurobi. The uncertainty can be modeled in more detail with a large

number of scenarios, also increasing the problem complexity. Researchers resort to

developing hand-crafted exact and heuristic approaches in an attempt to reduce the

computation burden. Exact solution approaches that speed up the solution include

the L-shaped method (Laporte and Louveaux, 1993; Angulo et al., 2016), regularized

decomposition (Ruszczyński, 1986), dual decomposition (Carøe and Schultz, 1999),

and more recently stochastic dual dynamic integer programming (Zou et al., 2019).

Figure 4.1 Two-stage scenario tree.

Our main contribution is a framework for solving two-stage stochastic optimization

problems through developing new reinforcement learning methodologies. We propose

using two different reinforcement learning agents for solving each stage of the problem.

Agent 2 solves the second-stage problem and is trained before Agent 1, which solves

the first-stage problem. This approach prevents the complications that come with

multi-agent reinforcement learning training, such as instability, non-stationarity, and

different learning speeds. We propose training algorithms for Agent 1 and Agent 2

by refining the well-known policy gradient algorithm REINFORCE (Williams, 1992;

100

Silver et al., 2014). Agent 1 is trained with the feedback of Agent 2 since the decisions

made in the first stage have an impact on the second-stage decisions. Further, we

present our 2SRL framework on the two-stage stochastic knapsack problem, one of

the most fundamental and challenging examples of NP-Hard problems. Our research

objective is to achieve satisfactory solutions quickly, with the learned policies making

solutions possible for large-scale online applications. Our 2SRL framework is general

and thus can be extended to other two-stage stochastic programs since we do not

assume any specifics of the two-stage stochastic knapsack problem.

4.2 Literature Review

This section introduces the recent progress in solving operations research problems

with machine learning, focusing on reinforcement learning. Further, we explain our

motivation and contributions in detail.

Reinforcement learning is a branch of machine learning that aims to find actions

to maximize a reward. The history of reinforcement learning can be traced back

to dynamic programming or Bellman equation from Bellman (1966). For a brief

history and a detailed explanation of reinforcement learning, we refer to Sutton and

Barto (2018). In the last decade, state-of-the-art for machine learning has been

significantly expanded with the rise of deep learning. Even though the idea of using

neural networks as function approximators for reinforcement learning is not new, the

renewed interest has achieved significant advancements. In a famous example, the

deep reinforcement learning agent won the complex game of Go against the human

champion by 5 to 0 (Silver et al., 2016). The success of deep reinforcement learning

has gained attention from the operations research community, where those techniques

are applied to optimization problems. For a review of reinforcement learning for

combinatorial optimization problems, we refer to Mazyavkina et al. (2021). For

101

a review of machine learning for combinatorial optimization problems, we refer to

Bengio et al. (2021).

The usage of reinforcement learning for operations research problems is an active

research area. In their pioneering study, Bello et al. (2016) present a framework to

solve the traveling salesperson problem with reinforcement learning. They use the

pointer network architecture to encode the input sequence and then to decode to point

to an input element, which is trained with an asynchronous advantage actor-critic

(A3C) algorithm. Additionally, the authors introduce two different strategies during

inference time by keeping a pool of candidates. Motivated by Bello et al. (2016),

Nazari et al. (2018) present a framework for solving the vehicle routing problem,

which has a set of dynamic features in addition to static features differently from

Bello et al. (2016). Authors propose simplifying the pointer networks to handle static

and dynamic features by eliminating the encoder, replacing it with an embedding

layer, and attending over the input embeddings along with the decoder hidden state

to select an input element when decoding. Also, the usage of embeddings instead

of a recurrence ensures input invariance. The results show that the reinforcement

learning-based solution outperforms classical heuristics and a specialized solver.

Furthermore, the authors present the results for the stochastic vehicle routing

problems, and the deep reinforcement learning agent learns better policies than

practical baselines. In a similar motivation, Hu et al. (2017) present a reinforcement

learning-based methodology using pointer networks to solve the three-dimensional bin

packing problem, which is NP-Hard, and achieve a 5% improvement over heuristics.

Khalil et al. (2017a) explore solving combinatorial optimization problems that

can be formulated as graphs with reinforcement learning. They utilize a graph

embedding network called structure2vec to represent the nodes in the graph, along

with a deep Q-learning algorithm. The featured framework is shown to be effective at

solving minimum vertex cover, maximum cut, and traveling salesperson problems.

102

Deudon et al. (2018) attempt to solve the traveling salesperson problem with

reinforcement learning, but they rely on a multi-head attention mechanism instead of

recurrence, as in Bello et al. (2016). Also, they strengthen their framework with a local

search algorithm to improve the solution found by their reinforcement learning agent.

Kool et al. (2018) present a reinforcement learning-based framework to learn solutions

to combinatorial optimization problems. Their model includes an encoder with a

multi-head attention mechanism similar to Deudon et al. (2018), but their decoder is

different, and they utilize a greedy rollout baseline. They show that their framework

is more effective than heuristics and comparable with specialized algorithms on the

vehicle routing problem, the orienteering problem, and the prize-collecting traveling

salesperson problem.

Chen and Tian (2019) leverage reinforcement learning for the local search of

an optimization problem. Instead of predicting the solutions directly, a solution is

iteratively improved, starting from a feasible solution by choosing a subset of the

solution and then applying a rewriting rule to the selected subset. Lu et al. (2019)

fuse the power of heuristics with reinforcement learning and present a learn-to-improve

framework. Similar to Chen and Tian (2019), they start with a feasible solution and

improve it iteratively by choosing a class of the operator and then the operator itself.

Tang et al. (2020) present a framework for solving integer programs through cutting

planes which is the core of many modern solvers. They present a reinforcement

learning formulation and a model for selecting cutting planes. The results show

that the agent can generalize to instances of different sizes and types. Also, the

trained agent can be used with a branch-and-cut algorithm, which is the core of

commercial solvers. He et al. (2021) present a two-stage framework at the intersection

of reinforcement learning and operations research where a scheduling problem is

solved in two stages. First, a reinforcement learning agent reduces the solution

space in their cyclical framework. Secondly, a mixed-integer process based on a

103

constructive heuristic or dynamic programming is performed. The results show that

such integrated methodologies have a promising potential for solving combinatorial

optimization problems, which are often very hard to solve. Li et al. (2021) present

a framework for solving multiobjective optimization problems using reinforcement

learning. Their methodology involves decomposing the problem into subproblems,

each collaboratively solved by a learning agent using a parameter transfer strategy

during the training phase. Authors use pointer networks along with an actor-critic

training algorithm. The results outperform the classical solution algorithms. Hubbs

et al. (2020) present a comprehensive study where various types of operations research

problems are solved with reinforcement learning and state that it can outperform

classical heuristics in many cases. Also, an open-source library named OR-Gym is

presented for further exploration by researchers.

Kong et al. (2018) train reinforcement learning agents to solve online combina-

torial optimization problems. They demonstrate the capability of deep reinforcement

learning on three different problems, including an online knapsack problem, and show

that trained agents can make decisions that are consistent with specially-designed

classical algorithms. Balaji et al. (2019) apply a deep reinforcement learning-based

solution approach for three classical online stochastic optimization problems and

present benchmark instances. They utilize off-the-shelf reinforcement learning

methods, and the trained agent is superior to or competitive with the established

baselines.

Afshar et al. (2020) suggest using a stage aggregation strategy to reduce the

state space of the knapsack problem, which leads to learning faster and better

solutions. The trained agent can be used for smaller instances without additional

training. Gu et al. (2020) state that some combinatorial optimization problems can

be generalized to unconstrained binary quadratic programming, and they propose

a framework based on pointer networks to solve them fast. Delarue et al. (2020)

104

present a framework where action selection during policy evaluation is formulated as a

mixed-integer program. The proposed framework is applied to the capacitated vehicle

routing problem and has been shown to be competitive with existing reinforcement

learning-based approaches. Bushaj and Büyüktahtakın (2022) present a framework

for solving the multi-dimensional knapsack problem. Their framework starts with

a heuristic to improve the performance of the deep reinforcement learning agent by

ordering the items based on their importance. Then they run the k-means algorithm

for the constraints to find a good initial solution. They form a 2-dimensional

environment to reduce the action space of the agent. The agent can learn and

generalize solution strategies for multi-dimensional knapsack.

Also, the solution algorithms using machine learning methodologies have gained

attention for tackling two-stage stochastic programs. In a recent study, Frejinger

and Larsen (2019) present a framework to solve the container-railcar load planning

problem, formulated as a two-stage stochastic program. They utilize a machine

translation system based on supervised learning to predict a less detailed solution

description instead of a fully detailed one. Similarly, Larsen et al. (2022b) predict an

even less detailed solution for the same two-stage problems as Frejinger and Larsen

(2019) using multilayer perceptrons. Abbasi et al. (2020) propose a framework

based on supervised learning where only first-stage variables are predicted since

second-stage variables are not implemented in practice. Wu et al. (2021) aim to

solve two-stage stochastic optimization problems that can be expressed as graphs to

reduce the number of scenarios and estimate the recourse cost. Crespo-Vazquez et al.

(2018) attempt to solve a two-stage stochastic problem using clustering to generate

scenarios and utilize recurrent neural networks to generate probabilities for scenarios.

Bengio et al. (2020) propose using machine learning to generate a representative

scenario for the problem so that it can be solved with an off-the-shelf solver in a fast

setting. Dumouchelle et al. (2022) propose a framework to solve two-stage stochastic

105

programs. First, they train a network to process scenarios of the model. Then a

surrogate formulation based on a neural network is utilized to estimate the recourse

cost during the solution.

There is growing literature on using deep reinforcement learning methodologies

to help solve various operations research problems in the last few years. Despite all the

advancements, there is still a research gap in integrating deep reinforcement learning

with mathematical programming, including stochastic programming. Scenario-based

two-stage stochastic programs are used in numerous fields for decision-making under

uncertainty. They can benefit from a reduced solution time to be used in real-time

applications without the need for specially designed solution approaches, which

require an expert and can be time-consuming.

4.2.1 Key Contributions of the Study

We fill the described research gap by providing the 2SRL framework for solving

two-stage stochastic problems with deep reinforcement learning and demonstrating

our methodology on a stochastic version of the well-known knapsack problem.

Our objective with this study is to present a general reinforcement learning-based

framework to generate high-quality solutions quickly without the need for developing a

special solution methodology. Our study is motivated by the wide applicability of two-

stage scenario-based stochastic programs and the promising results of reinforcement

learning for combinatorial optimization. Our contributions are described next.

To our knowledge, this is the first study that utilizes deep reinforcement

learning to solve two-stage scenario-based stochastic programs with a multi-agent

structure. Specifically, we propose using two different agents to solve each stage

of the problem. In our 2SRL framework, Agent 2 is trained before Agent 1 to

solve second-stage subproblems given any first-stage decision. This approach has

a flavor of cutting plane algorithms in traditional solution approaches, but it is

106

substantially different in providing a reinforcement learning algorithm rather than

a cutting plane approach. In addition, we present a strategy to generate realistic

second-stage problems without the need for optimal first-stage decisions. We present

our detailed training algorithm together with our scenario sampling approach during

training to reduce the correlations and ease the training, similar to experience replay.

Agent 1 is trained with the feedback of Agent 2 since the decisions made in the first

stage have an impact on both stages of the problem. For this purpose, we propose

a novel policy gradient calculation for the well-known REINFORCE algorithm. We

present our detailed training algorithm to show how actor and critic networks of

Agent 2 are used during Agent 1 training.

We present the quality of our 2SRL framework by presenting the time

improvement factor and optimality gap compared to a commercial solver, state-of-the-

art classical solution methodology, heuristics, and a random solution approach. We

investigate the opportunity of training agents using problems with a few scenarios

and items to predict much larger instances with a higher number of scenarios and

items. The results show that the trained agents can be used to generalize to many

scenarios, highlighting our approach’s computational impact.

4.3 Two-stage Stochastic Knapsack Problem

In this section, we introduce the mathematical formulation for the two-stage stochastic

knapsack problem with its scenario formulation and give a brief overview of its

classical solution methodologies. The variations of stochastic knapsack problems

often arise in the industry with application in portfolio selection (Morita et al.,

1989), telecommunications (Chius et al., 1996), and transportation planning (Cohn

and Barnhart, 1998).

The stochastic knapsack has different formulations that include quadratic

objective (Lisser and Lopez, 2010), probabilistic capacity constraints (Gaivoronski

107

et al., 2011), and risk-aversion measures (Merzifonluoglu and Geunes, 2021). The

multi-dimensional knapsack problem is considered to have a very general structure to

binary and integer problems and is commonly used to demonstrate the computational

performance of stochastic programming solution algorithms as in Angulo et al. (2016)

and Büyüktahtakın (2022). We focus on the maximization version of the knapsack

problem, where the aim is to find a subset of items such that the sum of their sizes

is not more than capacity and the sum of their values is maximized. The two-stage

stochastic knapsack problem can be presented in the form of:

max
x∈{0,1}n1

cᵀx+ Eξ[Q(x, ξ)] (4.1a)

s.t. Ax ≤ b, (4.1b)

where x ∈ {0, 1}n1 represent the first-stage decisions, and Q(x, ξ) is the optimal

value for the second-stage problem. Let ξ := (q, h, T,W) be a random vector with

support Ξ and known probability distribution P . Define the first-stage matrices

c, b, and A to have sizes n1 × 1, m1 × 1, and m1 × n1, respectively, where the

number of variables and constraints in the first stage are represented by n1,m1 ∈ Z+,

respectively. The objective of the problem is to maximize the sum of values for the

selected subset of items and the expected sum of values from the second stage. In

the multi-dimensional knapsack problem, the sum of sizes should be less than the

capacity for each dimension. The second matrices q, h, T , and W have sizes n2 × 1,

m2× 1, m2× n1, and m2× n2, respectively. The number of variables and constraints

in the second stage are represented by n2,m2 ∈ Z+, respectively. The second-stage

decisions are denoted by binary variable y:

max
y∈{0,1}n2

qᵀy (4.2a)

s.t. Tx+Wy ≤ h. (4.2b)

108

Once the first-stage decisions are made, the second-stage problem would be a multi-

dimensional knapsack problem. The randomness in the second stage can be expressed

with S scenarios where some or all of the second-stage matrices can be indexed by their

scenarios as qs, hs, T s, and W s where s ∈ {1, . . . , S}. By replicating the y-variables

for each scenario s, the whole problem can be equivalently expressed as a large-scale

linear binary problem:

max
x∈{0,1}n1 ,ys∈{0,1}n2∀s∈{1,...,S}

cᵀx+
S∑
s=1

psqsᵀys (4.3a)

s.t. Ax ≤ b (4.3b)

T sx+W sys ≤ hs, (4.3c)

where ps represents the probability of realization for scenario s. The linear equivalent

of the problem can be very large with the increasing number of scenarios to solve

directly, even with state-of-the-art solvers such as CPLEX or Gurobi. Therefore

specially-designed solutions algorithms are usually required for solving two-stage

stochastic knapsack and two-stage stochastic problems in general.

Traditional solution approaches for solving two-stage stochastic problems

include the L-shaped method (Laporte and Louveaux, 1993; Angulo et al., 2016),

dual decomposition (Carøe and Schultz, 1999; Lubin et al., 2013), branch-and-bound

(Ahmed et al., 2004), progressive hedging (Rockafellar and Wets, 1991; Gade et al.,

2016), and Gomory cuts (Gade et al., 2014). More recently, stochastic dual dynamic

integer programming (SDDiP) was proposed by Zou et al. (2019) to solve two-stage

and multi-stage stochastic programs with integers and has shown to be applicable

to a common range of problems. For a detailed discussion on two-stage stochastic

programs and general solution approaches, we refer to Birge and Louveaux (2011)

and Küçükyavuz and Sen (2017).

109

4.4 Two-stage Reinforcement Learning (2SRL) Framework

Here, we present the details of the 2SRL framework and justify the need for two

different agents for two different stages. First, the details of pointer networks are

presented to provide a background on the actor-critic algorithm in Section 4.4.1.

Then, in Section 4.4.2, we make a clear explanation of each agent’s communication

and information exchange during training by giving the detailed algorithm based on

REINFORCE (Williams, 1992) together with the scenario sampling strategy.

4.4.1 Pointer Networks

As proposed by Vinyals et al. (2015b), pointer networks have been essential for

many different tasks, including text summarization (See et al., 2017), intelligent

code completion (Li et al., 2017), and airline itinerary prediction (Mottini and

Acuna-Agost, 2017). Based on attention-based encoder-decoder sequence-to-sequence

learning architecture, the pointer network utilizes a pointer mechanism to select an

input element at the time of decoding, which is required for various combinatorial

optimization problems.

The pointer networks consist of four main components as encoder, decoder,

glimpse, and pointer mechanism. An encoder is a recurrent neural network that

processes the input sequence. The encoder aims to generate a high-dimensional

representation of input elements that ideally captures sequential relations and hidden

features. Similar to the encoder, the decoder is also a recurrent neural network, but

it selects a subset of input items in a sequential manner. A pointer is a mechanism

that chooses an element from the input sequence by making a comparison between

encoder and decoder hidden states. Glimpse is a context-based attention mechanism

employed before the pointer mechanism is implemented to gain more knowledge of

the input sequence.

110

Attention-based encoder-decoder models were originally developed for neural

machine translation tasks (Bahdanau et al., 2014; Luong et al., 2015), where a fixed-

sized vocabulary of words is used for training the models. In such a setting, the

vocabulary for the neural machine translation systems must be determined before

training, and changing the vocabulary might require a training iteration. On the

other hand, many combinatorial optimization problems present a different paradigm

than neural machine translation by making predictions of which elements from the

input should be selected for optimal decisions. In the traveling salesperson problem,

a city from the input sequence is selected at each decoding step. In the knapsack

problem, a subset of input items is selected by the decoder. Even though it would be

possible to have a fixed-sized output for such problems, it can be impractical to use

one since adding or removing one input element would require retraining the model or

other special solution paradigm. Pointer networks eliminate this requirement by not

having a fixed-sized prediction dictionary instead, they enable predicting by selecting

a subset of input elements.

As described, the encoder is a recurrent neural network that processes the

input elements of the problem. Long Short-Term Memory or LSTM (Hochreiter

and Schmidhuber, 1997) is a gated recurrent neural network architecture that has

been a popular choice to be used in encoder and decoder of various tasks. Our neural

architecture builds upon the network presented by Bello et al. (2016), but we utilize

bidirectional LSTM to better capture the input characteristics.

In our learning paradigm, we resort to an algorithm known as actor-critic

training to be described in detail later in Section 4.4.2. In this paradigm, the actor

network learns a policy to maximize the objective function, and the critic learns

the expected objective function value given a sample problem. While both networks

contain encoders, the critic does not have a recurrent neural network decoder.

111

The input vector for each item j has size m1 + 1 and is calculated as [cj, Aj/b]

for Agent 1’s problem from Equation (4.1), where cj and Aj represent the problem

parameters for item j with sizes 1 and m1, respectively. The input vector for item

k in Agent 2’s problem has size m2 + 1. It is calculated as [qk,Wk/(h − T x̄)] from

Equation (4.2), where qk and Wk represent the problem parameters for item k with

sizes 1 and m2, respectively. Here, x̄ is the solution to the first-stage problem. Since

the problem that we are trying to solve is a multi-dimensional knapsack problem, this

input structure allows us to normalize each constraint with respect to the existing or

remaining capacity. The following equations are used to describe Agent 1’s learning

task that has n1 items, which may also apply to Agent 2’s problem by changing

the item number to n2. The encoder processes the input sequence in forward and

backward layers and generates the forward and backward hidden states:

−→
h e

1, . . . ,
−→
h e
n, . . . ,

−→
h e
n1

= LSTM e
forward(input1, . . . , inputn, . . . , inputn1) (4.4a)

←−
h e

1, . . . ,
←−
h e
n, . . . ,

←−
h e
n1

= LSTM e
backward(input1, . . . , inputn, . . . , inputn1) (4.4b)

Decoding is done by selecting an item and assigning the value of the corresponding

binary variable to 1, one at a time. This is called a decoder step. The decoder uses

the input data of the previously selected item m′ to generate a hidden state for the

current step m:

−→
h d
m = LSTMd(inputm′) (4.5)

Glimpse is a computational mechanism that compares the current decoder

hidden state
−→
h d
m with the encoder hidden states and takes a linear combination

of the encoder hidden states to use in the pointing mechanism. We concatenate

the forward and backward hidden states of the encoder [
−→
h e
n,
←−
h e
n] to use in both the

glimpse and pointer mechanism. For the glimpse computation at step m, attention

112

scores are calculated using the learned set of parameters sg as:

an =
exp(sg([

−→
h e
n,
←−
h e
n],
−→
h d
m))∑n1

n′=1 exp(s
g([
−→
h e
n′ ,
←−
h e
n′],
−→
h d
m))

∀n = 1, . . . , n1. (4.6a)

During the decoding, we employ a feasibility mask to only select feasible items.

Items are considered to be infeasible if they are selected in a previous decoding step

or violate the constraints by exceeding the capacity once they are added. Here, vg,

W g
ref , and W g

q are learned weights of the model. The similarity score for item n is

calculated as:

sg([
−→
h e
n,
←−
h e
n],
−→
h d
m) =

vg
ᵀ tanh(W g

ref [
−→
h e
n,
←−
h e
n] +W g

q

−→
h d
m) if feasible (4.7a)

−∞ otherwise (4.7b)

After the scores are calculated for each feasible item, which is determined based

on the previously discussed feasibility mask, glimpse gm is computed to be used in

the pointer mechanism. The glimpse is calculated by taking a weighted average:

gm =
∑n1

n=1 an ∗ [
−→
h e
n,
←−
h e
n]. Glimpsing can increase the performance of the model

without a significant computational burden (Vinyals et al., 2015a). Then, for the

item selection with the pointer mechanism, similarity scores are calculated for each

item n as:

sp([
−→
h e
n,
←−
h e
n], gm) =

vp
ᵀ tanh(W p

ref [
−→
h e
n,
←−
h e
n] +W p

q gm) if feasible (4.8a)

−∞ otherwise (4.8b)

The model parameters sp, vp, W p
ref , and W p

q are learned with backpropagation.

Finally, for current step m, the probability of selecting item n is calculated as:

pn =
exp(sp([

−→
h e
n,
←−
h e
n], gm))∑n1

n′=1 exp(s
p([
−→
h e
n′ ,
←−
h e
n′], gm))

∀n = 1, . . . , n1. (4.9a)

4.4.2 Training Paradigm for 2SRL Framework

Here, we present a novel 2SRL training strategy for solving two-stage scenario-based

stochastic optimization problems. In our methodology, Agent 1 is the decision-making

113

reinforcement learning agent for the first-stage problem, and Agent 2 decides on the

values of decision variables for the second-stage problem. The environment can be

defined as the agent’s interaction point with the problem. Decision-maker learns

based on an action-reward cycle through an environment defined by the problem

characteristics. In the context of stochastic programming, those characteristics are

the problem’s input parameters, the decision variables, and the constraints.

In our 2SRL framework, we opted to use two agents that make decisions about

their respective stages instead of having a single agent make decisions for both stages.

In many two-stage stochastic problems, the set of decisions that need to be made

in the first stage can be highly different from second-stage decisions. Therefore,

using a single agent might not be able to handle variability in the types of decisions.

Even in cases where similar decisions are taken in both stages, the structures of the

input data elements can be different. We demonstrate our framework through a

multi-dimensional two-stage stochastic knapsack problem as described in Section 4.3,

where a set of binary decisions is taken for both stages. Even if we have similar type

of decision variables, by having a two-agent framework, we can solve problems with

a different number of constraints in each stage.

Agent 2 is trained before Agent 1. Our aim here is to provide feedback to

Agent 1 on the quality of decisions during its training since the first-stage decisions

must be determined based on their impact on the second-stage decisions as well

as the objective function value. In addition to the second-stage feedback, Agent 2

is separately pre-trained before Agent 1 for various reasons. Firstly, stability can

be challenging when two agents act in the same environment, especially when they

are competing (Buşoniu et al., 2010). Even though both agents try to maximize a

reward in the form of the objective function, the decisions made in both stages might

need to be different to maximize their reward in their respective stages. Therefore,

each agent might be working towards a different set of decision-making strategies,

114

and this might result in competition between them. To eliminate that possibility,

we train both agents sequentially. Furthermore, the non-stationarity of multi-agent

environments is a challenge in multi-agent reinforcement learning since each agent is

learning simultaneously. Each agent tries to solve a moving-target problem meaning

that the optimal policy for an agent changes as the other agents’ optimal policy

changes (Buşoniu et al., 2008; Nguyen et al., 2020). In our framework, we handle

this prospect by learning sequentially. Agent 1 starts learning only after Agent 2 has

fully trained. Also, the varying learning speed of different agents increases the need

for hyperparameter tuning and coordination between agents (Buşoniu et al., 2010).

Furthermore, the literature on multi-agent deep reinforcement learning has been only

recently developing. To combat the complications mentioned above, our agents are

trained successively rather than simultaneously.

Figure 4.2 presents the training overview for Agent 1 and Agent 2 by highlighting

their respective states, actions, and rewards. The high-level training procedure for

Agent 2 with the 2SRL paradigm is presented in Figure 4.2a. Agent 2 solves the

second-stage problem given a particular realization of the uncertain data in the form

of a scenario. The state space consists of the data for that second-stage scenario

problem, i.e., the second-stage matrices q, h, T , and W from Equation (4.2) and the

second-stage decisions initialized as all zeros, y0. The initial state space is denoted

as S(q, h, T,W, y0). The agent generates a solution ȳ where the action space is all

second-stage variables. Then, Agent 2 transitions into the new state S(q, h, T,W, ȳ).

The reward that the agent observes is a measure of the solution quality, i.e., the

objective function value qᵀȳ, where q is the objective function coefficient.

The training of Agent 1 is presented in Figure 4.2b. There is a major difference

in training between Agents 1 and 2. While Agent 2 only gets feedback from its

environment where Agent 1 decision variables are fixed, Agent 1 gets feedback from

both Agent 2 and its environment. This is for the fact that the objective function in

115

(a) Agent 2 training overview.

(b) Agent 1 training overview.

Figure 4.2 2SRL training overview.

the first stage involves the minimization of both the first-stage and expected second-

stage costs. Here, we aim to make sure that Agent 1 is not just considering the

first-stage cost but also is aware that its decisions will impact the reward it is getting

from the second stage. Therefore, the decisions made in both stages are connected.

The state space for Agent 1 consists of first-stage parameters of the problem, i.e., the

116

matrices c, A, and b given in Equation (4.1) and the first-stage decision initialized

as all zeros x0. We denote this initial state space as S(c, A, b, x0). For Agent 1,

the action space is the first-stage decision variables. Agent 1 samples a complete

first-stage solution x̄ as action and transitions into a new state S(c, A, b, x̄). Agent 1

gets a reward for the first stage as cᵀx̄ and the second stage as Eξ[Q(x̄, ξ)] from the

trained Agent 2 model, where ξ denotes the uncertainty. In addition, this approach

for training Agent 1 presents a paradigm similar to classical solution methodologies

such as cutting planes. The main idea of the cutting plane method is to iteratively

generate first-stage solutions by approximating the second-stage cost (Ruszczyński

and Shapiro, 2003; Rahmaniani et al., 2017). We are inspired from this highly adopted

concept and provide Agent 1 with the expected second-stage cost when learning to

predict first-stage variables.

Algorithm 2 presents the training procedure used for Agent 2 and Algorithm 3

outlines the training methodology for Agent 1. Here, we resort to the policy gradient

algorithm based on REINFORCE (Williams, 1992). REINFORCE algorithm has been

used together with an actor-critic training paradigm, which is found to be useful in

reducing the variance of gradients (Bello et al., 2016).

Agent 2 and Simulating Subproblems Our aim here is to train Agent 2 that can

solve second-stage scenario problems given a set of second-stage problem parameters.

However, this raises a complication for Agent 2. Problem (4.2) includes the first-

stage decision variables in constraints (4.2b), but their optimal values are unknown

during training. We propose a strategy to generate realistic second-stage problems by

reducing the right-hand sides of constraints (4.2b) by the amount of capacity used by

the first-stage decisions. To represent this, a set of first-stage coefficients F ∈ [0, 1]

is calculated and saved before the training starts. The aim is to simulate first-stage

decisions similar to true first-stage decisions in the second-stage problem without

117

having to solve them throughout the training. To calculate F , first, a fixed number

of randomly generated two-stage problems given in (4.3) are solved to optimality.

Then, using the optimal first-stage decisions x∗, we calculate coefficient fs = T sx∗

hs
,

where fs represents the fraction of the capacity used in the first-stage problem in

Equation (4.3c) for all s ∈ {1, . . . , S}. Those calculated fs values are saved without

noting scenario superscript s to constitute F . During training, we sample a coefficient

f i from F as independent and identically distributed for each training instance i and

modify the right-hand side hs in Equation (4.3c) to simulate the remaining capacity

as hs(1− T sx
hs

).

Input parameters to Algorithm 2 are the batch size B, number of epochs E,

steps per epoch T , number of scenarios S, and a set of first-stage coefficients F .

Algorithm 2 starts with the initialization of actor and critic networks, θA2 and θC2 ,

respectively, in steps 1 and 2. The actor network θA2 is a pointer network that is

used to make decisions for the second-stage scenario problems. Critic network θC2 is

used to estimate the expected objective function coefficient given the second-stage

problem. Training iterations are repeated for each epoch and each step with a loop

in steps 3 and 4. At step 5, a batch of training data containing both first and

second-stage parameters is sampled. Here, each knapsack instance i is denoted with

KP i ∀i ∈ {1, . . . , B}, which is given in Equation (4.3) with added superscript i that

denotes instance i within a batch of problems. Then at step 6, a random first-stage

coefficient f i ∈ F for all i ∈ {1, . . . , B} is sampled. This step is taken to generate

realistic second-stage problems and, therefore, to help with the quality of trained

models. At step 7, second-stage problem KP i,s
2 for each scenario s ∈ {1, . . . , S}

is calculated for each training instance i ∈ {1, . . . , B} using the selected first-stage

118

Algorithm 2 REINFORCE for Agent 2
Input: Batch size B, number of epochs E, steps per epoch T , number of scenarios

S, a set of first-stage coefficients F
Output: Trained actor network θA2 , trained critic network θC2
Procedure: Training Agent 2

1: Initialize actor network parameters θA2
2: Initialize critic network parameters θC2
3: for epochs = 1 to E do

4: for steps = 1 to T do

5: KP i ← SampleProblem() ∀i ∈ {1, . . . , B}
6: f i ← SampleCoefficient(F) ∀i ∈ {1, . . . , B}
7: KP i,s

2 ← CalculateSecondStageProblem(KP i,f i) ∀i ∈ {1, . . . , B}, ∀s ∈
{1, . . . , S}

8: KP i,s′

2 ← SampleScenario(KP i,s
2) ∀i ∈ {1, . . . , B}

9: yi ← SampleSolution(pθA2 (.|KP i,s′

2)) ∀i ∈ {1, . . . , B}
Update the actor network:

10: z̃i2 ← θC2 (KP i,s′

2) ∀i ∈ {1, . . . , B}
11: gθA2 ←

1
B

∑B
i=1(z(yi|KP i

2)− z̃i2)∇θA2
log pθA2 (yi|KP i,s′

2)

12: θA2 ← ADAM(θA2 , gθA2)

Update the critic network:

13: LC2 ← 1
B

∑B
i=1‖z̃i2 − z(yi|KP i,s′

2)‖2
2

14: θC2 ← ADAM(θC2 ,∇θC2
LC2)

15: end for

16: end for

coefficient f i:

max
yi,s∈{0,1}n2

qi,s
ᵀ
yi,s (4.10a)

s.t. W i,syi,s ≤ hi,s(1− f i). (4.10b)

In this step, we aim to extract the second-stage problem to be used in the training

of Agent 2. In step 8, we sample a single scenario s′ from all available scenarios

119

∀s ∈ {1, . . . , S} in the batch ∀i ∈ {1, . . . , B}. This step is taken to reduce the

correlation within the batch resulting from the same first-stage decisions, especially

when not all second-stage matrices are stochastic. If some of those matrices qs, hs,

T s, and W s are not dependent on scenarios, the learning efficiency would reduce due

to correlated samples. By sampling a single scenario for each instance, we found out

that the training efficiency is increased. The second-stage solution yi is sampled using

the actor model θA2 and the extracted second-stage data KP i,s′

2 within step 9. Here,

the selection of second-stage items yi is made based on the stochastic policy pθA2 . In

the next step, a baseline for the expected objective function value z̃i2 is estimated

using the critic network θC2 , which helps reduce the policy gradient variance. In step

11, the gradients of the actor network θA2 are calculated using the well-known policy

gradient method REINFORCE. Here operator z(yi|KP i,s′

2) calculates the reward for

action yi given second-stage problem parameters KP i,s′

2 as qi,s′ᵀyi. In the next step,

the parameters of the actor network are updated based on the gradients calculated in

the previous step using the stochastic gradient update method Adam (Kingma and

Ba, 2014). With step 13, the mean squared error loss for the critic network θC2 is

calculated by squaring the difference between the objective function value estimated

by the critic network z̃i2 and the objective function value using the prediction made by

the actor network z(yi|KP i,s′

2). In the next step, the parameters of the critic network

are updated using the loss calculated in step 13 with the Adam optimizer. These

steps are repeated for all epochs and steps.

Training Agent 1 In this subsection, we present the detailed trained algorithm for

Agent 1 to solve first-stage problems after Agent 2 is trained to solve second-stage

problems. Algorithm 3 presents the details of training Agent 1 using the policy

gradient algorithm based on REINFORCE. During the training, Agent 1 gets a reward

based on the quality of the decisions both from its environment and Agent 2. This

120

is one of the most important features of our 2SRL framework for solving two-stage

stochastic optimization problems. In general, the objective function of two-stage

stochastic optimization problems can be expressed by Equation (4.1a). Here, the

optimal decisions for the first stage are found considering both the first-stage and

expected second-stage implications. By utilizing the feedback from the second-stage

agent, we aim to ensure that the first-stage decision-maker is aware of the reward

resulting from both stages of the problem. Similar to Algorithm 2; batch size B,

number of epochs E, steps per epoch T , and the number of scenarios S are inputs of

Algorithm 3. Additionally, trained actor θA2
∗ and critic networks θC2

∗ of stage 2 are

taken as input. The algorithm performs a training iteration to output the trained

actor θA1 and critic networks θC1 of stage 1.

Algorithm 3 starts with the initialization of the actor network θA1 and trained

critic network θC1 . In steps 3 and 4, the training loop is continued for a predetermined

number of epochs and steps. In step 5, a batch of two-stage knapsack problems is

sampled randomly from the training set. We denote each knapsack instance i as KP i

∀i ∈ {1, . . . , B}, which is given in Equation (4.3) with added instance superscript i.

In step 6, the first-stage problems are obtained for each problem in the batch. The

first-stage problem KP i
1 for all i ∈ {1, . . . , B} can be expressed as:

max
xi∈{0,1}n1

ci
ᵀ
xi (4.11a)

s.t. Aixi ≤ bi, (4.11b)

where xi is a sampled solution ∀i ∈ {1, . . . , B}. Here, the two-stage problem is isolated

from the second-stage problem. In step 7, a first-stage solution xi is generated for the

KP i
1 ∀i ∈ {1, . . . , B} using the first-stage actor network θA1 . In step 8, an estimate of

the first-stage objective function value z̃i1 is made using the first-stage critic network

θC1 . This predicted baseline is later used in step 13 to make a gradient update on the

actor network θA1 based on the policy gradient theorem. In step 9, the second-stage

121

Algorithm 3 REINFORCE for Agent 1
Input: Batch size B, number of epochs E, steps per epoch T , number of scenarios

S, trained actor network θA2
∗, trained critic network θC2

∗

Output: Trained actor network θA1 , trained critic network θC1
Procedure: Training Agent 1

1: Initialize actor network parameters θA1
2: Initialize critic network parameters θC1
3: for epochs = 1 to E do

4: for steps = 1 to T do

5: KP i ← SampleProblem() ∀i ∈ {1, . . . , B}
6: KP i

1 ← CalculateF irstStageProblem(KP i) ∀i ∈ {1, . . . , B}
7: xi ← SampleSolution(pθA1 (.|KP i

1)) ∀i ∈ {1, . . . , B}
8: z̃i1 ← θC1 (KP i

1) ∀i ∈ {1, . . . , B}
9: KP i,s

2 ← CalculateSecondStageProblem(KP i,xi) ∀i ∈ {1, . . . , B}, ∀s ∈
{1, . . . , S}

10: yi,s ← SampleSolution(pθA2 ∗(.|KP
i,s
2)) ∀i ∈ {1, . . . , B}, ∀s ∈ {1, . . . , S}

Update the actor network:

11: zi2 ← 1
S

∑S
i=1 z(yi,s|KP i,s

2) ∀i ∈ {1, . . . , B}
12: z̃i2 ← 1

S

∑S
i=1 θ

C
2
∗
(KP i,s

2) ∀i ∈ {1, . . . , B}
13: gθA1 ←

1
B

∑B
i=1(z(xi|KP i

1) + zi2 − z̃i1 − z̃i2)∇θA1
log pθA1 (xi|KP i

1)

14: θA1 ← ADAM(θA1 , gθA1)

Update the critic network:

15: LC1 ← 1
B

∑B
i=1‖z̃i1 − z(xi|KP i

1)‖2
2

16: θC1 ← ADAM(θC1 ,∇θC1
LC1)

17: end for

18: end for

problem is isolated from the two-stage problem, similarly to step 7 of Algorithm 2.

The second-stage scenario subproblem KP i,s
2 is expressed given first-stage decision xi

122

for instances i ∈ {1, . . . , B} in the formulation below:

max
yi,s∈{0,1}n2

qi,s
ᵀ
yi,s (4.12a)

s.t. W i,syi,s ≤ hi,s − T i,sxi (4.12b)

Here, we do not sample scenarios, unlike Algorithm 2, since no training iteration

is performed for Agent 2. In step 10, second-stage decision yi,s for each scenario

∀s ∈ {1, . . . , S} generated for each problem ∀i ∈ {1, . . . , B} given in the above

formulation (4.12) using the actor network θA2
∗ of Agent 2 from Algorithm 2. This

is achieved by stochastic policy pθA2 ∗ , trained in Algorithm 2, given the second-stage

scenario subproblem KP i,s
2 ∀i ∈ {1, . . . , B}, ∀s ∈ {1, . . . , S}. Then in step 11, the

expected second-stage cost zi2 is calculated using the predicted second-stage decision

yi,s, where z(yi,s|KP i,s
2) = qi,s

ᵀ
yi,s. To generate a realistic estimate of the baseline for

the second-stage problem z̃i2, the second-stage objective function value is predicted

using the second-stage critic network θC2
∗ within step 12. Then, in step 13, the

gradients are calculated based on a modified version of a policy gradient algorithm by

integrating the second-stage expected objective function value and predicted second-

stage baseline, where z(xi|KP i
1) = ci

ᵀ
xi. Here, gradients include feedback on the

decision quality for the second stage. In step 14, a gradient update is made to the

first-stage actor θA1 using the Adam optimizer. In step 15, first-stage critic loss LC1

is calculated as the mean squared error between the first-stage baseline z̃i1 predicted

by first-stage critic θC1 and the actual first-stage objective function value calculated

by using the variables predicted by first-stage actor θA1 . In the next step, a gradient

update with Adam is made to the first-stage critic network θC1 by using the loss

calculated in the previous step. This training iteration is continued for all steps and

epochs.

123

4.5 Implementation and Experimentation Details

In this section, we present the details of our implementation, experimentation, and

evaluation. Our computational environment is a high-performance computing cluster

running Linux 3.10.0 with Intel Xeon Gold 6226R 2.90 GHz, 96 GB of memory, and

NVIDIA Tesla T4 GPU. To create baseline solution times for two-stage stochastic

knapsack problems, we opted to use Gurobi 9.5 instead of CPLEX 20.1.0 since Gurobi

performed faster when solving various instances in our preliminary results. All codes

are written in Python 3.8.5. The deep learning models are trained using PyTorch

1.7.1.

4.5.1 Generating Two-stage Stochastic Knapsack Problems

To sample two-stage stochastic knapsack problems with scenarios, we employ a

scheme similar to the one presented by Angulo et al. (2016). In their study,

authors generate two-stage stochastic multiple binary knapsack problems to evaluate

their methodology. The parameters of instances are sampled from uniform integer

distributions between u and v, denoted by U [u, v]. The mean of matrices A,

T , and W is denoted by A, T , and W , respectively. The elements of the

first-stage matrices c and A are sampled from U [1, 20]. The right-hand side

parameter b is sampled from U
[
0.4× A× n1, 0.6× A× n1

]
. The elements of the

second-stage matrices q, T , and W are sampled from U [1, 20], and h is sampled from

U
[
0.4× (T × n1 +W × n2), 0.6× (T × n1 +W × n2)

]
. For training, the number of

items for the first stage and the number of items for the second stage are n1, n2 ∈

{10, 20, 30}. Also, the number of resource constraints for the first stage and the

number of resource constraints for the second stage are m1,m2 ∈ {5, 10, 15}. Finally,

we consider problems with 10 scenarios during training for ease of computation. For

testing, we generate instances with an increasing number of items and scenarios. Table

4.1 presents the results with the number of items n1, n2 ∈ {10, 15, 20} andm1,m2 = 5.

124

Table 4.2 presents the results with the number of items n1, n2 ∈ {20, 30, 40} and

m1,m2 = 10. Table 4.3 presents the results with number of items n1, n2 ∈ {30, 45, 60}

andm1,m2 = 15. For all results in Tables 4.1, 4.2, and 4.3, instances with the number

of scenarios s ∈ {10, 50, 100, 500, 1000} are solved.

In a recent study, SDDiP is suggested by Zou et al. (2019) to solve scenario-

based stochastic problems involving integers. The SDDiP is considered to be a

state-of-the-art solution methodology for a wide range of problems and achieved

significant improvements in solution times. Thus, we utilize the SDDiP approach

as a benchmark solution method in our experiments for comparison to the 2SRL.

The SDDiP is a stochastic nested decomposition algorithm that can solve general

two-stage and multi-stage stochastic programs with binary state variables. Recently,

it has been used to solve different types of stochastic programming problems, including

hydropower scheduling (Hjelmeland et al., 2018), power infrastructure planning (Lara

et al., 2020), and lot-sizing (Thevenin et al., 2022). The SDDiP iterates over three

different cuts to approximate cost functions: Benders’ cuts, integer optimality cuts,

and Lagrangian cuts. The algorithm can be stopped if the difference between lower

and upper bounds is not improved for a certain number of iterations. We use Python

implementation of the SDDiP solution algorithm developed by Ding et al. (2019)

together with Gurobi. We limit the SDDiP solution time to 2-hour or 20 stable

iterations, whichever comes first. We also utilize two heuristics to solve the knapsack

problem presented. First, we utilize an LP-based adaptive-fixing (AF) heuristic by

Bertsimas and Demir (2002). For the AF heuristic, we fix 0.1% of variables at each

iteration, instead of a single variable, to reduce the computational burden. Second,

we utilize the greedy primal effective capacity heuristic (PECH) designed by Akçay

et al. (2007). While the heuristics are not specifically designed to solve a two-stage

problem, they deliver high-quality solutions. Also, we generate a random feasible

solution similar to Bello et al. (2016) for comparison purposes.

125

4.5.2 Model Architecture

As explained in Section 4.4.1, the pointer network for both agents contains four main

components: encoder, decoder, glimpse, and pointer mechanism. The actor network

for both Agent 1 and Agent 2 consists of 2 bidirectional LSTM layers with 256 hidden

units in the encoder and 2 unidirectional LSTM layers with 512 hidden units in the

decoder. We utilized a single glimpse calculation before the selection using the pointer

mechanism. The critic network for Agent 1 and Agent 2 consists of 2 bidirectional

LSTM layers with 64 hidden units in the encoder and 2 layered neural networks with

128 units and ReLU activation function. Also, we utilize a dropout technique with a

rate of 0.3 to achieve a better generalization performance (Srivastava et al., 2014).

Similar to Bello et al. (2016), we make use of a softmax temperature with a

temperature hyperparameter of 1.5. In this step, logit values calculated in Equation

(4.8a) are divided by this predetermined parameter. Also, the logit clipping approach

is taken, which is found helpful by Bello et al. (2016) for performance gains. In

this step, logit values calculated Equation (4.8a) are clipped between [−10, 10]. The

training set consists of 10,000 two-stage stochastic optimization problems. Since

we utilize a reinforcement learning-based approach and not supervised learning, the

problems in the training set do not need to be solved before training. However, we

have solved and recorded the solutions of 50 instances to generate a set of first-stage

coefficients F and use it as an input to train Agent 2 in Algorithm 2. Then, the

training set is created by sampling from distributions defined in the previous section.

We also utilize a sampling approach during testing, which samples multiple

solutions from a stochastic policy. This approach can yield a significant improvement

over the greedy decoding approach at the cost of a very small increase in computa-

tional time. This trade-off is very beneficial since making a forward pass using actor

networks is very small compared to very long solution times of two-stage stochastic

programs. In this approach, we do not perform any training iteration but rather just

126

sample solutions from a multinomial distribution with probabilities generated by the

trained network. For results in Tables 4.1, 4.2, and 4.3, we have sampled 100 solutions

for the problems with less than or equal to 100 scenarios and sampled 500 solutions

for problems that have more than 100 scenarios.

4.5.3 Evaluation Methodology

Here, we describe the metrics used to measure the success of our 2SRL framework

to solve the two-stage scenario-based stochastic knapsack problem. We evaluate our

methodology using optimality gap and solution time reduction with respect to the

Gurobi solver, SDDiP, heuristics, and random solution.

• timeGRB: Average solution time of test instances using Gurobi with a 2-hour
solution time limit.

• time2SRL: Average solution time of test instances using 2SRL framework.

• timeSDDiP: Average solution time of test instances using SDDiP with a 2-hour
solution time limit or until it reaches 20 stable iterations (Ding et al., 2019).

• timeAF: Average solution time of test instances using the AF heuristic of
Bertsimas and Demir (2002).

• timePECH: Average solution time of test instances using the PECH of Akçay
et al. (2007).

• timeRand: Average solution time of test instances with a randomly generated
feasible solution.

Further, we calculate the following metrics to compare the 2SRL framework

with other approaches:

Definition 4.5.1 Let the average objective function value for the Gurobi solution be

objGRB and for the 2SRL solution be obj2SRL. The optimality gap optGap2SRL

between the base solution value of Gurobi and the solution of 2SRL framework (SDDiP

solution for optGapSDDiP, AF heuristic solution for optGapAF, PECH heuristic

solution for optGapPECH, and random solution for optGapRand) is given by:

optGap2SRL(%) =
|obj2SRL− objGRB|

objGRB
× 100. (4.13)

127

Note that optGapGRB denotes the optimality gap returned by Gurobi within the

2-hour solution time limit.

Definition 4.5.2 The solution time improvement factor timeImp2SRL resulting

from the 2SRL framework (timeImpSDDiP from using the SDDiP, timeImpAF

from using the AF heuristic, timeImpPECH from using the PECH heuristic, and

timeImpRand from using a random solution) is defined as:

timeImp =
timeGRB

time2SRL
. (4.14)

Definition 4.5.3 A one-sided Wilcoxon signed-rank test (Wilcoxon, 1945) is carried

out to calculate the p-value, which is a statistical test that measures if the pairwise

differences between two solution times are symmetric around 0. The null and

alternative hypotheses are:

H0 : median(timeAF − time2SRL) < 0 (4.15a)

H1 : median(timeAF − time2SRL) > 0 (4.15b)

We reject the null hypothesis H0 if the p-value is less than 0.01 and conclude

that the 2SRL framework performs statistically faster than the AF heuristic.

4.6 Computational Results

This section presents the computational results for the 2SRL, along with a comparison

with Gurobi, SDDiP, AF, and PECH heuristics, and a random solution approach. For

all instances in the tables, solution time is given in seconds and rounded down to zero

if they are less than 0.05 seconds. The number of scenarios is denoted by #sc, and the

number of items in the test set is denoted by #items. Test sets contain 20 instances for

each presented case in each column of Tables 4.1, 4.2, and 4.3. Moreover, we present

the average as Avg, median as Mdn, and standard deviation as Std for each table

over 100 test instances by calculating the metrics independently for each instance.

Table 4.1 presents the results for the 2SRL trained with instances having 10

scenarios, 10 items in the first stage, and 10 items in the second stage. The first

128

dataset given in the second column of Table 4.1 has the same number of items and

scenarios as the training set. For this set, 2SRL provides an instant solution with a

gap of 7.29%. The next set of test instances contains 50 scenarios and 20 items. In

this case, the optimality gap increases slightly to 10.23%. Again, the 2SRL provides

an instant solution and reduces the solution time by five orders of magnitude when

compared to Gurobi. The remaining three sets of instances in Table 4.1 have 100,

500, and 1,000 scenarios, respectively. Their optimality gaps fall between the range of

6% to 7%. While this might be adequate for some applications, heuristics outperform

2SRL in terms of optimality gap, but 2SRL dominates the heuristics in terms of

solution time as can be seen from the time improvement factors. On average, 2SRL

reduces the solution time by more than a factor of 100,000 when compared to Gurobi,

with an average optimality gap of 7.53%. The AF heuristic, however, results in a

better average optimality gap of 2.92% but it is significantly slower than 2SRL with

an average time improvement of around 4,500. Moreover, the PECH heuristic results

in a 5.91% optimality gap but again takes longer than 2SRL and even AF, achieving

a time improvement of 229. Therefore, 2SRL can be preferred over the heuristics in

an online application where a solution is needed instantly. Also, all p-values for the

one-sided Wilcoxon signed-rank test are less than 0.01, confirming that the 2SRL is

faster than the AF heuristic, which is significantly faster than the PECH. In addition,

the 2SRL framework outperforms the random solution with a very large margin of

more than 40% in terms of the optimality gap. On average, the random solution gives

an optimality gap of 48.11% while having a similar solution time to 2SRL.

Table 4.2 presents another set of results for 2SRL. Here, the model is trained

with 20-item problems with 10 scenarios. The first test set presented in the second

column of Table 4.2 has the same number of scenarios and items as the training

set. Here, an optimality gap of 8.47% is achieved using 2SRL in just milliseconds.

The results follow similarities to instances in Table 4.1, but the optimality gaps are

129

Table 4.1 Average Results of Experiments for 2SRL Trained with 10 Items

#sc 10 50 100 500 1000 Avg Mdn Std

#items 10 20 10 15 10 13 10 4

timeGRB 0.1 4,339.3 370.7 6,017.9 3,448.1 2,835.2 195.1 3,260.9

time2SRL 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0

timeSDDiP 3.0 130.3 35.5 451.7 356.1 195.3 100.8 206.0

timeAF 0.0 0.3 0.5 2.0 4.1 1.4 0.5 1.7

timePECH 0.1 4.5 4.3 253.5 513.6 155.2 4.9 211.2

timeRand 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1

timeImp2SRL 112 374,893 52,401 85,935 52,420 113,152 8,135 182,509

timeImpSDDiP 0 38 10 15 9 15 1 22

timeImpAF 13 16,498 1,123 3,567 1,054 4,451 269 8,032

timeImpPECH 3 1,019 93 25 7 229 10 516

timeImpRand 90 374,395 28,649 69,634 26,642 99,882 5,508 181,609

optGapGRB(%) 0.00 0.07 0.01 0.15 0.04 0.05 0.01 0.10

optGap2SRL(%) 7.29 10.23 6.66 6.63 6.86 7.53 6.30 5.49

optGapSDDiP(%) 0.03 0.01 0.03 0.02 0.03 0.02 0.02 0.01

optGapAF(%) 3.18 2.68 3.06 2.68 3.00 2.92 2.43 2.02

optGapPECH(%) 6.01 5.74 5.87 5.98 5.98 5.91 4.93 4.24

optGapRand(%) 47.76 48.62 47.33 47.69 49.15 48.11 46.68 7.10

higher for the second and fourth sets of instances since they have a much larger set

of items. We believe this brings out another layer of complication to a problem that

is already challenging to predict and solve. However, those solutions are significantly

better than the random solution in terms of optimality gaps and, therefore, 2SRL

can provide great flexibility for solving instances with a varying number of variables.

For all instances in Table 4.2, the p-values are smaller than 0.01, ensuring that 2SRL

results in a faster solution than the AF heuristic. For example, the last dataset with

1,000 scenarios is solved in almost 2 hours with Gurobi and returns an average gap

of 0.41%. The SDDiP can only decrease the solution time to around 4,600 seconds.

The AF heuristic reduces the solution time to only 8.6 seconds, with an impressive

gap of 2.44%. However, this solution might not be enough for high-speed applications

130

requiring solutions in less than a second. In this case, 2SRL can provide a solution

in 0.2 seconds, with a gap of 6.25%. This gap would outperform the random solution

gap of 47.63% significantly. Also, for all cases, the AF heuristic outperforms the

PECH heuristic in terms of both solution time and quality.

Table 4.2 Average Results of Experiments for 2SRL Trained with 20 Items

#sc 10 50 100 500 1000 Avg Mdn Std

#items 20 40 20 30 20 26 20 8

timeGRB 3.1 7,200.0 6,485.7 7,200.1 6,896.3 5,557.0 7,200.0 3,023.5

time2SRL 0.0 0.0 0.0 0.2 0.2 0.1 0.0 0.1

timeSDDiP 68.1 6,357.5 497.1 7,041.4 4,644.5 3,721.7 3,788.5 3,130.5

timeAF 0.0 0.5 0.7 4.3 8.6 2.8 0.8 3.4

timePECH 0.2 17.5 17.7 957.4 2,082.3 615.0 18.7 838.8

timeRand 0.0 0.0 0.0 0.1 0.2 0.1 0.0 0.1

timeImp2SRL 951 197,542 296,104 33,263 32,183 112,009 33,601 123,689

timeImpSDDiP 0 1 14 1 2 4 1 6

timeImpAF 93 14,967 9,821 1,761 886 5,506 1,785 6,566

timeImpPECH 15 416 369 8 3 162 8 200

timeImpRand 1,284 340,555 321,654 48,832 34,393 149,344 45,836 159,850

optGapGRB(%) 0.00 0.15 0.23 0.57 0.41 0.27 0.22 0.27

optGap2SRL(%) 8.47 16.78 8.99 10.74 6.25 10.25 9.61 4.53

optGapSDDiP(%) 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01

optGapAF(%) 3.12 1.27 2.68 1.64 2.44 2.23 1.80 1.44

optGapPECH(%) 4.98 5.57 4.86 5.03 4.71 5.03 5.32 1.58

optGapRand(%) 48.05 48.93 46.93 48.55 47.63 48.02 48.46 4.91

Table 4.3 presents the 2SRL results for a harder set of instances. Here, the

Agents are trained using 30-item problems with 10 scenarios. The results show that

the 2SRL outperforms both heuristics in terms of solution time at the cost of a

higher optimality gap. Also, the solution quality of 2SRL deteriorates as the number

of items in the test set differs significantly from the number of items that the models

are trained with. However, for the largest problem with 1,000 scenarios, 2SRL reduces

the solution time to under a second with an optimality gap below 10%. Moreover,

131

all p-values for the Wilcoxon signed-rank test are smaller than 0.01, which ensures

that 2SRL is faster than the AF heuristic. These results highlight the potential of

2SRL for fast solutions while advising caution for the solution quality of instances

with significantly different characteristics.

Table 4.3 Average Results of Experiments for 2SRL Trained with 30 Items

#sc 10 50 100 500 1000 Avg Mdn Std

#items 30 60 30 45 30 39 30 12

timeGRB 92.4 7,200.0 7,200.0 7,200.1 7,200.7 5,778.7 7,200.0 2,859.7

time2SRL 0.0 0.1 0.0 0.4 0.4 0.2 0.1 0.2

timeSDDiP 2,574.2 7,225.7 5,069.5 7,245.4 7,240.2 5,871.0 7,211.4 2,470.2

timeAF 0.1 1.1 1.2 7.1 11.6 4.2 1.3 4.6

timePECH 0.5 38.2 38.3 2,106.7 3,835.7 1,203.9 40.8 1,572.4

timeRand 0.0 0.0 0.0 0.2 0.3 0.1 0.0 0.1

timeImp2SRL 16,893 98,682 187,307 17,192 16,930 67,401 17,192 71,276

timeImpSDDiP 0 1 2 1 1 1 1 1

timeImpAF 1,513 7,269 6,236 1,048 644 3,342 1,076 3,577

timeImpPECH 199 190 190 3 2 117 16 256

timeImpRand 27,397 238,178 243,354 31,890 24,203 113,004 33,883 113,381

optGapGRB(%) 0.00 0.23 0.41 0.43 0.63 0.34 0.32 0.25

optGap2SRL(%) 12.81 20.27 11.97 15.55 9.87 14.09 13.98 4.27

optGapSDDiP(%) 0.01 0.03 0.01 0.04 0.03 0.03 0.03 0.02

optGapAF(%) 2.45 1.05 1.74 1.30 1.86 1.68 1.33 0.90

optGapPECH(%) 4.36 5.08 4.54 4.75 4.50 4.65 4.17 2.03

optGapRand(%) 49.47 48.16 46.27 47.07 47.98 47.79 47.90 4.29

The results presented in Tables 4.1, 4.2, and 4.3 highlight the strength and

potential impact of the 2SRL framework. For all 15 test datasets with different

configurations, the 2SRL framework outperforms the AF and PECH significantly in

terms of solution times. Therefore, 2SRL creates an opportunity to be used in online

applications by sampling a solution in a fraction of a second. Such applications

arise in airlines, ride-sharing, cloud data centers, and online advertising. When a

solution to a two-stage stochastic program is needed almost instantly, 2SRL can

132

be utilized with almost no upfront investment into development, unlike a heuristic.

Agents can be trained with identified distributions and can be deployed without much

challenge. However, the solution quality is lower than the heuristics. Considering the

trade-off between the solution quality and solution time, 2SRL finds itself a place in

the approaches favoring the solution time.

4.7 Discussion

In this study, we presented a reinforcement learning framework to solve scenario-based

two-stage stochastic programs. Those problems commonly arise in various settings,

but are NP-Hard and, thus their solution is not usually viable in fast, practical

applications due to their computational burden unless a special solution strategy

is developed. We intended to eliminate the process of crafting special solution

approaches by automating it through learning a policy. By presenting the 2SRL

framework, we aim to quickly generate adequate solutions without analyzing problem

characteristics. Our 2SRL framework consists of two different agents that learn to

solve each stage of the problem. We presented the details of training based on the

policy gradient theorem. Agent 2 is trained to solve the second-stage problem, and

it is trained before Agent 1, which solves the first-stage problem. During training,

Agent 1 gets feedback on the decision quality from Agent 2 since first-stage decisions

affect both the first and second-stage objective function values. This is achieved by

developing an updated gradient calculation equation for the REINFORCE algorithm.

Furthermore, we introduced a strategy to isolate second-stage problems for training

by sampling a first-stage coefficient. Additionally, we have presented a scenario

sampling strategy for training that reduces the correlations and improves the training

efficiency. We have utilized pointer networks with a feasibility mask that can predict

problems with a varying number of items. The results show that the 2SRL framework

can produce high-quality solutions very fast. For example, the solution time can

133

be reduced from more than an hour to under a second with an optimality gap of

6.25%. Also, once a model is trained, it can be utilized to predict instances with

the same distribution and structure regardless of the number of items or scenarios,

which provides a significant advantage in terms of the generalizability of the results.

This flexibility can open doors for very large-scale problems to be used in online

applications since high-quality solutions can be generated in a fraction of a second.

While the heuristic solutions have a lower optimality gap, they are significantly slower

than 2SRL and require rigorous analysis to develop. With 2SRL, the only requirement

is a couple of days of training with randomly sampled problems. Considering this

trade-off, 2SRL can be utilized to provide solutions to problems where generating

special solutions is time or resource-consuming.

We hope that the presented 2SRL framework pioneers and facilitates new

research in this field. The future direction of study can involve building on 2SRL with

different neural network architectures such as transformers. Reinforcement learning is

a constantly-evolving area of research. Therefore, new training paradigms can increase

the performance of the 2SRL framework. Additionally, more experiments in various

two-stage programs can be performed to test the robustness of the 2SRL framework.

Furthermore, frameworks that integrate reinforcement learning with other approaches

can be investigated. For example, we can choose to use a commercial solver where

reinforcement learning is not entirely confident in the predictions. Also, we can utilize

a supervised learning paradigm to provide optimal decision variables explicitly along

with the reward. Moreover, reinforcement learning agents can be integrated into

classical operations research solution approaches, such as Lagrangean and Benders

decompositions to improve their performance.

134

CHAPTER 5

A NON-ANTICIPATIVE LEARNING-OPTIMIZATION
FRAMEWORK FOR

SOLVING MULTI-STAGE STOCHASTIC PROGRAMS

5.1 Introduction

In this chapter, we present a study at the crossing of Machine Learning (ML) and

Operations Research (OR). In recent years, significant effort and interest have been

put in the flourishing area of using ML for solving OR problems. While significant

results have been achieved, there is still a need for frameworks that can handle special

requirements of various OR problems. Here, we focus on this direction and address OR

problems involving uncertainty. We present a framework for solving scenario-based

multi-stage stochastic programs by combining learning, heuristics, and mathematical

solvers.

The uncertainty is crucial in many OR problems and must be addressed for

accurate and realistic representations of systems of interest. While the modeling of

uncertainty can take many forms, we focus on scenario-based problems, which can be

modeled in two or more stages. In general, scenario-based programs are considered

to be complex to solve. Multi-stage stochastic optimization models are considered

to be much harder than two-stage stochastic models. The sequence ξt, t = 2, . . . , T

is the stochastic process, and the decision made at period t is xt, t = 1, . . . , T . In

a multi-stage stochastic program, a decision x1 is taken before the observation of an

uncertainty ξ2, but then the decision process repeats itself:

decide(x1) → observe(ξ2) → decide(x2) → ... → decide(xT) → observe(ξT)

The decision xt is made at period t and may depend on the data of the process

up to and including period t, but not on the future because of the non-anticipativity of

the unrealized future uncertainty outcomes. Then the T-stage multi-stage stochastic

programs can be expressed as:

135

min
A1x1=b1
x1≥0

cᵀ1x1 + E[min
B2x1+A2x2=b2

x2≥0

cᵀ2x2 + E[· · ·+ E[min
BT xT−1+AT xT =bT

xT≥0

cᵀTxT]]] (5.1a)

where xt ∈ {0, 1}nt . The first-stage matrices c1, A1, and b1 are known with sizes of

n1× 1, m1× n1, and m1× 1, respectively. For the other stages t = 2, . . . , T , matrices

ct, Bt, At, and bt have sizes of nt× 1, mt× nt−1, mt× nt and mt× 1, respectively. At

stage t, the number of variables is nt ∈ Z+ and the number of constraints is mt ∈ Z+

for all t = 1, . . . , T . Some or all of these matrices can contain uncertainty.

Multi-stage stochastic programs are very practical in modeling various appli-

cations, including airline revenue management (Möller et al., 2008), capacity planning

(Huang and Ahmed, 2009), epidemic control planning (Yin and Büyüktahtakın,

2021; Yin et al., 2023; Yin and Büyüktahtakın, 2022), invasive species control and

surveillance (Kıbış et al., 2021; Bushaj et al., 2021), and risk-averse optimization

(Homem-de Mello and Pagnoncelli, 2016; Bushaj et al., 2022a). Despite their

modeling power, they pose a computational challenge and usually require specially

designed algorithms and heuristics. Exact solution approaches include Lagrangian

relaxation (Chen et al., 2002), Dantzig-Wolfe decomposition (Singh et al., 2009), and

branch-and-price (Lulli and Sen, 2004).

In this study, we propose a learning strategy and a testing framework for solving

multi-stage stochastic programming problems in a fast setting. OR problems are

solved repeatedly on daily bases or more frequently in various areas including but

not limited to logistics (Schmidt and Wilhelm, 2000), energy (Vespucci et al., 2012),

healthcare (Guerriero and Guido, 2011), and air transport industries (Barnhart et al.,

2003). Stochastic programs can be used to generate realistic pictures of systems and

provide benefits over deterministic problems (Zakaria et al., 2020). However, their size

and solution time can limit their benefit. Hence, problem-specific methods are often

required for applications that are solved frequently. This process requires an expert

136

and can be time-consuming. We address this issue and provide a general learning

framework for solving scenario-based multi-stage stochastic programs.

Furthermore, multi-stage stochastic problems require a property of non-

anticipativity. Simply put, it ensures that we cannot use information from future

periods. The non-anticipativity constraints are fundamental for multi-stage stochastic

problems, and they can grow rapidly with the number of scenarios. The underlying

stochastic process can be represented with scenarios, with a finite number of

realizations. The framework that we are proposing is specifically designed to handle

scenario-based multi-stage problems and non-anticipativity requirements. We propose

a new type of neural network: Non-anticipative Encoder-Decoder with Attention or

NEDA, where the Encoder-Decoder with Attention part of the algorithm is based on

the neural translation architecture of Luong et al. (2015).

We propose the ScenPredOpt learning-optimization framework, building on

the PredOpt developed in Chapter 3 for deterministic multi-period problems. The

PredOpt utilizes an encoder-decoder model with attention to learning from the

solutions of deterministic multi-stage problems. The PredOpt framework also

eliminates the infeasibility challenge arising from using predictions partially in

Chapter 2. The PredOpt framework predicts the values of both binary decision

variables and tight or close-to-tight constraints. Those identified tight constraints are

used to create a relaxation of the model, which is used to find a level of predictions that

do not cause an infeasible solution. Then, once a suitable level is found, the problem

is solved full-scale to generate the solution. The solution time can be reduced by three

orders of magnitude with a small optimality gap below 0.1%. Furthermore, models

can predict longer instances with more items than they are trained with.

This study presents NEDA to tackle to challenge of non-anticipativity of the

predictions by reconstructing the attention calculations of the model presented in

Luong et al. (2015). NEDA ensures that at each node, the same decision will be

137

made for a subset of scenarios that share that same node of the scenario tree at

any stage t. Also, a new training paradigm is developed for the proposed NEDA

based on deterministic instances that are much easier to solve than scenario-based

stochastic instances. We utilize the presented framework by enabling a heuristic to

improve the solution time further. The heuristic can capture solution characteristics

of a stochastic problem that are not identified by a learning model since it is trained

with deterministic instances. The heuristic based on linear programming (LP) further

reduces the solution time while still maintaining solution quality. Also, we present a

new and improved item-wise expansion strategy.

We present the computational results for ScenPredOpt through stochastic

versions of two fundamental OR problems: capacitated lot-sizing and knapsack.

In the stochastic multi-item capacitated lot-sizing (SMCLSP), several items are

considered for production in a planning horizon. The aim is to minimize the sum of

production, setup, and inventory costs while satisfying the demand. The lot-sizing is

considered to be central in production planning with a diverse range of variations and

applications (Jans and Degraeve, 2008). The stochastic multi-stage multi-dimensional

knapsack (SMSMK) is a dynamic and stochastic version of the classical knapsack

problem. The objective is to find stable solutions by maximizing the profit and

stability bonus while satisfying the resource requirements. The stability of the

solutions over time can be highly crucial for many cases since frequently changing

decisions can be costly or unimplementable. Some examples where stability might

be required include generating human-interpretable dashboards, routing, anomaly

detection, and audience-aware advertising (Cohen et al., 2016). Even though we

present the computational results of our framework for these two problems, we do

not modify our solution framework for them. Therefore, our framework is general

and can be applied to other scenario-based multi-stage stochastic programs.

138

The main research contribution of this study is a prediction-optimization

framework that can solve scenario-based multi-stage stochastic programs. We address

the challenge of non-anticipativity with a new neural architecture called NEDA. A

training mechanism based on deterministic instances is presented to reduce training

time significantly. Also, an improved framework, ScenPredOpt, is presented to utilize

predictions from the neural network model. ScenPredOpt integrates a heuristic based

on LP relaxation to improve solution time reductions further. Moreover, we propose

an improved item-wise generalization algorithm that considers the variability of the

predictions. We present the results of the ScenPredOpt framework and compare

them with cutting-edge solution algorithms and heuristics. Our goal is to reduce the

solution times of multi-stage stochastic programming problems where they are solved

repeatedly. Our motivation is to develop a general framework that can solve such

problems without a problem-specific design and generate fast and close-to-optimal

solutions to solve multi-stage stochastic programs with many scenarios and periods.

5.2 Literature Review

In recent years, the field of ML for solving OR has drawn significant attention. For

an excellent review on the subject, we refer to Bengio et al. (2021). Specifically, using

ML for solving scenario-based two-stage stochastic programs has gained traction.

The closest study to ours is presented by Frejinger and Larsen (2019). They utilize

a learning framework based on a neural translation architecture to solve two-stage

stochastic programs. Even though they share the same motivation as ours, i.e.,

reducing the solution times of stochastic programs, their methodology is significantly

different from ours. While we present a new neural architecture that can handle

non-anticipativity, Frejinger and Larsen (2019) do not consider the non-anticipativity

aspect of the problem. Frejinger and Larsen (2019) present a training paradigm

based on fully solved stochastic problems, while we present a training strategy based

139

on deterministic and easy-to-solve instances. Also, Frejinger and Larsen (2019)

ensure the feasibility of the predictions by a probability mask, but we present

an iterative methodology to select a prediction level that eliminates infeasibility.

Additionally, while they predict an averaged solution description for the recourse

decision, we output the fully detailed solution for all stages of the problem. In a

similar vein, Larsen et al. (2022b) present a framework to solve two-stage stochastic

programs. Authors work on a problem in which the solution for the second stage is

computationally demanding. Therefore, they predict a higher level and less detailed

solution description instead of predicting fully-detailed second-stage decisions using

multilayer perceptrons.

Abbasi et al. (2020) present a methodology for solving two-stage stochastic

optimization problems using well-known machine learning algorithms and a case study

on blood transshipment problems with uncertain demand. Abbasi et al. (2020) train

their models on the solutions of fully-solved stochastic problems and predict only the

first-stage decision variables. The first-stage variables are directly actionable; the

second-stage variables appear to handle uncertainty and are not actionable. They

use classical ML algorithms such as classification and regression trees, k-nearest

neighbors, random forest, and neural networks. In practice, their solution framework

overperforms the existing policy but has an optimality gap of 14%. Wu et al.

(2021) utilize a conditional variational autoencoder to solve graph-based two-stage

stochastic optimization problems. An encoder is used to generate low-dimensional

representations of scenarios, which can be used through a decoder for tasks like

scenario reduction and objective prediction. The presented methodology can be used

for larger problems and more scenarios than they are trained with. In Crespo-Vazquez

et al. (2018), a methodology based on ML is presented to solve the wind and storage

power plant participation problem defined as a two-stage stochastic programming

model. They utilize multivariate clustering to generate a set of scenarios from

140

historical data, and the probabilities of scenarios are calculated by a trained Long

Short-Term Memory (LSTM) model. Bengio et al. (2020) present a framework to

solve two-stage stochastic programs by predicting a representative scenario of all

uncertainty. Therefore, the problem can be solved with a representative scenario

deterministically instead of all scenarios and achieve the same solution faster than the

Gurobi solver. Also, by only generating a surrogate problem, first-stage feasibility is

ensured since the surrogate problem is solved with Gurobi in their framework.

Zheng et al. (2021) propose an encoder-decoder-based framework to solve the

online route-planning problem that is formulated as a two-stage stochastic program.

For supervised learning, the labels are generated by a heuristic algorithm, and

probability masking is applied to ensure feasibility. Dumouchelle et al. (2022) utilize

neural networks to solve two-stage problems by estimating the expected second-stage

cost, which can be done in two ways. In the single-cut version, the expected cost

is predicted for a set of scenarios, and in the multi-cut version, the expected cost

is predicted for a single scenario. Then, those estimations from the neural network

are used in an approximate formulation containing the first-stage decisions. The

resulting framework can be used to solve large problems in seconds. Larsen et al.

(2022a) present a study for solving two-stage programs by utilizing ML to speed-up

hard-to-solve second-stage problems. They propose to use multilayer perceptrons and

predict the recourse objective function value when executing the well-known L-shaped

method.

In a recent study, Nair et al. (2020) present a learning framework to enhance

mixed-integer programming (MIP) solvers using two neural networks. One network

is trained to perform multiple partial assignments for its integer variables, which

generates smaller sub-problems that can be parallelized. The model is trained

using feasible solutions instead of optimal solutions. Another network is trained

for variable selection during the branch-and-bound algorithm to generate a bound for

141

the objective function value with a smaller tree. Shen et al. (2021) present a new

methodology to enhance branch-and-bound algorithms using ML. In the first step,

a graph convolutional network is trained using optimal solutions to problems that

can be expressed as graphs. Then for testing, the trained model outputs a value for

each decision variable representing the probability of being in the optimal solution.

In the next step, a probabilistic branching technique with a guided depth-first search

is proposed to utilize the predicted optimal solutions. Liu et al. (2022) propose a

learning framework by predicting the size of the local branching neighborhood. In

the first step, the size of branching is predicted as a regression task using graph neural

networks. In the second stage, the predicted size is dynamically adapted within the

local branching algorithms using a trained reinforcement learning model. The results

show that the size parameter can be learned and results in significant performance

gains.

Ding et al. (2020) present a study at the intersection of ML and OR. In their

framework, a graph convolutional network is trained to predict values of binary

decision variables. Then those predictions can either be used to generate a heuristic

prediction with a local branching type cut or result in an exact solution with

a root branching rule. In a recent study, Jiménez-Cordero et al. (2022) present

a methodology for constraint generation that is used to warm-start the solution

process. They train an ML model to predict invariant constraints, which is the set

of constraints that cannot be removed from the integer programs without changing

the feasible region. Shen et al. (2022) aim to improve the solution time of large-scale

optimization problems by presenting an ML-based pricing heuristic for the column

generation algorithm. The ML model is trained using the optimal solutions to the

pricing problem in the column generation algorithm, which is the bottleneck of the

algorithm. By having an ML model predicting the optimal solution to the pricing

142

problem, the efficiency of the branch-and-price is increased significantly, which is an

exact method.

In Kotary et al. (2021), authors are interested in learning OR solution using ML

when multiple optimal solutions exist. Also, as a result of randomization within the

combinatorial optimization techniques, the learning task may face a challenge. To

overcome this, the problem of optimal dataset design is introduced with a heuristic

to find solutions with the smallest total variation. Paulus et al. (2021) present a

framework where integer programming solvers are integrated into neural network

architectures as layers that can learn. The main idea is to provide gradients for

both the cost terms and the constraints of an integer program. Therefore, the

proposed model can learn the cost and constraints of the problem without specifying

it explicitly. Huang et al. (2022) suggest a methodology to rank cuts in a cutting

plane algorithm since a good set of cuts can significantly reduce the solution time.

The main idea is to learn a scoring function that can measure the efficiency of the

cuts that can be generalized to other instances. The proposed framework can be used

during branch-and-cut algorithms with a solver.

5.2.1 Key Contributions of the Study

An extensive amount of interest has recently been put toward learning to solve

optimization problems; however, there is still a lack of research for solving scenario-

based multi-stage stochastic programs. Specifically, deep learning-based supervised

methodologies can be considered to solve challenges of training, feasibility, and

non-anticipativity in multi-stage stochastic programs. Our motivation is two-fold.

First, the recent advances at the intersection of machine learning and mathe-

matical optimization programs show a promising direction in solving combina-

torial optimization problems (Liu et al., 2022; Larsen et al., 2022b). Second,

the vast-applicability and computational difficulties of scenario-based multi-stage

143

stochastic programs inspire us to tackle the computational complexity of the problem.

Our goal is to significantly enhance learning-optimization solution algorithms for

scenario-based multi-stage stochastic programs by presenting a general framework.

Our contributions are summarized next.

To the best of our knowledge, this is the first study that utilizes an encoder-

decoder model to learn the solutions of scenario-based multi-stage stochastic programs

and utilize predicted solutions within a mathematical programming solver. We

present an innovative attention-based encoder-decoder model called NEDA, in which

the hidden states of the models are adjusted based on the scenario tree to ensure the

non-anticipativity of the predicted decision variables. We propose a novel training

paradigm for NEDA based on deterministic instances and scenario sampling. This

strategy prevents solving stochastic optimization problems to generate training labels,

which is computationally intractable.

We introduce the ScenPredOpt framework to handle multi-stage programs by

building on the PredOpt presented in Chapter 3. In ScenPredOpt, we utilize a general

LP-based heuristic to speed up the solution further. The ScenPredOpt framework is

designed to handle general scenario-based multi-stage programs with binary variables

by integrating decisions made by learning models, heuristics, and commercial solvers.

Moreover, we establish an item-wise generalization algorithm to predict for problems

with a large number of items by accounting the variability of the prediction. We test

the success of the ScenPredOpt algorithm with a varying number of periods, items,

and scenarios. Results show that it outperforms heuristics, and the solution time can

be improved up a factor of 599 with a gap of only 0.08%.

Section 5.3 presents the formulation of SMCLSP and SMSMK and a brief review

discussion of the traditional solution approaches. Section 5.4 outlines the details

of the NEDA, scenario sampling-based training, ScenPredOpt framework, item-wise

generalization algorithm. Then in Section 5.5, implementation details, including

144

instance generation, training, and evaluation, are presented. Section 5.6 demonstrates

the computational results along with generalization experiments. Finally, Section 5.7

concludes the study with suggestions for future directions.

5.3 Problems

5.3.1 Stochastic Multi-item Capacitated Lot-Sizing Problem

Lot-sizing applications have been central for many industries, including but not

limited to glass, chemical, pharmaceutical, steel, paper, and manufacturing. The

lot-sizing problem has many variations that include setup times, multiple machines,

cyclical schedules, and perishable inventories (Jans and Degraeve, 2008). In this

study, we present a scenario-based version of the classical MCLSP. Here, some or all

parameters of the problem can be uncertain and can be represented with scenarios.

The objective is to minimize the total cost of production, setup, and inventory costs,

while satisfying the demand for each item under all scenarios. The MCLSP, therefore,

and the SMCLSP is NP-Hard (Bitran and Yanasse, 1982).

SMCLSP can be expressed as an MIP, with the number of periods T , items I,

and scenarios S. The parameters of the problems are assumed to be nonnegative and

as follows: production cost psit, setup cost f sit, inventory cost per unit hsit, demand dsit,

and capacity cst ∀i ∈ {1, . . . , I} , ∀t ∈ {1, . . . , T} , ∀s ∈ {1, . . . , S}. The probability

of each scenario is represented by ωs. The set of scenarios that share the same scenario

path with scenario s up to and including period t for item i is represented with Ψs
it.

Nonnegative continuous variables xsit and vsit represent the produced and inventory

units at the end of each period, respectively. The binary variable ysit takes value 1 if

item i is produced at period t for scenario s, and 0 if not. The SMCLSP formulation:

min
S∑
s=1

ωs
I∑
i=1

T∑
t=1

(psitx
s
it + f sity

s
it + hsitv

s
it) (5.2a)

s.t. vsi,t−1 + xsit − dsit = vsit ∀i = 1, . . . , I, ∀t = 1, . . . , T, ∀s = 1, . . . , S (5.2b)

145

I∑
i=1

xsit ≤ cst ∀t = 1, . . . , T, ∀s = 1, . . . , S (5.2c)

xsit ≤ ysitc
s
t ∀i = 1, . . . , I, ∀t = 1, . . . , T, ∀s = 1, . . . , S (5.2d)

xsit = xs
′

it ∀i = 1, . . . , I, ∀t = 1, . . . , T, ∀s = 1, . . . , S, s′ ∈ Ψs
it (5.2e)

ysit = ys
′

it ∀i = 1, . . . , I, ∀t = 1, . . . , T, ∀s = 1, . . . , S, s′ ∈ Ψs
it (5.2f)

vsit = vs
′

it ∀i = 1, . . . , I, ∀t = 1, . . . , T, ∀s = 1, . . . , S, s′ ∈ Ψs
it (5.2g)

xsit, v
s
it ≥ 0 ∀i = 1, . . . , I, ∀t = 1, . . . , T, ∀s = 1, . . . , S (5.2h)

ysit ∈ {0, 1} ∀i = 1, . . . , I, ∀t = 1, . . . , T, ∀s = 1, . . . , S. (5.2i)

The objective function (5.2a) minimizes the expected cost of production, setup,

and inventory over all scenarios, items, and periods. Constraints (5.2b) assure the

flux on inventory in a periodical setting, while demand is satisfied for each item i.

Constraints (5.2c) limit the produced amount for each item by a shared capacity for

all items, and constraints (5.2d) administer setup cost for item i produced in period

t. Constraints (5.2e), (5.2f), and (5.2g) are non-anticipativity constraints for xsit, ysit,

and vsit, respectively. Then constraints (5.2h) establish the nonnegativity of xsit and

vsit. Finally, constraints (5.2i) put binary restrictions for ysit.

The variations of lot-sizing problem and solution approaches have been studied

extensively in the literature. Notably, an exact solution framework was presented by

Florian et al. (1980). Further, another important exact approach with valid (`,S)

inequalities and a separation algorithm was introduced by Barany et al. (1984).

More recently, Büyüktahtakın et al. (2018b) present dynamic programming-based

inequalities to improve solving the multi-item capacitated lot-sizing problem. We

refer to Pochet and Wolsey (2006) for a review on lot-sizing. For general information

on stochastic lot-sizing problems, we refer to the review by Tempelmeier (2013).

Stochastic lot-sizing problems can be much more challenging, and thus solution

approaches such as dynamic programming (Huang and Küçükyavuz, 2008) and

146

progressive hedging (Haugen et al., 2001) are used. Also, more general approaches

that are specifically developed the solve multi-stage scenario-based programs can be

utilized to solve SMCLSP. One of the most recent and highly successful approaches is

developed by Zou et al. (2019). Their developed SDDiP framework utilizes different

types of cutting planes and achieves a state-of-the-art solution framework for solving

multi-stage stochastic programs in different settings (Lara et al., 2020; Yu and Shen,

2020). Heuristic approaches based on the relax-and-fit approach are highly used for

solving both deterministic and stochastic versions of the MCLSP (Helber and Sahling,

2010; Toledo et al., 2015; Absi and van den Heuvel, 2019; Beraldi et al., 2006).

5.3.2 Stochastic Multi-stage Multi-dimensional Knapsack Problem

The stochastic multi-stage multi-dimensional knapsack problem is a periodical version

of the well-known knapsack problem that also includes uncertainty. In this setting, the

aim is to keep a stable solution over time by maximizing the profit and stabilization

bonus while ensuring the capacity constraints are not violated. Even in a single-

dimensional setting, the problem is NP-Hard (Bampis et al., 2022). Consideration

of stability over time plays a vital role in applications such as periodically changing

prices, energy, raw materials, and resources.

SMSMK is formulated as a binary integer program for a number of periods T ,

items I, and scenarios S. The binary variable xsit denotes the decision of inserting

item i ∈ {1, . . . , I}, at period t ∈ {1, . . . , T}, in scenario s ∈ {1, . . . , S} by taking

a value of 1, and 0 otherwise. Binary variable ysit is introduced as the stabilization

bonus and assigned a value of 1 if the decision at period t and t + 1 are identical,

i.e. xsit, xsi,t+1 = 0, or xsit, xsi,t+1 = 1. Otherwise, ysit takes value 0. For item i, period

t, and scenario s profit is denoted by psit, and the bonus is denoted by bsit except

for t 6= T since T − 1 is the last period the stability bonus is added. The problem

considers J different knapsack constraints, and weights are denoted by wsijt for each

147

item i ∈ {1, . . . , I}, knapsack constraint j ∈ {1, . . . , J}, period t ∈ {1, . . . , T}, and

scenario s ∈ {1, . . . , S}. For each resource constraint, the capacity of the knapsack

is denoted by csjt. Ψs
it is the set of scenario indexes that share the same path with

scenario s up to and including period t for item i. Also, ωs is the probability of each

scenario. We modify the formulation in Bampis et al. (2022) to include scenarios and

present the problem as:

max
S∑
s=1

ωs(
I∑
i=1

T∑
t=1

psitx
s
it +

I∑
i=1

T−1∑
t=1

bsity
s
it) (5.3a)

s.t.
I∑
i=1

wsijtx
s
it ≤ csjt ∀t = 1, . . . , T, ∀j = 1, . . . , J, ∀s = 1, . . . , S (5.3b)

ysit ≤ −xsi,t+1 + xsit + 1 ∀i = 1, . . . , I, ∀t = 1, . . . , T − 1, ∀s = 1, . . . , S (5.3c)

ysit ≤ xsi,t+1 − xsit + 1 ∀i = 1, . . . , I, ∀t = 1, . . . , T − 1, ∀s = 1, . . . , S (5.3d)

xsit = xs
′

it ∀i = 1, . . . , I, ∀t = 1, . . . , T, ∀s = 1, . . . , S, s′ ∈ Ψs
it (5.3e)

ysit = ys
′

it ∀i = 1, . . . , I, ∀t = 1, . . . , T − 1, ∀s = 1, . . . , S, s′ ∈ Ψs
it (5.3f)

xsit ∈ {0, 1} ∀i = 1, . . . , I, ∀t = 1, . . . , T, ∀s = 1, . . . , S (5.3g)

ysit ∈ {0, 1} ∀i = 1, . . . , I, ∀t = 1, . . . , T − 1, ∀s = 1, . . . , S. (5.3h)

The objective function (5.3a) maximizes the expected profit and stability bonus

over all scenarios. Constraints (5.3b) are knapsack constraints that limit the weights

of selected items by capacity. Following constraints (5.3c) and (5.3d) secure the

enforcement of bonus if xit = xi,t+1. Precisely, they represent the linear equivalent

of ysit = 1 − |xsi,t+1 − xsit|. Constraints (5.3e) and (5.3f) ensure the non-anticipativity

for xsit and ysit, respectively. Finally, binary restrictions for xsit and ysit are given in

constraints (5.3g) and (5.3h).

The knapsack problem has been studied in the OR literature extensively in

various forms. The knapsack problem has a wide range of applications, and many

types of complex OR problems can be expressed as knapsack-type sub-problems

148

(Varnamkhasti, 2012). Examples include multiple objectives (Ishibuchi et al., 2014),

online knapsack (Cygan et al., 2016), stochastic knapsack (Kosuch and Lisser, 2011),

and probabilistic constraints (Gaivoronski et al., 2011). Numerous exact and heuristic

approaches have been developed to solve different versions of the knapsack problem.

We refer to Cacchiani et al. (2022) for a discussion on recent advances in knapsack

problems. As there are not many solution approaches specially developed for SMSMK

(5.3a)-(5.3h), we utilize a well-known solution framework, namely progressive hedging

(PH), for scenario-based multi-stage problems. Introduced by Rockafellar and

Wets (1991), PH uses the idea of relaxing non-anticipativity constraints and solves

sub-problems independently. Later, a punishment for violating non-anticipativity is

added to the objective for each sub-problem. PH performs well in various stochastic

integer problems (Gul et al., 2015; Veliz et al., 2015).

5.4 Methodology

This section presents the details of the non-anticipative neural machine translation

model designed to predict multi-stage stochastic optimization problems. Then

we introduce the ScenPredOpt framework, which builds and improves on the

infeasible elimination strategy presented in Chapter 3. The ScenPredOpt combines

learning-based decision-making, heuristics, and mathematical optimization solvers

and achieves remarkable solution time reductions, as demonstrated in Section 5.6.

5.4.1 Non-anticipative Encoder-Decoder with Attention

A machine translation system is used to translate from one language to another. In

recent years, translation systems based on neural networks have gained significant

attention and achieved remarkable results (Stahlberg, 2020). In such systems, the

sequence x1, x2, . . . , xm is the input from the source language and is translated to

the target language by generating the output sequence y1, y2, . . . , yn. The neural

machine translation model is trained using pairs of input and output sequence pairs

149

by maximizing the conditional probability: P (y | x) =
∏n

t=1 P (yt | yi|i<t, x). Readers

can be referred to Stahlberg (2020) for a detailed review of neural machine translation

systems. We develop our NEDA based on the architecture presented by Luong et al.

(2015). Its adaptation to predict deterministic multi-stage programs is presented in

Chapter 3. Our approach is different than those former approaches by formulating

a novel attention mechanism and ensuring the non-anticipativity of the predicted

variables.

The neural architecture presented in Luong et al. (2015) includes three main

components. The encoder is responsible for processing the input sequence to generate

a high-dimensional representation of the input sequence at each time step. Ideally,

all characteristics, such as meaning, grammar, and semantics of the input sequence,

are captured by this high-dimensional representation. The decoder is responsible

for generating the output sequence one word at a time using the representation

from the encoder and already translated words. Both the encoder and decoder

are recurrent neural networks, usually with the choice of computing units being

LSTMs. The link between the encoder and decoder is established through a module

called attention, which allows the decoder to focus selectively on crucial information

from the encoder. Sequence-to-sequence models are suitable for predicting periodic

optimization problems since they can handle information flow between the periods

of the problem. This can be a challenge with traditional ML algorithms that do not

consider patterns across time. Also, they accomplish good performance in a variety

of tasks. For detailed information on the original neural network, we refer to Luong

et al. (2015), and for its adaptation, we refer to Chapter 3.

As previously mentioned, Chapter 3 focuses on predicting the decision variables

of multi-stage deterministic problems to be integrated with a commercial solver.

The PredOpt framework presented in Chapter 3 can reduce the solution time up

to three orders of magnitude with optimality gaps lower than 0.1%. However,

150

the PredOpt framework is not out-of-the-box reconcilable with the scenario-based

multi-stage stochastic problems. The main incompatibility between the learning

network presented in Chapter 3 and scenario-based multi-stage stochastic problems

is the non-anticipative nature of the decision variables. Figure 5.1 demonstrates

a scenario tree representation of a problem with four stages, two scenarios per

stage, and, therefore, a total of eight scenarios. In Figure 5.1a, the scenario tree

is presented in the standard form, and in Figure 5.1b, the scenario tree is presented

in disaggregated form. In the scenario formulation of the problem, the variables

are defined independently for each scenario, as in Figure 5.1b. However, they are

connected with a non-anticipativity constraint since two variables that share the

same scenario path up to stage t should be assigned the same decisions for the

implementability of the solutions. The grouping of the constraints is shown with

dashed lines for each stage in Figure 5.1b. The decision variables should take the

same value if they share the same realizations of the scenarios up to the node’s stage,

which is also known as time consistency. For example, all decisions for scenario one

should be identical; therefore, there is only one scenario group. In stage two, there

are two scenario groups: The upper group for scenarios one to four and the lower

group for scenarios five to eight.

The learning network can generate predictions using the data in tabular and

extended formats as presented in Figure 5.1b. However, this raises a critical

complication for the problem of interest with non-anticipativity. This is because

the attention-based neural network uses the processed input information from both

preceding and succeeding periods. The former case is harmless since the information

from the preceding periods is the same for all scenarios that have the same parent

node. However, for succeeding periods, the child nodes will have different parameters

to represent changing scenario data. In effect, the original input data and, therefore,

the processed input data are likely to be different for each distinct child node.

151

(a) Scenario tree in the standard form.

(b) Scenario tree in the disaggregated

form.

Figure 5.1 An example scenario tree that contains four stages and eight scenarios.
Black dashed rectangular shows the scenario groups with the same decisions.

Since those generated hidden states will be used within the attention mechanism,

the predictions can end up being different for each scenario group that requires

non-anticipativity. This would lead to a violation of the non-anticipative structure

of the problem and would result in an unimplementable decision. For example, we

can consider predicting the first scenario group consisting of scenarios one to four

in the second stage. The parameters and, therefore, the input data for the first

stage would be the same for scenarios one to four. On the other hand, the data

of scenarios one and two are identical, and the data of scenarios three and four are

identical, considering only stage three. Assuming the model makes a decision by

only considering the preceding and succeeding periods, i.e., the attention window of

size one, the predictions made would be the same for scenarios one and two and

would be the same for scenarios three and four. These two sets of predictions would

likely be different from each other at stage two. This would violate the fundamental

152

non-anticipativity requirement. In this small example, if the size of the attention

window is two, then four different predictions can be made for the first scenario group,

i.e., scenarios one to four of the second stage. The learner network makes use of input

data for the fourth period as well as the third period, which would have different

parameters for child nodes. Having this violating condition makes the predictions

for the scenario-based multi-stage stochastic program infeasible and inexecutable. In

order to eliminate this violation, we propose a novel neural network architecture called

Non-anticipative Encoder-Decoder with Attention or NEDA.

The proposed NEDA model is based on the network presented in Luong et al.

(2015) and modified to handle the non-anticipative nature of the issue of interest. The

main idea is to generate the same encoder hidden state information for all succeeding

periods that share the same parent node. As an example, in Figure 5.1b, again, we can

consider generating a second-stage prediction for the first scenario group consisting

of scenarios one to four. To generate a prediction that ensures non-anticipativity,

the hidden states on the next periods within the attention windows should be the

same. This is accomplished by averaging the encoder hidden states of child nodes.

The encoder processes all input sequences at once and generates the hidden states,

which ideally seize the characteristics and features of the problem parameters. The

forward encoder layer LSTM e
forward generates the hidden state

−→
h e
t,s and the backward

encoder layer LSTM e
backward generates the hidden state

←−
h e
t,s. Given current period t

and an attention window length D, we can represent the generated hidden state for

each scenario s ∈ {1, . . . , S} as:

−→
h e
t−D,s, . . . ,

−→
h e
t,s, . . . ,

−→
h e
t+D,s = LSTM e

forward(xt−D,s, . . . , xt,s, . . . , xt+D,s) (5.4a)
←−
h e
t−D,s, . . . ,

←−
h e
t,s, . . . ,

←−
h e
t+D,s = LSTM e

backward(xt−D,s, . . . , xt,s, . . . , xt+D,s) (5.4b)

Those hidden states of the forward and backward LSTM layers within the attention

window are concatenated and represented as a single encoder hidden state het,s =

153

[
−→
h e
t,s,
←−
h e
t,s] ∀t ∈ {t−D, . . . , t, . . . , t+D} ∀s ∈ {1, . . . , S}. Let Ωt,s denote the

indices of scenarios that share the same scenario realization up to the current period

t with scenarios s. Therefore, for each scenario s in the problem, averaged hidden

states het,s can be calculated as:

het,s =

∑
s∈Ωt,s

het,s

|Ωt,s|
(5.5)

The explanation behind this step is to determine all groups of scenarios that have

a similar hidden state as the current prediction period t. If those hidden states

are close to each other, then the average of the hidden states would be close to each

other. In the end, the model would be making a similar prediction of binary variables.

However, if the hidden states vary from each other, the trained NEDA model would

get varying hidden states throughout the periods. Therefore, the attention scores

and context calculated in succeeding steps would lead to differently predicted binary

variables for the same scenario clusters violating non-anticipativity. To prevent that,

the NEDA model would make an unsure prediction using the averaged hidden states,

and the determination of those decision variables would be left to the ScenPredOpt

framework, therefore, to the commercial solver to find the best obtainable values.

The decoder cell state is initialized as the scenario average and produces the

output sequence. The decoder LSTMd also generates the decoder hidden state hdt,s

for the current period t using the decision made in the previous period:

hdt,s = LSTMd(yt−1,s) (5.6)

Then attention module is used to further incorporate averaged encoder hidden state

hei,s by making a comparison with the current decoder hidden state hdt,s. The attention

score ai,s is calculated as:

ai,s =
exp(score(hdt,s, h

e
i,s))∑t+D

t′=t−D exp(score(h
d
t,s, h

e
t′,s))

∀i ∈ {t−D, . . . , t+D} , ∀s ∈ {1, . . . , S}

(5.7)

154

and the score is calculated by the following formula:

score(hdt,s, h
e
i,s) = hdt,s

ᵀ
Wαh

e
i,s ∀i ∈ {t−D, . . . , t+D} (5.8)

Using the attention scores, a weighted average of encoder hidden states is taken to

calculate the context:

cnt,s =
t+D∑
i=t−D

ai,s × hei,s (5.9)

Finally, context cnt,s is concatenated with the decoder hidden state and passed

through a linear layer to generate a prediction for scenario s in period t. Note that

for all scenarios that share the same scenario realization up to period t, the predicted

values would be the same since the predictions are calculated from the same averaged

hidden states that are calculated with Equation (5.5).

5.4.2 The ScenPredOpt Framework

Training and Scenario Sampling Our ScenPredOpt framework for stochastic

multi-stage problems significantly differs from the PredOpt framework for deter-

ministic multi-period optimization presented in Chapter 3. In PredOpt, the learner

is responsible for the decisions being made in each stage in a single deterministic

path, but in our approach, the learner is responsible for decisions in all periods

to solve problems with a parallel scenario path with non-anticipativity constraints.

As previously mentioned, the non-anticipativity of the decisions is ensured with the

presented NEDA network.

One of the major challenges arising from using the deterministic PredOpt

framework for solving scenario-based multi-stage stochastic programs is the generation

of training instances. In Chapter 3, optimal solutions to the training set are generated

using a commercial solver. On average, a training problem is generated and solved

in a few seconds. The encoder-decoder models require a lot of training data in the

155

order of millions to learn the optimal solutions. On average, such easy training

instances are solved within a few seconds to optimality in high-performance computing

clusters. While this process is computationally challenging, it is manageable since the

models are trained on shorter and easier instances, which have much less significant

processor and memory requirements to solve. The generation of training instances

is parallelized to reduce training instance generation time significantly. However,

this instance generation approach would be unsuitable for scenario-based multi-stage

stochastic programs, even for short-period instances, as they are much more complex

and significantly harder to solve than deterministic multi-stage problems. To

overcome this computation challenge, we propose a training strategy based on scenario

sampling. In this strategy, at each epoch of training, we sample a single scenario for

each instance and perform a training step using that scenario data and its optimal

solution.

Our proposed training based on scenario sampling achieves a few computational

advantages. First, considering the model is trained by the optimal solutions of several

millions of instances, it can be computationally infeasible to solve such a large number

of multi-stage stochastic problems with multiple scenarios. However, solving the

problem with only a single scenario, i.e., a single scenario path in Figure 5.1b, only

takes a few seconds with a solver. In this setting, the non-anticipativity constraints

in the formulation are removed, and therefore, each subproblem of scenarios can be

solved independently in a fast manner. Secondly, by sampling a problem with a single

scenario path, we increase the learning efficiency in a similar fashion to experience

replay (Mnih et al., 2013). In the scenario formulation, the parameters of a single

instance can be very similar if they share a large scenario path, e.g., scenarios 1 and

2 in Figure 5.1a. This powerful correlation can reduce training efficiency and cause

instability (Zha et al., 2019). By sampling a single scenario of the individual problem

for each epoch, we overcome this challenge. Therefore, the model is not trained on

156

scenario-based multi-stage problems, but on deterministic multi-stage problems where

only a single scenario is considered throughout the planning horizon. For each epoch

during training, a problem containing a single scenario and its solution is used for a

training step.

Similar to Chapter 3, the model is learned to predict the tight or close-to-tight

constraints as well as the binary variables. The aim is to reduce the problem’s size;

therefore, the solution time during the variables’ determination loops is presented

in the next section. The tight or close-to-tight constraints are included in the

formulation, and others are excluded for faster computation. For the SMCLSP,

constraints (5.2c) are labeled as tight if
∑I

i=1 x
s
it ≥ ηcst for a given tightness coefficient

η ∈ [0, 1]. If xsit ≥ ηysitc
s
t , the constraints (5.2d) are assumed to be tight. Similarly, for

SMSMK, constraints (5.3b) are labeled as tight if
∑I

i=1w
s
ijtx

s
it ≥ ηcsjt. The remaining

constraints related to bonus enforcement are removed from relaxation since they

do not affect the feasible region. During the training, the model learns tight or

close-to-tight constraints, and this information is used during testing to speed up the

ScenPredOpt framework.

ScenPredOpt Algorithm A major difference between the PredOpt for deter-

ministic multi-stage problems presented in Chapter 3 and the ScenPredOpt for

scenario-based multi-stage problems in Algorithm 4 is the addition of a loop with

LP relaxation of the problem. A large number of approaches utilize LP relaxations

for solving a multitude of problems involving integers. Commonly, the main idea

is to solve a much easier LP relaxation of the problem and fix some of the integer

variables in the solution to achieve a reduction in solution time. LP-based heuristics

with a variable fixing strategy have been employed extensively in some of the most

well-known and extensively studied problems in OR, such as lot-sizing (Denizel and

Süral, 2006), knapsack (Chen and Hao, 2014), vehicle routing (Cacchiani et al., 2014),

157

and facility location (Guastaroba and Speranza, 2014). With a similar motive, we

propose fixing binary variables based on LP relaxation of the problem in an iterative

way to maintain feasibility. Preliminary results showed that the LP-based approach

has been able to further reduce solution time without decreasing the solution quality.

The NEDA model is trained on deterministic instances based on scenario sampling

and not on the exact solutions of stochastic programs. We believe that including the

LP relaxation solution of the original problem helps ScenPredOpt capture discoveries

that were not identified in the model due to training on deterministic instances and

averaging hidden states. For various problems, different heuristics can be integrated

instead of the LP relaxation-based heuristic to suit the problem needs better.

Algorithm 4 presents the details of the ScenPredOpt algorithm. For testing, the

ScenPredOpt algorithm takes a trained NEDA modelM , input data of the test set α,

initial level (percent) for model-predicted binary variables θM , initial level (percent)

for LP relaxation-assigned binary variables θLP , reduction in the level (percent) for

model-predicted binary variables λM , and reduction in the level (percent) for LP

relaxation-assigned binary variables λLP . The output of the framework is the best

objective function value determined by the ScenPredOpt framework. Also, four

operators are defined. First, the operator FMIP is an MIP solver, and the inputs

to FMIP are problem parameters α, binary variables predicted by the model and

used at a certain level βfM , binary variables assigned by LP relaxation and used at

a certain level βfLP , and the set of constraints C. MIP solver FMIP returns either

z as the best solution found or ∅ that denotes an infeasible problem. Second, the

operator FMIP−FEAS is a feasibility-checker for an MIP and takes a similar set of

arguments as MIP solver FMIP . Here, it is assumed when the sets βfM or βfLP are

∅, and the problem is solved without fixing those variables. Also, instead of using

the set of all constraints C, the feasibility check is performed using a set of predicted

tight constraints C̃. The feasibility-checker operator FMIP−FEAS terminates when a

158

first feasible solution is found, or the problem is certified to be infeasible, which is

denoted by ∅. Third, the operator FLP is an LP solver and takes the same arguments

as FMIP except LP-assigned binary variables βfLP since they are not yet determined.

Differently from MIP solver FMIP , LP solver FLP removes binary variable restrictions

from formulation and solves the problem as an LP. Finally, the operator P is the

top prediction generator and takes a pair of inputs as a set of variables: all of the

predicted binary variables by model βM and prediction level θM , or LP relaxation

assigned binary variables βLP and prediction level θLP . Here, the predicted variables

are selected up to the desired percent of all variables by a function ofmax(βM , 1−βM),

where βM ∈ [0, 1] is a predicted value for model-predicted variables. Similarly,

LP-assigned variables are determined by using max(βLP , 1−βLP), where βLP ∈ [0, 1].

The calculated values are ordered from smallest to largest and selected up to the input

prediction level or prediction percent of the total variables. This approach determines

a set of variables closest to binary values (0 or 1); thus, the model is more confident

in its prediction. The selected variables are labeled as 0 or 1 based on their closeness.

The output of this operator is a set of fixed variables: βfM or βfLP , depending on the

input.

The algorithm starts with predicting the binary variables βM and tight

constraints C̃ in steps 1 and 2, respectively. In step 3, the set of variables predicted

and fixed by the model, βfM , is determined with an initial level θM . Next, the

prediction level feasibility loop is introduced in step 4, and it is continued until a

feasible solution is found using the MIP feasibility checker FMIP−FEAS. Note that

in this step, we use model-predicted variables and a set of tight constraints C̃, but

do not include any LP-assigned binary variables βfLP . Within this loop, if a feasible

solution is not found, prediction level θM is reduced by λM , and a smaller set of βfM

is generated. Once this loop is ended, a linear relaxation of the problem is solved

using LP solver FLP in step 8 using determined predictions βfM and all constraints

159

Algorithm 4 ScenPredOpt Algorithm
Input: Trained NEDA model M

Input data of the test set α
Initial level for model-predicted binary variables θM
Initial level for LP relaxation-assigned binary variables θLP
Reduction in the level for model-predicted binary variables λM ,
Reduction in the level for LP relaxation-assigned binary variables λLP

Output: Optimal objective function value z
Operator: MIP solver FMIP (α, βfM , β

f
LP , C)

MIP feasibility checker FMIP−FEAS(α, βfM , β
f
LP , C̃)

LP solver FLP (α, βfM , β
f
LP , C)

Select top predictions P (βM , θM) or P (βLP , θLP)
ScenPredOpt

1: Predict binary decision variables: βM = M(α)

2: Predict the set of tight constraints: C̃ = M(α)

3: Initialize model-predicted binary variables: βfM = P (βM , θM)

Loop to determine βfM with tight constraints
4: while FMIP−FEAS(α, βfM ,∅, C̃) = ∅ do
5: Reduce the used level for model-predicted binary variables: θM = θM − λM
6: Get top predictions to fix: βfM = P (βM , θM)

7: end while
Determine LP-relaxation-assigned binary variables

8: Solve LP relaxation: βLP ⇐ FLP (α, βfM ,∅, C)

9: Initialize LP relaxation-assigned binary variables: βfLP = P (βLP , θLP)

Loop to determine βfLP with tight constraints
10: while FMIP−FEAS(α, βfM , β

f
LP , C̃) = ∅ do

11: Reduce used level for LP-assigned binary variables: θLP = θLP − λLP
12: Get top predictions to fix: βfLP = P (βLP , θLP)

13: end while
Loop to solve the model with fixed variables βfM and βfLP with all constraints

14: while FMIP (α, βfM , β
f
LP , C) = ∅ do

15: Reduce used level for model-predicted binary variables: θM = θM − λM
16: Reduce used level for LP-assigned binary variables: θLP = θLP − λLP
17: Get top predictions to fix: βfM = P (βM , θM)

18: Get top predictions to fix: βfLP = P (βLP , θLP)

19: end while
20: Return solution found in step 14 z = FMIP (α, βfM , β

f
LP , C,)

160

C instead of predicted tight constraints C̃. The resulting variables constitute the

set of LP-assigned binary variables βLP . Then in step 9, the set of fixed variables

is determined with an initial level for LP-assigned binary variables θLP . Here, βfLP

excludes the set of model-predicted variables βfM , i.e., βfLP ∩ β
f
M = ∅ always holds.

In the following step 10, a new loop begins and continues until a feasible solution is

found. This loop is necessary to overcome possible infeasibility resulting from fixing

binary variables from the LP relaxation. Similar to the loop in step 4, this loop solves

the problem using model-predicted variables βfM and a set of tight constraints C̃, but

also includes fixing LP-assigned binary variables βfLP during the solution. Within the

loop, the level for LP-assigned binary variables θLP is reduced by λLP , and the set of

LP-assigned fixed binary variables βfLP is updated. Once a feasible solution is found,

a new loop begins in step 14 to achieve a solution to report by the ScenPredOpt.

However, this loop utilizes the complete formulation of the problem considering all

constraints C and not just the predicted set of tight constraints C̃ and either solves

to problem fully or reports infeasibility. This is to ensure feasibility is maintained

with the original problem. However, in practice, the previous loops in steps 4 and

10 are well-performing, and the algorithm usually terminates without using steps

14 to 18. The loop defined by steps 14 to 18 is only used when it is necessary to

ensure feasibility and is not run often by ScenPredOpt since the former loops find a

feasible solution with high success. If a feasible solution is not found, both fixed levels

for model-predicted binary variables θM and LP relaxation-assigned binary variables

θLP are reduced by λM and λLP , respectively. Then, in the next iteration, both

variables predicted by model βfM and variables assigned by LP relaxation βfLP are

updated. Then, in step 20, the best solution is determined by the ScenPredOpt, and

the corresponding objective function value is returned from the solution found in the

loop starting at step 14.

161

5.4.3 Generalization with Item-wise Expansion

Here, we present an item-wise generalization algorithm that enables a NEDA model

trained with a few items to predict problems with a large set of items. This presents

an important aspect of the ScenPredOpt solution framework since then models can

be trained using small-sized problems that are easier to solve. Therefore, a significant

time reduction can be achieved when generating training instances and model training

time. In Chapter 3, we introduced an item-wise generalization algorithm and show

that the model is very successful at generalizing in the item dimension. Here, we

improve the item-wise generalization algorithm by considering the variability in the

predictions made.

Similar to Algorithm 1 in Chapter 3, we make predictions at each step of the

algorithm using a subset of items and consolidate them to use in the ScenPredOpt

framework. Algorithm 5 presents the details of the improved item-wise generalization

algorithm. The inputs to the algorithm are trained model M , the number of items

during model training IM , input data of the test set α, set of items in the test set

i ∈ {1, . . . , I}, and threshold prediction count δ. The output is a set of predictions β̂i

∀i ∈ {1, . . . , I}. In step 1, we initialize prediction count γi to be zero, for each item

i. Then, cumulative prediction βi is initialized as 0, for each item i. In step 3, we

initialize the set of saved predictions πi for each item i ∈ {1, . . . , I}, which is a set to

save predictions made at each iteration. Next, an iteration is started until each item i

is predicted at least threshold prediction count δ times. In step 5, we sample a subset

of items B with a size equal to the number of items that the model is trained with, i.e.,

|B| = IM . Later, we generate predictions θ̂B using the trained model M . The input

to the model is the data of the selected subset αB, in which the right-hand coefficients

are scaled back to account for an increased number of items. For SMCLSP, we adjust

Equation (5.2c) as cst = cst ×
∑

i∈B dsit∑I
i=1 d

s
it

, ∀t = 1, . . . , T, ∀s = 1, . . . , S,. For SMSMK,

we adjust Equation (5.3b) as csjt = csjt ×
∑

i∈B ws
ijt∑I

i=1 w
s
ijt

, ∀t = 1, . . . , T, ∀j = 1, . . . , J,

162

∀s = 1, . . . , S. In step 7, we sum the current predictions θ̂i with β̂i for the selected

subset B. In step 8, we save the current predictions θ̂i by concatenating them with

the existing predictions πi. Then, the prediction count γi is increased for each item

i ∈ B. In step 11, we calculate standard deviation σi for all items i ∈ {1, . . . , I} using

the set of saved predictions πi. Then, in step 12, we divide the cumulative predictions

β̂i with their respective counts γi. Then, for each item i ∈ {1, . . . , I}, we calibrate the

predictions with calculated standard deviations. The main idea is to push variables

with higher variability closer to 0.5 so that they are determined by the ScenPredOpt

instead of directly fixing it. Here, we intend to hold variables with lower variability

in high regard. For example, if two variables have similar predictions, we prefer the

variables that are consistently predicted instead of the more uncertain and unstably

predicted ones. Therefore, we add or subtract the variability from predictions based

on their closeness to 0 or 1. Then, those variables with higher deviations would be left

to the solver. Also, we add or subtract squared standard deviation instead of directly

the standard deviation since we found out empirically that using the latter is a severe

punishment for variability and the former performs better. Moreover, the squared

standard deviation σ2
i is smaller than the standard deviation σi since all predictions

are between 0 and 1. In step 15, if the resulting prediction β̂i is smaller than 0.5,

we add the squared standard deviation σ2
i . Then, we ensure that the prediction is

not more than 0.5, otherwise, it might be predicted as 1 within the ScenPredOpt

framework. Else, the squared standard deviation σ2
i is subtracted from the prediction

β̂i to push more uncertain predictions to the middle ground to be determined by the

commercial solver. Similarly, we ensure that the final prediction value is not less than

0.5.

163

Algorithm 5 Improved Item-wise Generalization Prediction Algorithm
Input: Trained model M , number of items during model training IM , input data

of the test set α, set of items in the test set i ∈ {1, . . . , I}, and threshold prediction

count δ

Output: Predicted value for item ∀i ∈ {1, . . . , I}, β̂i, for the test set

Improved Item-wise Generalization

1: Initialize prediction count of each item to be zero: γi = 0, ∀i ∈ {1, . . . , I}
2: Initialize prediction of each item to be zero: βi = 0, ∀i ∈ {1, . . . , I}
3: Initialize set of saved prediction for each item as empty: πi, ∀i ∈ {1, . . . , I}
4: while ∃ γi ≤ δ i ∈ {1, . . . , I} do

5: Sample a subset of items, B, with the number of items in the subset equal to

the number of items in the trained model IM : B ⊂ {1, . . . , I} and |B| = IM

6: Make a forward pass using the input data of the selected subset B of items:

θ̂B = M(αB)

7: Sum predictions for subset B of selected items: β̂i := β̂i + θ̂i, ∀i ∈ B
8: Save predictions for subset B of selected items: πi := [πi, θ̂i], ∀i ∈ B
9: Increase prediction counts for subset B of selected items: γi = γi + 1, ∀i ∈ B

10: end while

11: Calculate standard deviation of predictions for each item i using saved predictions:

σi = StdDev(πi), ∀i ∈ {1, . . . , I}
12: Calculate the prediction value for each item i ∈ {1, . . . , I} by dividing the sum of

saved predictions with respective counts: β̂i := β̂i ÷ γi
13: for For each item i ∈ {1, . . . , I} do
14: if β̂i ≤ 0.5 then

15: Calibrate prediction for item i by summing the squared standard deviation:

β̂i := min{0.5, β̂i + σ2
i }

16: else

17: Calibrate prediction for item i by subtracting the squared standard deviation:

β̂i := max{0.5, β̂i − σ2
i }

18: end if

19: end for

164

5.5 Implementation and Experimentation Details

In this section, the details of generating instances, experimentation setup, and

evaluation metrics are presented. A high-performance computing cluster is used for

instance generation, training, and testing. The cluster runs on Linux 3.10.0 with Intel

Xeon Gold 6226R 2.90 GHz, 96 GB of memory, and an NVIDIA Tesla T4 GPU. Test

instances are solved using Gurobi Optimizer 9.5 instead of CPLEX 20.1.0 since it was

faster on preliminary stochastic multi-stage test problems. Python 3.8.5 and PyTorch

1.7.1 are used for training and testing. Gurobi is used with Python API. All reported

solution times are in CPU seconds. All models are trained using GPUs.

5.5.1 Instance Generation

The parameters of instances are sampled from nonnegative uniform integer distri-

bution between integers a and b represented by U [a, b]. For testing instances, we also

employ a scenario capping strategy to reduce the exponentially growing number of

scenarios with increasing time periods. In this setting, after the capping period, no

new scenario is generated, and the data of the remaining stages are assumed to be

the same or deterministic. Before the capping period, for each scenario node, the

set of succeeding scenarios is generated to be the same. For example, in the fourth

stage of Figure 5.1a, the parameters for scenarios 1,3,5, and 7 are identical, and the

parameters for scenarios 2,4,6, and 8 are identical since we set the capping period to

three in this example. In Appendix B, we present further details of the generated

test instances.

SMCLSP Instances: Instance generation for SMCLSP is implemented based on

the approach given in Büyüktahtakın et al. (2018b). The hardness of the SMCLSP

is controlled by two main factors: capacity-to-demand ratios c ∈ {10, 14} and

setup-to-holding cost ratio r = 1, 000. The production cost psit is drawn from

U [1, 200], inventory cost hsit is sampled from U [1, 100], and demand dsit is drawn from

165

U [500, 1500]. The overall means of d and h are represented by d̄ and h̄, respectively.

The capacity ct is drawn from U
[
0.8cd̄, 1.2cd̄

]
and setup cost f sit is drawn from

U
[
0.9rh̄, 1.1rh̄

]
. Two different models are trained for SMCLSP: The first model

is trained with T = 40 periods and I = 8 items. The second model is trained with

T = 30 periods and I = 12 items. For both models, datasets with some combinations

of T ∈ {10, 15} and S ∈ {32, 64, 81, 125, 243, 512} are used for testing. For item-wise

expansion, we used T ∈ {15, 10}, S ∈ {32, 64, 81}, and I ∈ {24, 32, 16} for the first

model with I = 8 and T ∈ {15, 10}, S ∈ {32, 64, 81}, and I ∈ {36, 48, 24, } for the

second model with I = 12. For SMCLSP, 18 test sets are generated, each including

20 test instances.

SMSMK Instances: The profit psit is drawn from U [1, 1000], the stability bonus

bsit is drawn from U [1, 1000], item weights wijt is drawn from U [1, 1000], and the

capacity csjt is drawn from U
[
0.5
∑I

i=1wijt, 0.8
∑I

i=1wijt

]
. Two models are trained

for SMSMK: The one with T = 30 periods with I = 8 items and the second with

T = 30 periods with I = 10 items. Test set for both models have some combination

of T ∈ {10, 15} and S ∈ {32, 64, 81, 125, 243, 512}. Also, both models are tested with

the given parameters for the two-stage problem. For the first model trained with

I = 8, instances with T ∈ {15, 10}, S ∈ {32, 64, 81}, and I ∈ {24, 32, 16} are used

for testing item-wise expansion. For the second model trained with I = 10, test set

with T ∈ {15, 10}, S ∈ {32, 64, 81}, and I ∈ {30, 40, 20} are generated with item-wise

expansion. A total of 30 test sets, each with 20 instances, have been generated.

5.5.2 Implementation Specifications

For SMCLSP, we implement SDDiP based on Ding et al. (2019) with the default

setting and a time limit of 7200 seconds until 20 stable iterations are achieved.

Additionally, we implement a heuristic based on Absi and van den Heuvel (2019)

to generate a baseline for comparison. Within the heuristic, the number of fixed

166

periods is assigned as T
20
, and the periods with binary variables are assigned as T

10
.

For SMSMK, we utilize the PH approach presented by Watson and Woodruff (2011)

to compare our solution quality. Their PH algorithm is an enhanced version of the

classical PH algorithms that address the convergence issues. SDDiP is not applicable

for SMSMK since SDDiP requires the complete or relatively complete recourse

condition and the SMSMK is not completely recourse. Also, we utilize the heuristic

solution presented in Bertsimas and Demir (2002) for benchmarking as there is not

an existing heuristic approach specifically developed for SMSMK given by Equation

(5.3). Their heuristic solves an LP relaxation of the problem at each iteration. Due

to the computational challenge of this heuristic, we set 0.1% of binary variables to 0

instead of a single variable at each step of the iteration. This modification results in

a much faster heuristic solution at the cost of a slightly increased optimality gap for

instances with a very large number of variables. Our objective with this modification

is to present a fairer time comparison between ScenPredOpt and the heuristic of

Bertsimas and Demir (2002).

We set the initial level for model-predicted binary variables θM = 50% for

SMCLSP and θM = 40% for SMSMK. For both problem types, we assign the initial

level for LP relaxation-assigned binary variables θLP = 5%. Also, the reduction in the

level for model-predicted binary variables λM = 10% and the reduction in the level for

LP relaxation-assigned binary variables λLP = 1%. The time to generate predictions

is less than one second for all instances and is included in timeScenPredOpt. For all

tables, we present the number of stages T and the total number of scenarios #sc.

5.5.3 Model Training

The NEDA models are trained with longer period problems than the instances in the

test set to capture and learn more sequential decision structures with the attention

structure. The instances used in the training set are deterministic and solved in 1.7

167

seconds on average. The SMCLSP models in Tables 5.1 and 5.2 has 128 and 64

hidden units in the decoder for both forward and backward layer, respectively. The

former SMCLSP model is trained for 18 hours using a training set with T = 40. The

latter SMCLSP model is trained using T = 30 problems in 30 hours. The SMSMK

models with results presented in Tables 5.4 and 5.5 are trained using instances with

T = 30 and contain 256 and 128 hidden units in both forward and backward layers,

respectively. The encoders contain 2 bidirectional LSTM layers while the decoder

contains a unidirectional 2-layer LSTM. We have utilized a standard learning schema

by applying training, validation, and test sets that contain 3,500,000, 10,000, and 20

instances, respectively (Alpaydin, 2020). Furthermore, a dropout schema (Srivastava

et al., 2014) is used to regularize the learning with a random rate of {0.25, 0.30, 0.35},

which is known to limit overfitting. We make use of the popular Adam optimizer

with an initial learning rate of 0.01 for SMCLSP and 0.001 for SMSMK (Kingma and

Ba, 2014).

5.5.4 Evaluation Methodology

We have utilized the following metrics to measure the success of ScenPredOpt solution

time and its quality compared to exact and heuristic approaches. To a large extent,

we employ the metrics given in Chapter 3:

• timeGRB: Average solution time in CPU seconds for SMCLSP or SMSMK
with Gurobi 9.5 at its default settings.

• timeScenPredOpt: Average solution time in CPU seconds for SMCLSP or
SMSMK with ScenPredOpt framework.

• timeHeur: Average solution time in CPU seconds for SMCLSP or SMSMK
with the heuristic of Absi and van den Heuvel (2019) for SMCLSP and the
heuristic of Bertsimas and Demir (2002) for SMSMK.

• timeSDDiP: Average solution time in CPU seconds for SMCLSP with SDDiP.

• timePH: Average solution time in CPU seconds for SMSMK with PH
algorithm.

168

Additionally, we define the following metrics:

Definition 5.5.1 The optimality gap between the ScenPredOpt solution x̂∗ (heuristic

solution for optGapHeur, SDDiP solution for optGapSDDiP, and PH solution

for optGapPH) and Gurobi solution x∗. Let Z(•) be the corresponding operator to

calculate the function value given any solution. Then the optimality gap is:

optGapScenPredOpt(%) =
|Z(x̂∗)− Z(x∗)|

Z(x∗)
× 100. (5.10)

Definition 5.5.2 The solution time improvement factor accomplished by employing

the ScenPredOpt framework (heuristic time improvement for timeImpHeur, SDDiP

time improvement for timeImpSDDiP, and PH time improvement for timeImpPH)

compared to the Gurobi solution time is:

timeImpScenPredOpt =
timeGRB

timeScenPredOpt
. (5.11)

Definition 5.5.3 One-sided Wilcoxon signed-rank test is used to measure if both

samples are from the same population. It is a non-parametric alternative to the t-test

and appropriate for statistically comparing solution times of ML-based OR approaches

(Accorsi et al., 2022). We conclude that ScenPredOpt is statistically faster than the

heuristic if the p-value is smaller than 0.01. The hypotheses are:

H0 : median(timeHeur − timeScenPredOpt) < 0 (5.12a)

H1 : median(timeHeur − timeScenPredOpt) > 0 (5.12b)

5.6 Results

This section provides a discussion of the computational experiments. We compare the

ScenPredOpt framework with mathematical solver, exact, and heuristic approaches.

The test set for each specified characteristic of an instance includes 20 test instances,

and all the results presented in the tables are average values for those 20 instances. All

instances are solved using Gurobi 9.5 with a 2-hour time limit (Gurobi Optimization,

LLC, 2022).

169

5.6.1 Quality of Predictions for SMCLSP

Table 5.1 presents the detailed computational results for the first set of SMCLSP

instances. The 8-item model is trained using scenario-sampled deterministic instances

with T = 40 periods and 8 items. The local attention structure helps the model to

generalize instances with a varying number of periods. In the first set of Table 5.1,

the test has 32 scenarios and T = 10 stages. Gurobi achieves an average solution

time of more than 3,000 seconds, while SDDiP reduces the solution time to nearly

450 seconds with a gap of 0.03% to the Gurobi value. The heuristic significantly

reduced the solution time to almost 8 seconds, with a relatively high optimality gap

of 2.13%. The ScenPredOpt remedies the trade-off between solution time and quality

and achieves a 3.6-second solution with only a 0.16% optimality gap. Here, solution

time is reduced by a factor of 600, when compared to Gurobi. For the third set

of instances with 81 scenarios, a similar solution time improvement is achieved by

ScenPredOpt with a gap of only 0.08%. The Gurobi solution time of the instances is

not necessarily proportional to the number of scenarios or stages; rather, it is most

likely related to the structure of scenario trees. However, ScenPredOpt can solve the

8-item SMCLSP for all cases much faster than Gurobi, SDDiP, and heuristic. Also,

compared to the heuristic, the optimality gaps are much smaller. The p-values for

the Wilcoxon signed-rank test are all below 0.01, ensuring that ScenPredOpt is faster

than the heuristic. The time improvement factor values for ScenPredOpt get lower as

problems get harder because the solution time is set to a 2-hour time limit. Gurobi

would require a much longer solution time than two hours for harder instances, as

proven by the increasing optimality gap. Since the ScenPredOpt has no solution

time set, the solution with ScenPredOpt starts taking a long time, and the time

improvement values appear to be shrinking. The time improvement values would be

much higher if the benchmark Gurobi instances had not terminated early on.

170

Table 5.1 Average Results of Experiments for SMCLSP with 8 Items

T 10 10 10 15 15 15 Avg Mdn Std

#sc 32 64 81 125 243 512 176 103 165

timeGRB 3,042 4,582 5,773 6,508 7,203 6,850 5,660 7,200 2,919

timeScenPredOpt 4 13 16 53 77 95 43 18 60

timeSDDiP 454 738 924 4,342 2,151 1,715 1,721 1,203 1,553

timeHeur 8 89 80 341 749 743 335 103 385

timeImpScenPredOpt 600 376 599 264 145 105 348 141 498

timeImpSDDiP 6 8 10 2 4 4 6 4 6

timeImpHeur 319 148 150 34 13 10 112 14 207

optGapGRB(%) 0.02 0.07 0.07 0.13 0.18 0.11 0.10 0.07 0.09

optGapScenPredOpt(%) 0.16 0.07 0.08 0.09 0.51 0.36 0.21 0.09 0.35

optGapSDDiP(%) 0.03 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.01

optGapHeur(%) 2.13 1.88 1.78 1.14 1.18 1.14 1.54 1.45 0.61

Table 5.2 shows the computational results with 12-item SMCLSP. Here, the

model is trained using T = 30-period instances with 12 items. The results show a

similar trend as in Table 5.1, favoring ScenPredOpt over the heuristic. Gurobi solves

the first three sets of instances in Table 5.2 on an average of more than 6,000 seconds.

ScenPredOpt solves all three of those instances in less than a minute achieving a small

optimality gap of less than 0.41%. The SDDiP halves solution time with a small

optimality gap, but still, it does not reach a fast solution like ScenPredOpt. The

last three sets of instances are significantly challenging since none of the individual

instances can be solved to optimality in the set 2-hour time limit using Gurobi,

hence the average Gurobi solution time of approximately 7,200 seconds. For such

instances, heuristic time is close to or more than 1,000 seconds, whereas the time

of ScenPredOpt is closer to 100 seconds with a significantly lower optimality gap

compared to the heuristic.

All p-values of the Wilcoxon test are smaller than 0.01, suggesting that

ScenPredOpt is faster with a much smaller optimality gap than the heuristic.

171

Therefore, ScenPredOpt achieves a notable computational advance by generating fast,

high-quality solutions to challenging scenario-based multi-stage stochastic programs.

Also, for both Tables 5.1 and 5.2, the overall average and median solution time with

the ScenPredOpt is smaller than the heuristic solution time with a lower standard

deviation. Therefore, we can highlight that ScenPredOpt outperforms the heuristic

in the solution.

Table 5.2 Average Results of Experiments for SMCLSP with 12 Items

T 10 10 10 15 15 15 Avg Mdn Std

#sc 32 64 81 125 243 512 176 103 165

timeGRB 6,187 6,185 6,158 7,200 7,202 7,201 6,689 7,200 1,815

timeScenPredOpt 43 17 24 58 150 95 64 41 80

timeSDDiP 3,548 3,681 3,790 7,131 7,145 7,197 5,415 7,082 2,192

timeHeur 212 242 289 967 996 1,355 677 610 566

timeImpScenPredOpt 322 623 462 165 89 115 296 159 348

timeImpSDDiP 2 2 2 1 1 1 2 1 1

timeImpHeur 101 90 83 10 8 6 49 10 77

optGapGRB(%) 0.07 0.07 0.10 0.17 0.15 0.10 0.11 0.11 0.07

optGapScenPredOpt(%) 0.26 0.30 0.41 0.17 0.25 0.87 0.38 0.31 0.33

optGapSDDiP(%) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.01

optGapHeur(%) 2.12 1.92 1.91 1.17 1.31 1.18 1.60 1.56 0.54

Comparison of ScenPredOpt and Gurobi in the first few seconds Figure

5.2 presents the progress of normalized objective function values during the first few

seconds of the solution for ScenPredOpt and Gurobi. Specifically, Figure 5.2a-5.2b

show the solution progress for the third and fifth set of instances in Table 5.1, with 81

and 243 scenarios, respectively. Figure 5.2c-5.2d show the solution progress for the

third and fifth set of instances in Table 5.2, having 81 and 243 scenarios, respectively.

All four figures highlight that the ScenPredOpt reduces the objective function value

172

at a faster rate compared to Gurobi. Also, the progress of objective value stabilizes

earlier, underlining the success of the ScenPredOpt.

(a) 8 items with 81 scenarios. (b) 8 items with 243 scenarios.

(c) 12 items with 81 scenarios. (d) 12 items with 243 scenarios.

Figure 5.2 Progress of Gurobi and ScenPredOpt objective values during the first
few seconds of the solution process. All solution times are given in CPU seconds.

Instance by Instance Comparison In Table 5.3, we present the instance-

by-instance comparison for 10 SMCLSP instances with larger scenarios than the

previously-presented ones. The problem contains 8 items, 13 periods, and 2 scenarios

per stage without scenario capping. Therefore, each instance contains 4,096 scenarios.

The results are generated using the 8-item model in Table 5.1. The Gurobi does not

reach to an optimal solution for any of the problems within the given 2-hour solution

time limit. Also, SDDiP cannot reach a better solution than Gurobi in a given

20-stable iteration limit. The solution time of ScenPredOpt changes between 80 and

882 seconds. The heuristic has a higher solution time than the ScenPredOpt for all 10

173

instances within the range of 1,222 to 2,086 seconds. This translates to a higher time

improvement factor of the ScenPredOpt compared to the heuristic for all instances.

Also, optimality gaps between the ScenPredOpt and heuristic differ considerably

in favor of the ScenPredOpt. Table 5.3 demonstrates that the ScenPredOpt is

preeminent not only in averages but also superior in instance-by-instance cases

compared to the heuristic’s solution time and optimality gap and exact approaches’

solution time. Furthermore, Table 5.3 presents a comparison between ScenPredOpt

and the PredOpt introduced in Chapter 3. The solution time of PredOpt is denoted

by timePredOpt, the time improvement factor achieved by PredOpt is denoted by

timeImpPredOpt, and the resulting optimality gap is denoted by optGapPredOpt. In

8 over 10 instances, ScenPredOpt outperforms PredOpt in terms of both solution time

and optimality gap. In instance 2, ScenPredOpt has a better optimality gap than

PredOpt, but with a slightly higher solution time. The third instance presents the

opposite case where ScenPredOpt has a better solution time with a larger optimality

gap compared to PredOpt. The averages highlight the superiority of ScenPredOpt

over PredOpt, with the former having a lower average solution time, higher time

improvement, and lower optimality gap.

To summarize the results presented in Tables 5.1, 5.2, and 5.3 and Figure 5.2,

ScenPredOpt achieves a better solution than the heuristic in a statistically faster

process. The optimality gap of state-of-the-art SDDiP is lower than ScenPredOpt at

the cost of a significantly increased solution time. Therefore, ScenPredOpt can be

a favorable alternative to Gurobi and SDDiP by providing a fast and high-quality

solution at a fraction of the computational cost without requiring expert knowledge.

5.6.2 Quality of Predictions for SMSMK

Table 5.4 presents the first set of results for the SMSMK. The model is trained with

T = 30-period instances. For the first set with 32 scenarios, solution time is reduced

174

Table 5.3 Detailed Results of Experiments for SMCLSP with 8 Items

#instance 1 2 3 4 5 6 7 8 9 10 Avg

timeGRB 7,201 7,201 7,207 7,201 7,208 7,201 7,201 7,201 7,201 7,201 7,202

timeScenPredOpt 80 89 374 166 882 85 90 100 100 92 206

timePredOpt 92 74 505 237 1,405 157 136 101 143 168 302

timeSDDiP 1,297 856 3,317 1,260 2,261 1,454 845 1,368 896 1,121 1,468

timeHeur 2,086 1,222 1,591 2,074 1,581 1,637 2,033 1,917 1,751 1,493 1,738

timeImpScenPredOpt 90 81 19 43 8 85 80 72 72 78 63

timeImpPredOpt 78 97 14 30 5 46 53 71 50 43 49

timeImpSDDiP 6 8 2 6 3 5 9 5 8 6 6

timeImpHeur 3 6 5 3 5 4 4 4 4 5 4

optGapGRB(%) 0.15 0.02 0.05 0.08 0.05 0.10 0.14 0.11 0.04 0.10 0.09

optGapScenPredOpt(%) 0.13 0.58 0.07 0.66 0.22 0.29 0.05 0.43 0.01 0.74 0.32

optGapPredOpt(%) 0.16 0.65 0.04 0.76 0.27 0.44 0.07 0.60 0.07 0.92 0.40

optGapSDDiP(%) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03

optGapHeur(%) 1.87 1.16 1.80 1.17 0.97 1.24 0.90 1.93 1.86 1.94 1.48

from more than 1,000 seconds with Gurobi to only one second with ScenPredOpt.

This is much faster compared to the heuristic with a better optimality gap, i.e., a

2.73% gap with the heuristic compared to 1.09% with ScenPredOpt. The PH improves

the solution time of Gurobi for most cases with a slight optimality gap, but it is much

slower compared to the heuristic or ScenPredOpt. For example, PH more than halves

the solution time with only a 0.02% optimality gap in almost 2,000 seconds in the

fourth test set of Table 5.4. The ScenPredOpt can provide a solution in less than 5

seconds with only a 0.82% optimality gap. While the heuristic outperforms PH in

solution time, ScenPredOpt outperforms the heuristic in terms of both solution time

and optimality gap. Also, all p-values of the Wilcoxon signed-rank are smaller than

0.01 highlighting the success of the ScenPredOpt over the heuristic.

Table 5.5 presents another set of instances for SMSMK with 10 items. The

results highlight the solution quality of the ScenPredOpt over the heuristic and time

improvement over the Gurobi and PH, similar to Table 5.4. For example, in the last

dataset with 512 scenarios, solution time is reduced to almost a minute from two

175

Table 5.4 Average Results of Experiments for SMSMK with 8 Items

T 10 10 10 15 15 15 Avg Mdn Std

#sc 32 64 81 125 243 512 176 103 165

timeGRB 1,155 2,149 2,144 4,501 7,200 6,949 4,016 6,954 3,348

timeScenPredOpt 1 2 2 5 12 17 6 2 8

timePH 77 708 1,051 1,936 7,355 6,760 2,981 657 3,305

timeHeur 4 9 11 29 179 170 67 17 86

timeImpScenPredOpt 1,013 1,585 1,617 1,206 713 533 1,111 525 1,775

timeImpPH 17 10 3 5 1 1 6 1 19

timeImpHeur 245 233 185 154 46 44 151 48 286

optGapGRB(%) 0.03 0.03 0.07 0.22 1.21 1.01 0.43 0.01 0.65

optGapScenPredOpt(%) 1.09 1.06 1.28 0.82 1.31 1.30 1.14 1.10 0.61

optGapPH(%) 0.09 0.02 0.05 0.02 0.18 0.17 0.09 0.02 0.16

optGapHeur(%) 2.73 3.61 3.11 2.82 3.44 2.71 3.07 3.07 1.15

hours. This significant time improvement factor of 150 is achieved with an optimality

gap of only 0.77%. Similar to the formerly presented tables with SMCLSP and

SMSMK, all p-values for the Wilcoxon test are smaller than 0.01. Also, the optimality

gaps of the heuristic are much larger than the ScenPredOpt for all instances.

To sum up Tables 5.4 and 5.5, ScenPredOpt achieves a significant reduction

in solution time compared to Gurobi and PH at the cost of a small optimality gap.

Also, it outperforms the heuristic in terms of solution quality and time for all cases.

Thus, ScenPredOpt is a promising alternative to other exact and heuristic algorithms

in generating fast but high-quality solutions to complex problems that need to be

repeatedly and quickly solved.

Quality of Predictions for 2SMK In this section, we present the results for

a two-stage multi-dimensional knapsack problem (2SMK). The traditional solution

methodologies for two-stage problems can be notably separated from the multi-stage

problem. While the latter is usually considered more complex with growing scenario

176

Table 5.5 Average Results of Experiments for SMSMK with 10 Items

T 10 10 10 15 15 15 Avg Mdn Std

#sc 32 64 81 125 243 512 176 103 165

timeGRB 2,351 5,344 5,130 6,400 7,200 7,200 5,604 7,200 2,868

timeScenPredOpt 1 2 4 14 34 69 21 6 34

timePH 1,920 2,489 1,958 2,989 5,670 7,406 3,739 3,037 3,180

timeHeur 3 9 11 29 66 168 48 18 61

timeImpScenPredOpt 2,374 4,502 2,047 660 329 150 1,677 330 2,840

timeImpPH 18 13 8 4 1 1 7 1 19

timeImpHeur 633 597 449 228 115 45 344 143 471

optGapGRB(%) 0.05 0.30 0.26 0.61 0.95 1.22 0.57 0.37 0.58

optGapScenPredOpt(%) 1.10 1.27 1.11 1.01 0.82 0.77 1.01 0.91 0.61

optGapPH(%) 0.08 0.06 0.05 0.06 0.11 0.22 0.10 0.04 0.15

optGapHeur(%) 2.83 2.83 2.30 2.58 2.37 2.11 2.50 2.39 0.97

trees and non-anticipativity constraints, two-stage problems are highly utilized for

various applications. Our aim here is to show that our trained model can still be

used as an out-of-the-box solution approach if a model has already been trained for

a multi-stage problem.

Table 5.6 Average Results of Experiments for 2SMK with 8 Items

T 2 2 2 2 2 2 Avg Mdn Std

#sc 4 16 64 256 1,024 4,096 910 160 1,474

timeGRB 0.01 0.05 0.32 1.24 15.78 301.93 53.22 0.53 172.49

timeScenPredOpt 0.01 0.02 0.08 0.33 2.63 28.50 5.26 0.23 11.79

timePH 19.67 91.09 369.65 85.43 1,239.67 7,245.41 1,508.49 30.92 2,769.87

timeHeur 0.02 0.10 0.61 2.49 17.01 218.58 39.80 1.17 83.71

timeImpScenPredOpt 1 2 4 4 8 15 6 2 12

timeImpPH 0 0 0 0 0 0 0 0 0

timeImpHeur 0 0 1 1 1 1 1 0 1

optGapGRB(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

optGapScenPredOpt(%) 0.26 0.98 1.67 2.21 2.19 2.58 1.65 0.27 2.66

optGapPH(%) 0.60 0.11 0.21 0.11 0.11 0.56 0.28 0.00 0.59

optGapHeur(%) 3.76 4.27 4.26 5.05 4.10 2.77 4.03 2.50 4.68

177

Table 5.7 Average Results of Experiments for 2SMK with 10 Items

T 2 2 2 2 2 2 Avg Mdn Std

#sc 4 16 64 256 1,024 4,096 910 160 1,474

timeGRB 0.02 0.06 0.33 3.11 18.75 419.07 73.56 0.53 226.31

timeScenPredOpt 0.01 0.03 0.07 0.61 59.35 31.35 15.24 0.22 101.46

timePH 25.68 2.07 369.30 523.64 1,822.98 7,892.68 1,772.73 33.43 3,023.11

timeHeur 0.02 0.10 0.53 2.92 16.73 235.86 42.70 1.13 90.04

timeImpScenPredOpt 2 2 5 5 5 18 6 4 9

timeImpPH 0 0 0 0 0 0 0 0 0

timeImpHeur 1 1 1 1 1 2 1 1 1

optGapGRB(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

optGapScenPredOpt(%) 0.17 1.99 3.15 2.78 2.58 3.64 2.39 1.65 2.53

optGapPH(%) 0.33 0.13 0.08 0.05 0.04 0.92 0.26 0.00 0.51

optGapHeur(%) 2.75 4.29 3.58 4.58 3.28 3.98 3.75 2.77 3.81

Table 5.6 presents the results for the two-stage problem with 8 items, similar

to Table 5.4. Table 5.7 demonstrates the results for 2SMK with 10 items, as in

Table 5.5. For both Tables 5.6 and 5.7, the first three sets of instances are solved

under a second with Gurobi since the number of scenarios and, therefore, the size of

the problem is small. Even in these cases, the solution time by the ScenPredOpt is

shorter than all other approaches. As instances get harder and larger, the benefits of

the ScenPredOpt become clearer. For example, the last dataset of Table 5.6 is solved

in more than 5 minutes on average. The ScenPredOpt reduces the average solution

time below 30 seconds, achieving a faster solution than the Gurobi, heuristic, and PH.

For all cases in Tables 5.6 and 5.7, the p-values for the Wilcoxon test are smaller than

0.01, confirming that the ScenPredOpt outperforms heuristic solution time. Also, the

average optimality gap of ScenPredOpt is better than the heuristic for all cases in

Tables 5.6 and 5.7, making it a superior solution approach. However, the optimality

gaps for two-stage problems in Tables 5.6 and 5.7 seem to be higher than those in

the multi-stage problems in Tables 5.4 and 5.5. This is because of the lack of periods

required for attention structure in NEDA to capture problem characteristics, which

178

can likely be remedied by training the model using the solutions of two-stage problems.

Also, the solution characteristics might be different for a two-stage problem than a

multi-stage problem since, in a long-enough multi-stage problem, decisions tend to

be cyclical. Nevertheless, the ScenPredOpt outperforms the heuristic for solving

two-stage problems in terms of solution time and quality. It can be used to achieve

significant solution time benefits for large-scale problems when a trained multi-stage

model is available.

5.6.3 Generalization: Quality of Predictions for Item-wise Expansion
Algorithm

In this section, we present the computational results for test sets with a larger

number of items than the models are trained with. In the previous section, the

results show that the models can maintain high-quality solutions with the increasing

number of periods and scenarios. The expansion in the period dimension is organic

since encoder-decoder models can handle variable-length input and output structures.

Also, the presented NEDA model can handle a varying number of scenarios by

averaging different groups of scenarios based on the scenario tree of the problem using

Equation (5.5). However, predicting a problem with a different number of items is not

straightforward with the NEDA since the predictions are made using a fixed-length

output. Algorithm 5 presents an item-wise expansion algorithm that can generate

predictions for a problem with a large number of items using a model trained with

a small number of items. The main idea is to generate predictions for a subset of

items multiple times with the trained model of a fixed number of items and combine

them to generate a final prediction for all items considered in the test instance. This

algorithm provides significant benefits since a trained model has the potential to

make predictions for a problem with any number of periods, scenarios, and items

for a certain distribution of input data. Therefore, the ScenPredOpt framework can

179

provide high levels of flexibility without generating training instances and performing

training for the new set of instances with a larger number of items. Moreover, we

present a comparison with the item-wise expansion strategy presented in Algorithm

1. The deviation-based item-wise expansion method is a further improvement over

the one presented in Chapter 3 as described in Algorithm 1. For those results, we use

metrics timePredOpt, timeImpPredOpt, optGapPredOpt, and optGapPredOpt.

Table 5.8 present the results of item-wise expansion for the SMCLSP. The

first three sets of results are generated using the model trained with 8 items in

Table 5.1, and the last three sets of results are generated using the model trained

with 12 items in Table 5.2. The results demonstrate that the ScenPredOpt used

within the item-wise expansion algorithm can provide high-quality solutions. For

example, in the third set of instances with 16 items, predictions from the 8-item

model yield a time improvement of 300, which is significantly more than the heuristic

time improvement of 65. Also, the optimality gap of the ScenPredOpt is 0.09%,

which is 20-times lower than the heuristic optimality gap of 1.84%. Also, in the

first, second, fourth, and fifth datasets, the ScenPredOpt outperforms the SDDiP in

terms of optimality gap as well as solution time. For all test sets in Table 5.8, the

ScenPredOpt outperforms the heuristic in terms of solution time and optimality gap.

Also, all p-values for the Wilcoxon signed-rank test are all lower than 0.01, confirming

that the ScenPredOpt is statistically faster than the relax-and-fix heuristic. Moreover,

ScenPredOpt outperforms PredOpt in terms of optimality gap in 3 out of 6 test sets,

and has the same average optimality gap for the remaining 3 instances at the cost of

reduced time improvement. Therefore, the improved item-wise algorithm achieves a

better optimality gap compared to Algorithm 1 presented in Chapter 3.

Table 5.9 presents the item-wise expansion results for SMSMK similarly to Table

5.8. The first three results are produced with the 8-item model in Table 5.4, and the

remaining three sets of results are produced using the 10-item model in Table 5.5.

180

Table 5.8 Average Results of Generalization Experiments for SMCLSP

T 15 10 10 15 10 10 Avg Mdn Std

#sc 32 64 81 32 64 81 59 64 20

Train Items 8 12 10 10 2

Test Items 24 32 16 36 48 24 30 28 10

timeGRB 1,954 3,708 6,273 4,380 2,664 7,200 4,363 7,200 3,439

timeScenPredOpt 36 166 188 93 93 107 114 40 299

timePredOpt 43 115 32 46 75 77 65 34 95

timeSDDiP 7,220 7,232 7,037 7,227 7,249 7,223 7,198 7,223 221

timeHeur 69 298 237 123 232 531 248 103 283

timeImpScenPredOpt 45 29 300 73 19 117 97 35 170

timeImpPredOpt 72 42 406 105 29 142 133 50 210

timeImpSDDiP 0 1 1 1 0 1 1 1 0

timeImpHeur 30 16 65 49 10 25 33 12 47

optGapGRB(%) 0.01 0.02 0.05 0.02 0.02 0.05 0.03 0.02 0.03

optGapScenPredOpt(%) 0.04 0.09 0.09 0.16 0.16 0.19 0.12 0.11 0.10

optGapPredOpt(%) 0.04 0.09 0.09 0.19 0.21 0.24 0.15 0.12 0.12

optGapSDDiP(%) 0.10 0.13 0.04 0.25 0.25 0.06 0.14 0.10 0.10

optGapHeur(%) 1.39 2.13 1.84 1.35 2.17 2.06 1.82 1.82 0.46

The results highlight that the models can be used to predict instances with a varying

number of items coming from the same distribution using Algorithm 5. The instances

presented in Table 5.9 do not terminate within set solution time limit of 7,200 seconds

and achieve significant optimality gaps with Gurobi. For example, Gurobi achieves

an optimality gap of 0.67% for the second dataset. The ScenPredOpt terminates in

only 13 seconds on average and achieves a 0.70% optimality gap compared to the best

solution found by Gurobi. For the same test set, the heuristic terminates in 27 seconds

with a larger gap of 1.07%. On average, the ScenPredOpt reduces the solution time

by more than 700 with an optimality gap below 1%. The heuristic has an average time

improvement factor of 377 with a larger gap. We also conclude that the ScenPredOpt

is faster than the heuristic since p-values for the Wilcoxon signed-rank test are below

0.01 except for the fourth test set. Additionally, the improved item-wise strategy

181

given in Algorithm 5 outperforms the strategy given by Algorithm 1 in terms of the

optimality gap for all test sets in Table 5.9. On average, the optimality gap reduction

with Algorithm 5 is more than 0.2% at an increased average solution time of 6 seconds.

Table 5.9 Average Results of Generalization Experiments for SMSMK

T 15 10 10 15 10 10 Avg Mdn Std

#sc 32 64 81 32 64 81 59 64 20

Train Items 8 10 9 9 1

Test Items 24 32 16 30 40 20 27 27 8

timeGRB 7,200 7,200 7,200 7,200 7,200 7,200 7,200 7,200 0

timeScenPredOpt 11 13 13 16 26 13 15 12 13

timePredOpt 8 7 8 9 13 8 9 7 5

timePH 8,925 7,430 3,148 7,358 9,866 4,540 6,878 7,243 6,058

timeHeur 18 27 21 14 29 19 21 20 7

timeImpScenPredOpt 875 716 809 685 381 752 703 604 440

timeImpPredOpt 1,043 1,261 1,328 1,114 721 1,101 1,095 970 535

timeImpPH 1 1 4 1 1 2 2 1 2

timeImpHeur 424 274 368 541 260 395 377 358 124

optGapGRB(%) 0.69 0.67 0.65 0.54 0.54 0.68 0.63 0.57 0.24

optGapScenPredOpt(%) 0.64 0.70 0.84 0.70 0.59 0.81 0.71 0.68 0.25

optGapPredOpt(%) 0.92 0.93 1.11 0.93 0.76 1.02 0.94 0.88 0.33

optGapPH(%) 0.26 0.34 0.10 0.29 0.62 0.08 0.28 0.12 0.33

optGapHeur(%) 1.29 1.07 1.82 1.04 0.80 1.48 1.25 1.15 0.48

In summary, the ScenPredOpt framework with the improved item-wise expansion

algorithm can be used to predict instances with a varying number of items. This

provides significant flexibility for model training since training can be performed using

problems with a small number of items, which is easier to solve. Also, trained models

do not need retraining with the changing number of items. Tables 5.8 and 5.9 provide

the generalization results, in which the ScenPredOpt outperforms the heuristics in

terms of solution time and quality in 11 out of 12 instances. Furthermore, Algorithm

5 reaches a better or the same optimality gap as Algorithm 1 at the cost of increased

solution time.

182

5.7 Conclusions and Future Work

In this study, we presented a learning-enabled framework for solving scenario-based

multi-stage stochastic programs. We address the challenge of non-anticipativity of

predicted variables by developing the NEDA based on attentional encoder-decoder

models. Also, generating labels for training instances can be untraceable considering

significant training data requirements. We overcome this issue by sampling a scenario

and solving this deterministic problem to optimality, which is used for training.

Furthermore, we presented the ScenPredOpt algorithm to utilize predictions without

causing any infeasibility. We integrate an LP-based heuristic to reduce the solution

time further and to integrate heuristic solution capabilities that might not be captured

with a learning methodology. We present the results of our framework by generating

benchmark instances with a commercial solver, exact approaches, and heuristics.

The results show that the solution time can be reduced by three orders of magnitude

by achieving a small optimality gap of less than 1%. Additionally, we presented

an improved item-wise expansion algorithm and tested if the models can be used to

predict instances with a larger number of items than they are trained with. The results

show that the trained models and ScenPredOpt provide a high amount of flexibility

and can be utilized to solve instances with varying stages, scenarios, and items. Our

framework is general and can be utilized to solve scenario-based multi-stage stochastic

programs with binary variables where such problems need to be solved repeatedly

quickly.

Our study shows a way to integrate learning models, heuristics, and existing

mathematical solvers successfully to achieve significant solution time reductions.

In this way, the best of each approach can be used. The scenario-based multi-

stage stochastic programs have a wide range of applications in which learning-

based frameworks can be exploited. Further studies can focus on solving multi-

stage stochastic programs by integrating scenario generation mechanisms into the

183

framework. Also, risk-averse stochastic programs can be tackled by adjusting

the NEDA model, scenario probabilities, and distribution of uncertain elements.

Another direction relates to the integration of heuristics. Instead of general LP-based

heuristics, problem-specific heuristics can be integrated into the ScenPredOpt solution

framework to achieve better solutions faster.

184

CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

This dissertation focuses on using machine learning methodologies for solving

optimization problems. We present novel methodologies to reduce the solution

times of various types of repeatedly-solved operations research problems. We

address the key issues of sequential dependence, infeasibility, generalization, and

non-anticipativity.

In Chapter 2, we introduce a study on learning optimal solutions to sequential

decision-making problems. Specifically, we utilize LSTMs to predict the values of

binary decision variables of the CLSP, which is a fundamental problem in production

planning. The bidirectional LSTM can process information in both time directions

and, therefore, can learn the sequential dependencies that affect the decision structure

of the CLSP. The trained LSTM model is used to generate predictions for an

independent test. Within the LSTM-Opt framework, those predictions are used

partially by adding selected variables as constraints to the problem. Depending

on the hardness of the problem, using prediction at varying levels can be highly

advantageous. For harder problems, using predictions at higher levels results in high

levels of infeasibility, while using predictions at lower levels achieves significant time

reductions without causing much infeasibility or an optimality gap. Unlike harder

problems, easier problems benefit more from using predictions at higher levels without

causing infeasibility or optimality gap since lower levels of predictions do not improve

the solution time significantly. The computational results show that the solution time

can be reduced from 70 hours to under 2 minutes with an optimality gap of less than

1% and without any infeasibility. We show that other fundamental ML approaches,

such as logistic regression and random forest, cannot capture sequential dependencies

as LSTM can, and thus, result in inferior solutions. Also, we have compared

185

our solution time with other exact approaches, including dynamic programming,

dynamic programming-based inequalities, and (`,S) inequalities. The results show

that LSTM-Opt can provide solutions very fast at the cost of a small optimality gap,

unlike traditional OR methodologies. Also, we present the results with time-wise

generalization where the trained model is used to solve particularly longer instances

than they are trained with.

In Chapter 3, we build and improve on the LSTM-Opt framework in Chapter

2 and present the PredOpt framework to solve complex sequential decision-making

problems to reduce the solution times significantly. We address the feasibility and

generalization issues arising LSTM-Opt. In the PredOpt framework, we propose

a local attention-based encoder-decoder network to better capture and extend the

sequential dependency. PredOpt reduces the computational cost with a local attention

mechanism and enables PredOpt to selectively focus on a few close-by periods near

the decision point. Therefore, PredOpt can learn from small-period problems to

solve much-longer problems. At the core of the PredOpt framework lies a strategy

that optimizes prediction levels to eliminate infeasibility. Within this framework, the

prediction level is iteratively reduced, and a feasibility check is performed using a

relaxation of the problem, which is also generated with the trained encoder-decoder

model. The results show that the solution time can be reduced with a factor of

7,236, while achieving an optimality gap of 0.11%. PredOpt outperforms heuristics

in terms of both solution quality and time, which is confirmed by a statistical test.

Also, we present a novel item-wise expansion algorithm to provide another dimension

of generalizability. The proposed algorithm can utilize a model trained with a few

items and generate predictions for problems with a large number of items. The results

highlight that the trained model can predict instances with much larger periods and

items than they are trained with.

186

Chapter 4 presents a different perspective for using ML for OR by utilizing

reinforcement learning. We propose a novel framework, 2SRL, based on deep

reinforcement learning to solve scenario-based two-stage stochastic programming

problems. Here, unlike learning methodologies in other chapters, the learning agent

does not perform a supervised learning task. Recently, reinforcement learning has

shown the potential to solve optimization problems. The introduced 2SRL framework

tests the limits of recent advancements. In this framework, two different agents

learn each stage of the problem sequentially. First, Agent 2 is trained to solve the

second-stage problem. Then, Agent 1 is trained together with the feedback of the

trained Agent 2 to solve the first-stage problem, through an updated policy gradient

equation. We present detailed learning algorithms based on a well-known training

paradigm. A pointer network is utilized to ensure generalizability with the item

dimension. Also, the model can provide a stable solution quality with the increasing

number of scenarios. The results show that the solution time can be reduced by five

orders of magnitude with a gap of around 7%. The presented gaps are larger than

supervised learning methodologies, but 2SRL provides a significantly better solution

over a random solution and outperforms heuristics crafted for the problem in terms

of solution time. The presented 2SRL framework can be utilized when an expert is

not available to handcraft a heuristic for a fast solution.

Chapter 5 delivers another study based on supervised deep learning to solve

scenario-based multi-stage stochastic programming problems. In this chapter,

ScenPredOpt presents a novel attention-based encoder-decoder neural network to

ensure the non-anticipativity constraints, which is a fundamental requirement for

executability. Generating and solving training instances as stochastic programs can

be computationally intractable. Therefore, we present a strategy for training based

on deterministic instances. ScenPredOpt builds on PredOpt by integrating a heuristic

based on linear programming relaxation to improve solution time reductions further.

187

To the best of our knowledge, this is the first study that tackles general multi-stage

stochastic problems by integrating machine learning, heuristics, and mathematical

solvers. The results show that the solution time can be reduced with a factor of 599,

while achieving an optimality gap of 0.08%. Also, we present the results of predicting

two-stage stochastic programs and highlight the superiority of supervised learning

over reinforcement learning. Furthermore, the results provide detailed experiments

on generalization in the item, stage, and scenario dimensions. In addition, we

introduce an improved item-wise expansion algorithm that considers the variability

in the predictions made. The proposed ScenPredOpt outperforms other exact and

heuristic approaches and can be utilized to solve multi-stage stochastic programs in

a fast manner.

In this dissertation, we presented frameworks that can be utilized for solving

deterministic and stochastic sequential decision-making problems. Optimization

problems with changing parameters are solved repeatedly in numerous practical

applications, including manufacturing companies, the pharmaceutical industry, the

healthcare industry, finance, airline scheduling, and energy production. Since the

problems that are solved within those domains are getting more complex as the

data availability increases, a significant benefit can be achieved if they are solved

significantly faster. While special solution methodologies can be developed for such

problems, it can be time-consuming since it requires expert knowledge and constant

adaptation. Therefore, a streamlined process to generate high-quality solutions

very quickly can be highly advantageous. Such methodologies are designed in this

dissertation to handle lot-sizing and knapsack, which have general mixed-integer and

binary structures, in deterministic or stochastic settings with a varying number of

variables and constraints.

Another important finding is related to the generalization characteristics of

designed learning-based frameworks. Generalization is of great importance since such

188

properties can provide robustness to proposed frameworks. With the generalization

property established, the proposed frameworks can be utilized to solve problems with

a varying number of items, stages, and scenarios. Furthermore, generalization can be

a foundation point for training since it can provide more flexibility with the training.

In this dissertation, we present extensive experimentation and novel algorithms to

institute generalization characteristics.

Also, we presented novel architectures that integrate learning, heuristics, and

mathematical solvers. Therefore, we aim to bring out the strengths of different

methodologies and eliminate the disadvantages. In this dissertation, we address

core problems of operations research, such as infeasibility and non-anticipativity. We

undertake those issues with the designed ML-OR integration structures and achieve

a notable reduction in solution time while maintaining solution quality.

The future holds a lot of potential applications for the growing field of using

ML for solving OR. One of the key challenges is to ensure feasibility. Therefore, novel

approaches involving variable selection paradigms after generating predictions can be

developed to ensure feasibility. Another possible approach could involve incorporating

constraints into the learning model. Further studies can investigate special solution

requirements of stochastic programs. The non-anticipativity is a crucial property and

can be accounted for using post-processing techniques after generating predictions

instead of generating predictions that are non-anticipative. Also, the structure of the

scenario tree or the distribution of the uncertainty can be directly incorporated into

the learning paradigm. The scenarios with different weights can be included for more

testing. Also, risk-averse programs can be studied with proposed frameworks, and

special solution structures can be developed.

Another future direction involves improving the reinforcement learning-based

solution strategies. While they can generate relatively high-quality solutions,

supervised learning-based frameworks appeared to have an overall better solution

189

quality. Therefore, different strategies can be incorporated to further enhance the

reinforcement learning paradigm. For example, a training strategy both using

reinforcement learning and supervised learning iteratively can improve the learning

process while reducing the computational cost. Therefore, the learner can get stronger

feedback on the decision quality. Also, reinforcement learning can be used together

with mathematical solvers to decide on hard-to-predict variables. Further experiments

can involve investigation with different network architectures, such as transformers

and various learning paradigms.

Furthermore, generalization can be a point for future study. Novel approaches

can be developed for out-of-distribution generalization. In addition, more experi-

mentation can be provided with different types of optimization problems. Also, the

learning paradigm can be introduced for various tasks such as heuristic selection,

adjusting solver settings, and branching decisions instead of directly predicting

decision variables. Additionally, problem-specific heuristics can provide notable

benefits over general heuristics within an integrated model. Further studies

can consider structural modifications for interactions of learning, heuristics, and

mathematical solvers to exploit the integrated structures. Also, learning-based

methodologies can be integrated with existing exact solution approaches, such as

cutting planes.

190

APPENDIX A

MODEL TRAINING TIMES AND

FURTHER EXPERIMENTS FOR CHAPTER 2

A.1 Results for Training LSTM Models

For each dataset, several LSTM models are trained, and the best achieving model is

selected with a process called hyperparameter tuning, as described in Section 2.5.2.

Table A.1 presents the LSTM training time in CPU seconds for different datasets.

The training times do not follow an identifiable pattern with c; however, they show

an increasing trend as each of the T and f parameters increases. For example, the

instances are solved faster when c = 8 compared to the instances with c = 3, but

the LSTM training time is higher in three out of four datasets with c = 8, indicating

that training time is not positively correlated with the hardness of the instances

for a given T and f . The training times presented in Table A.1 can be decreased

significantly with the use of graphics processing units (GPUs). Those training times

are not included in the timeML, timeimp, and timegain(%) because the training of

the models can be performed in an offline setting. However, as mentioned above, the

prediction generation time using the trained LSTM model is included in the timeML,

timeimp, and timegain(%). The training times were 3.9, 4.4, and 5.2 seconds for

the logistic regression and 4,430.6, 4,459.4, and 4,186.8 seconds for the random forest

model. Even though they are significantly lower than the LSTM training times, their

performance is inferior to the LSTM-Opt framework.

A.2 More Results on the Experiments

Table A.2 presents the results for the instances with T = 90 and f = 1, 000, which are

relatively easier than the instances with T = 120 and f = 10, 000 in Table 2.1. It can

be seen that as the value of capacity multiplier c increases from 3 to 5, the solution

191

Table A.1 LSTM Training Times for the Model with the Highest Validation
Accuracy (in CPU Seconds)

f T c Training Time

1,000 90 3 27,554

5 19,726

8 54,648

10,000 90 3 32,086

5 27,406

8 70,387

1,000 120 3 37,794

5 28,913

8 72,779

10,000 120 3 65,791

5 75,147

8 52,724

time decreases. As more variables are predicted, the solution time gain increases

considerably with an increase in the number of infeasible instances in the test set.

Predicting all binary variables (pred(%)=100) reduces the mean solution time by

more than half, but the reduction in solution time comes at a price, which is 1.45%

infeasibility in all CLSP instances and 0.13% average optimality gap. In other words,

290 instances had infeasible predictions among 20,000 CLSP test instances, and the

average objective value of the feasibly-predicted instances only deviated by 0.13%

from the average optimal objective value by CPLEX. The user cuts approach with

100% of variables predicted achieves a time improvement of 2, with zero infeasibility

and a slightly higher optimality gap. In the dataset with c = 5 of Table A.2, time

improvements are similar to the previous dataset with c = 3, but for the same level of

prediction, we observe less number of instances in the test set for which the predictions

are infeasible. When c = 8, a low-level prediction increases the average solution

192

time, but the complete prediction of binary variables (pred(%)=100) achieves zero

optimality gap, with only 0.01% of the test instances having infeasible solutions, and

solution time is reduced by a factor of 3. The instances presented in Table A.2 are

the easiest among all datasets. For those instances, predicting the majority of binary

variables could be the most beneficial approach, reducing the solution time without

a significant increase in the optimality gap or infeasibility.

Table A.3 presents the results for instances with T = 90 and f = 10, 000. These

are harder than the instances shown in Table A.2, as seen from the mean solution

time. For the instances with c = 3, we observe that predicting 50% of variables

reduces the average solution time by a factor of 3, with no infeasibility in the test

set, and zero optimality gap. However, as more variables are predicted, solutions

may become significantly infeasible. For example, at the full (100%) prediction of the

binary variables, more than half of the predictions are infeasible, which is not desired.

The user cuts approach remedies this problem by resulting in all feasible solutions for

all 20,000 test instances with a significant reduction in the solution time. The dataset

with c = 5 follows a similar pattern to the dataset with c = 3 but demonstrates less

infeasibility at the higher level of predictions. Results for the dataset with c = 8

are similar to the instances with the same c in Table A.2. Here, the approach that

predicts the variables at higher levels achieves the most computational gain. For

example, with the 75% prediction, the solution time is improved by a factor of 2,

without any loss in optimality or feasibility. It can be seen from the results that

predicting variables at higher levels can be beneficial for easier instances in terms of

the time gain without sacrificing feasibility or optimality.

Table A.4 demonstrates the results for instances with T = 120 and f = 1, 000,

which have a similar solution time to the instances T = 90 and f = 1, 000 in

Table A.2. Also, the quality of the predictions follows a similar pattern, as in

Table A.2. For all datasets, predictions at the lower proportions do not provide

193

Table A.2 Summary of Experiments for f = 1, 000 and T = 90

c pred(%) timeCPX timeML timeimp timegain(%) inf(%) optgap(%)

3 25 0.4 0.4 1 4.7 0.0 0.0

50 0.3 1 14.1 0.0 0.0

75 0.3 1 16.6 0.0 0.0

85 0.3 1 24.4 0.0 0.0

90 0.3 2 37.0 0.0 0.0

95 0.2 2 47.0 0.2 0.0

100 0.1 3 66.8 1.4 0.1

100(MS) 0.4 1 13.0 0.0 0.0

100(UC) 0.3 2 37.4 0.0 0.1

5 25 0.3 0.3 1 7.9 0.0 0.0

50 0.3 1 10.0 0.0 0.0

75 0.3 1 17.5 0.0 0.0

85 0.2 1 22.9 0.0 0.0

90 0.2 1 25.1 0.0 0.0

95 0.2 1 32.8 0.0 0.0

100 0.1 3 65.7 0.4 0.0

100(MS) 0.4 1 -10.7 0.0 0.0

100(UC) 0.3 1 16.4 0.0 0.0

8 25 0.3 0.4 1 -5.8 0.0 0.0

50 0.3 1 -5.6 0.0 0.0

75 0.3 1 0.3 0.0 0.0

85 0.3 1 6.6 0.0 0.0

90 0.3 1 14.7 0.0 0.0

95 0.3 1 20.2 0.0 0.0

100 0.1 3 70.1 0.0 0.0

100(MS) 0.3 1 4.5 0.0 0.0

100(UC) 0.3 1 19.8 0.0 0.0

194

Table A.3 Summary of Experiments for f = 10, 000 and T = 90

c pred(%) timeCPX timeML timeimp timegain(%) inf(%) optgap(%)

3 25 3.1 1.9 2 38.1 0.0 0.0

50 1.1 3 63.0 0.0 0.0

75 0.4 8 87.9 0.4 0.1

85 0.3 12 91.4 2.0 0.2

90 0.2 14 92.8 5.3 0.3

95 0.2 15 93.4 17.5 0.9

100 0.1 22 95.6 53.9 1.7

100(MS) 3.9 1 -28.2 0.0 0.0

100(UC) 0.3 10 90.3 0.0 1.2

5 25 1.5 1.4 1 8.6 0.0 0.0

50 0.8 2 46.7 0.0 0.0

75 0.4 4 71.7 0.1 0.0

85 0.3 5 78.7 0.3 0.0

90 0.3 5 81.3 0.9 0.1

95 0.3 6 82.9 4.1 0.3

100 0.1 17 94.0 23.3 1.2

100(MS) 1.5 1 5.7 0.0 0.0

100(UC) 0.3 5 78.4 0.0 0.7

8 25 0.9 0.7 1 22.0 0.0 0.0

50 0.6 2 36.2 0.0 0.0

75 0.4 2 52.2 0.0 0.0

85 0.3 3 64.6 0.0 0.0

90 0.3 3 70.9 0.1 0.0

95 0.2 4 74.3 0.5 0.1

100 0.1 11 90.6 4.9 0.8

100(MS) 0.8 1 10.8 0.0 0.0

100(UC) 0.3 3 67.2 0.0 0.3

195

significant reductions in solution time, while predicting up to a greater extent can yield

noteworthy improvement. For c = 3 instances, predicting 100% of variables results in

a significant solution time improvement of 4, with only 1.3% of the instances in the

test set becoming infeasible. The user cuts approach provides time improvement of 2

without causing infeasibility in any of the 20,000 test instances. For c = 5 instances,

a significant time improvement is achieved by the full prediction of variables at the

cost of 0.35% infeasibility in the test set and 0.04% optimality gap. For the c = 8

dataset, the full prediction results in a significant time improvement of 4 with a 0.02%

infeasibility and 0.01% optimality gap. The user cuts achieve a small solution time

reduction without any infeasibility in the test set.

A.3 Predicting Instances with Different Distributions

Table A.5 presents the results on how the trained LSTM models generalize to the

instances with different distributions. In the first dataset, we examine the predictive

performance of the LSTM model trained on instances with c = 3, f = 1, 000, and

T = 90 on the dataset with the same c and T , but f = 10, 000. Here, the LSTM

is trained on easier instances and used to predict the harder instances. We observe

a time improvement of 2 at the 25% prediction level, with an optimality gap under

0.5% without any infeasibility in the test set. As the prediction level increases, time

improvement increases significantly at the cost of an increased optimality gap. For

example, at the 75% prediction level, we improve the CPLEX solution time with a

factor of 10 without any infeasibility but with an optimality gap of 3.8%. In the

next dataset, we examine the opposite scenario, where instances are trained on a

harder dataset with f = 10, 000 to predict easier instances with f = 1, 000. At the

lower proportions of predictions, the time improvement does not increase significantly,

but predictions do also not cause any infeasible solutions. As the level of predictions

increases, both the percent infeasibility in the test set and the optimality gap increase

196

Table A.4 Summary of Experiments for f = 1, 000 and T = 120

c pred(%) timeCPX timeML timeimp timegain(%) inf(%) optgap(%)

3 25 0.4 0.4 1 13.9 0.0 0.0

50 0.4 1 16.2 0.0 0.0

75 0.4 1 16.6 0.0 0.0

85 0.3 2 36.3 0.0 0.0

90 0.3 2 40.8 0.0 0.0

95 0.2 2 49.3 0.2 0.0

100 0.1 4 73.2 1.3 0.1

100(MS) 0.4 1 19.9 0.0 0.0

100(UC) 0.3 2 38.9 0.0 0.1

5 25 0.3 0.3 1 6.4 0.0 0.0

50 0.3 1 10.9 0.0 0.0

75 0.3 1 15.0 0.0 0.0

85 0.3 1 18.3 0.0 0.0

90 0.3 1 24.9 0.0 0.0

95 0.3 1 21.1 0.0 0.0

100 0.1 3 68.4 0.4 0.0

100(MS) 0.3 1 -3.6 0.0 0.0

100(UC) 0.3 1 17.4 0.0 0.0

8 25 0.3 0.3 1 -5.4 0.0 0.0

50 0.3 1 0.2 0.0 0.0

75 0.3 1 4.7 0.0 0.0

85 0.3 1 2.1 0.0 0.0

90 0.3 1 5.5 0.0 0.0

95 0.2 1 21.8 0.0 0.0

100 0.1 4 72.2 0.0 0.0

100(MS) 0.4 1 -17.8 0.0 0.0

100(UC) 0.3 1 14.8 0.0 0.0

197

significantly. The UC remedies the infeasibility and achieves an optimality gap slightly

above 5%.

Table A.5 Summary of Generalization Experiments to Test Datasets with Different
Characteristics

LSTM Train Test Data pred timeCPX timeML timeimp timegain inf optgap

c f T c f T (%) (%) (%) (%)

3 1,000 90 3 10,000 90 25 3.1 1.8 2 42.6 0.0 0.3

50 0.9 3 70.8 0.0 1.0

75 0.3 10 89.7 0.0 3.8

85 0.2 12 91.9 0.0 6.0

90 0.2 14 92.9 0.0 8.0

95 0.2 17 94.1 0.2 10.5

100 0.1 30 96.6 1.1 13.6

100(UC) 0.3 10 90.5 0.0 5.3

3 10,000 90 3 1,000 90 25 0.4 0.4 1 5.6 0.0 0.2

50 0.3 1 16.1 0.0 1.2

75 0.3 1 21.2 0.5 4.7

85 0.3 1 16.0 2.1 7.1

90 0.3 1 21.4 5.6 9.4

95 0.3 1 31.3 17.8 13.3

100 0.1 5 78.7 54.3 16.4

100(UC) 0.3 1 27.2 0.0 5.6

3 1,000 120 5 10,000 120 25 3.0 1.4 2 53.9 0.0 2.1

50 0.5 6 82.4 0.0 5.8

75 0.2 12 91.8 0.0 22.8

85 0.2 15 93.4 0.0 33.0

90 0.2 16 93.7 0.0 38.7

95 0.2 17 94.1 0.0 44.7

100 0.1 28 96.4 0.0 51.5

100(UC) 0.3 12 91.4 0.0 26.5

5 10,000 120 3 1,000 120 25 0.4 0.4 1 5.7 8.6 1.3

50 0.3 1 23.0 33.3 13.7

75 0.3 2 41.5 81.0 117.8

85 - - - 100.0 -

90 - - - 100.0 -

95 - - - 100.0 -

100 - - - 100.0 -

100(UC) 0.3 2 40.4 0.0 11.8

198

The next two datasets have completely different underlying distributions. The

LSTM model is trained on easier instances with c = 3, f = 1, 000 and T = 120 to

predict harder instances with c = 5, f = 10, 000 and T = 120. At the 25% prediction

level, a time improvement of 2 is achieved at the cost of an optimality gap, which

is slightly more than 2%, without any infeasibility in the test set. As the prediction

level increases, the optimality gap increases significantly, but solutions remain highly

feasible. In the opposite scenario the LSTM model is trained on instances with c = 5,

f = 10, 000 and T = 120 to predict the instances with c = 3, f = 1, 000 and T = 120.

Using an entirely different underlying distribution to make predictions leads to an

increased level of infeasibility in the test set, where the prediction level of more than

75% causes all infeasible solutions. Therefore, for those predictions, we recommend

a lower-level prediction (e.g., 25%) or the use of the CPLEX user cuts approach to

remedy the infeasibility problem.

Overall, training on the easier instances to predict harder instances with a

similar c value can provide good results at the low level of predictions or with the

UC approach. For example, the LSTM model trained with c = 3, f = 1, 000, and

T = 90 improves the CPLEX solution time with a factor of 3 without any infeasibility

and with an optimality gap of 1% at the 50% prediction level when predicting the

instances with c = 3, f = 10, 000 and T = 90.

199

APPENDIX B

DETAILS OF THE TEST INSTANCES FOR CHAPTER 5

Here, we present the details of our testing instances for each table in Section

5.6. Table B.1 gives the details for SMCLSP instances presented in Tables 5.1,

5.2, and 5.8. Table B.2 gives the details for SMSMK instances presented in

Tables 5.4, 5.5, and 5.9. We denote the number of scenarios #sc, the number

of scenarios per period #scPerPeriod, and the period where no further scenarios

are generated for the problem as capPeriod. These three variables interconnect as:

#sc = #scPerPeriodcapPeriod−1. We have utilized a scenario capping strategy to

combat the exponentially growing number of scenarios. Additionally, the number of

binary variables is denoted by #binaryV ars and the number of continuous variables is

denoted by #contV ars. Note that SMSMK does not contain any continuous variables.

We also present the total number of constraints excluding variable restrictions as

#const and the number of non-anticipativity constraints as #nonAntConst, and the

number of items in the test set as testItems.

200

Table B.1 Details of Test Instances for SMCLSP

Table T #sc #scPerPeriod capPeriod #binaryVars #contVars #const #nonAntConst testItems

5.1 10 32 2 6 2,560 5,120 8,536 3,096 8

10 64 4 4 5,120 10,240 14,984 4,104 8

10 81 3 5 6,480 12,960 20,586 6,816 8

15 125 5 4 15,000 30,000 40,131 8,256 8

15 243 3 6 29,160 58,320 88,221 26,256 8

15 512 2 10 61,440 122,880 228,888 98,328 8

5.2 10 32 2 6 3,840 7,680 12,644 4,644 12

10 64 4 4 7,680 15,360 22,156 6,156 12

10 81 3 5 9,720 19,440 30,474 10,224 12

15 125 5 4 22,500 45,000 59,259 12,384 12

15 243 3 6 43,740 87,480 130,509 39,384 12

15 512 2 10 92,160 184,320 339,492 147,492 12

5.8 15 32 2 6 11,520 23,040 32,808 9,288 24

10 64 4 4 20,480 40,960 58,016 16,416 32

10 81 3 5 12,960 25,920 40,362 13,632 16

15 32 2 6 17,280 34,560 48,972 13,932 36

10 64 4 4 30,720 61,440 86,704 24,624 48

10 81 3 5 19,440 38,880 60,138 20,448 24

201

Table B.2 Details of Test Instances for SMSMK

Table T #sc #scPerPeriod capPeriod #binaryVars #const #nonAntConst testItems

5.4 10 32 2 6 4,864 8,272 2,064 8

10 64 4 4 9,728 15,152 2,736 8

10 81 3 5 12,312 20,258 4,544 8

15 125 5 4 29,000 42,879 5,504 8

15 243 3 6 56,376 90,161 17,504 8

15 512 2 10 118,784 218,640 65,552 8

5.5 10 32 2 6 6,080 9,620 2,580 10

10 64 4 4 12,160 17,500 3,420 10

10 81 3 5 15,390 23,500 5,680 10

15 125 5 4 36,250 49,380 6,880 10

15 243 3 6 70,470 104,500 21,880 10

15 512 2 10 148,480 256,020 81,940 10

5.6 2 4 - - 72 89 0 8

2 16 - - 264 341 0 8

2 64 - - 1,032 1,349 0 8

2 256 - - 4,104 5,381 0 8

2 1,024 - - 16,392 21,509 0 8

2 4,096 - - 65,544 86,021 0 8

5.7 2 4 - - 90 100 0 10

2 16 - - 330 388 0 10

2 64 - - 1,290 1,540 0 10

2 256 - - 5,130 6,148 0 10

2 1,024 - - 20,490 24,580 0 10

2 4,096 - - 81,930 98,308 0 10

5.9 15 32 2 6 22,272 30,096 6,192 24

10 64 4 4 38,912 51,008 10,944 32

10 81 3 5 24,624 36,466 9,088 16

15 32 2 6 27,840 36,540 7,740 30

10 64 4 4 48,640 62,320 13,680 40

10 81 3 5 30,780 43,760 11,360 20

202

REFERENCES

Abbasi, B., Babaei, T., Hosseinifard, Z., Smith-Miles, K., and Dehghani, M. (2020).
Predicting solutions of large-scale optimization problems via machine learning:
A case study in blood supply chain management. Computers & Operations
Research, 119:104941.

Absi, N. and van den Heuvel, W. (2019). Worst-case analysis of relax and fix heuristics
for lot-sizing problems. European Journal of Operational Research, 279(2):449–
458.

Accorsi, L., Lodi, A., and Vigo, D. (2022). Guidelines for the computational testing of
machine learning approaches to vehicle routing problems. Operations Research
Letters, 50(2):229–234.

Afshar, R. R., Zhang, Y., Firat, M., and Kaymak, U. (2020). A state aggregation
approach for solving knapsack problem with deep reinforcement learning.
In Asian Conference on Machine Learning, pages 81–96. Cambridge, MA:
Proceedings of Machine Learning Research.

Ahmed, S. (2010). Two-stage stochastic integer programming: A brief intro-
duction. Wiley Encyclopedia of Operations Research and Management Science.
Hoboken, NJ: Wiley.

Ahmed, S., Tawarmalani, M., and Sahinidis, N. V. (2004). A finite branch-and-
bound algorithm for two-stage stochastic integer programs. Mathematical
Programming, 100(2):355–377.

Akçay, Y., Li, H., and Xu, S. H. (2007). Greedy algorithm for the general multidi-
mensional knapsack problem. Annals of Operations Research, 150(1):17–29.

Alpaydin, E. (2020). Introduction to machine learning. Cambridge, MA: MIT Press.

Anderson, L., Turner, M., and Koch, T. (2022). Generative deep learning for decision
making in gas networks. Mathematical Methods of Operations Research,
95(3):503–532.

Angulo, G., Ahmed, S., and Dey, S. S. (2016). Improving the integer l-shaped method.
INFORMS Journal on Computing, 28(3):483–499.

Atamtürk, A. and Muñoz, J. C. (2004). A study of the lot-sizing polytope.
Mathematical Programming, 99(3):443–465.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

203

Balaji, B., Bell-Masterson, J., Bilgin, E., Damianou, A., Garcia, P. M., Jain, A., Luo,
R., Maggiar, A., Narayanaswamy, B., and Ye, C. (2019). Orl: Reinforcement
learning benchmarks for online stochastic optimization problems. arXiv
preprint arXiv:1911.10641.

Bampis, E., Escoffier, B., and Kononov, A. (2020). Lp-based algorithms for multistage
minimization problems. In International Workshop on Approximation and
Online Algorithms, pages 1–15. Cham, Switzerland: Springer.

Bampis, E., Escoffier, B., and Teiller, A. (2022). Multistage knapsack. Journal of
Computer and System Sciences, 126:106–118.

Barany, I., Van Roy, T. J., and Wolsey, L. A. (1984). Strong formulations for multi-
item capacitated lot sizing. Management Science, 30(10):1255–1261.

Barbarosoǧlu, G. and Arda, Y. (2004). A two-stage stochastic programming
framework for transportation planning in disaster response. Journal of the
Operational Research Society, 55(1):43–53.

Barnhart, C., Belobaba, P., and Odoni, A. R. (2003). Applications of operations
research in the air transport industry. Transportation Science, 37(4):368–391.

Bellman, R. (1966). Dynamic programming. Science, 153(3731):34–37.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2016). Neural
combinatorial optimization with reinforcement learning. arXiv preprint
arXiv:1611.09940.

Bengio, Y., Frejinger, E., Lodi, A., Patel, R., and Sankaranarayanan, S. (2020).
A learning-based algorithm to quickly compute good primal solutions for
stochastic integer programs. In International Conference on Integration of
Constraint Programming, Artificial Intelligence, and Operations Research,
pages 99–111. Cham, Switzerland: Springer.

Bengio, Y., Lodi, A., and Prouvost, A. (2021). Machine learning for combina-
torial optimization: a methodological tour d’horizon. European Journal of
Operational Research, 290(2):405–421.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks / a
Publication of the IEEE Neural Networks Council, 5:157–66.

Beraldi, P., Ghiani, G., Grieco, A., and Guerriero, E. (2006). Fix and relax
heuristic for a stochastic lot-sizing problem. Computational Optimization and
Applications, 33(2):303–318.

Bertsimas, D. and Demir, R. (2002). An approximate dynamic programming approach
to multidimensional knapsack problems. Management Science, 48(4):550–565.

204

Bertsimas, D. and Stellato, B. (2021). The voice of optimization. Machine Learning,
110(2):249–277.

Bertsimas, D. and Stellato, B. (2022). Online mixed-integer optimization in
milliseconds. INFORMS Journal on Computing, 34(4):2229–2248.

Birge, J. R. and Louveaux, F. V. (1988). A multicut algorithm for two-stage stochastic
linear programs. European Journal of Operational Research, 34(3):384–392.

Birge, J. R. and Louveaux, F. V. (2011). Introduction to stochastic programming.
New York, NY: Springer.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, England:
Oxford university press.

Bitran, G. R. and Yanasse, H. H. (1982). Computational complexity of the capacitated
lot size problem. Management Science, 28(10):1174–1186.

Bonami, P., Lodi, A., and Zarpellon, G. (2018). Learning a classification of mixed-
integer quadratic programming problems. In International Conference on the
Integration of Constraint Programming, Artificial Intelligence, and Operations
Research, pages 595–604. Cham, Switzerland: Springer.

Boonmee, A. and Sethanan, K. (2016). A glnpso for multi-level capacitated lot-
sizing and scheduling problem in the poultry industry. European Journal of
Operational Research, 250(2):652–665.

Bruno, G., Genovese, A., and Piccolo, C. (2014). The capacitated lot sizing model: A
powerful tool for logistics decision making. International Journal of Production
Economics, 155:380–390.

Bushaj, S. and Büyüktahtakın, İ. E. (2022). A k-means supported reinforcement
learning algorithm to solve multi-dimensional knapsack problem. Under
Review for INFORMS Journal of Global Optimization.

Bushaj, S., Büyüktahtakın, İ. E., and Haight, R. G. (2022a). Risk-averse multi-stage
stochastic optimization for surveillance and operations planning of a forest
insect infestation. European Journal of Operational Research, 299(3):1094–
1110.

Bushaj, S., Büyüktahtakın, İ. E., Yemshanov, D., and Haight, R. G. (2021).
Optimizing surveillance and management of emerald ash borer in urban
environments. Natural Resource Modeling, 34(1):e12267.

Bushaj, S., Yin, X., Beqiri, A., Andrews, D., and Büyüktahtakın, İ. E. (2022b).
A simulation-deep reinforcement learning (sirl) approach for epidemic control
optimization. Annals of Operations Research.

205

Buşoniu, L., Babuška, R., and De Schutter, B. (2008). A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 38(2):156–172.

Buşoniu, L., Babuška, R., and De Schutter, B. (2010). Multi-agent reinforcement
learning: An overview. Innovations in Multi-agent Systems and Applications-1,
1:183.

Büyüktahtakın, İ. E. (2011). Dynamic programming via linear programming. Wiley
Encyclopedia of Operations Research and Management Science. Hoboken, NJ:
Wiley.

Büyüktahtakın, İ. E. (2022). Stage-t scenario dominance for risk-averse multi-stage
stochastic mixed-integer programs. Annals of Operations Research, 309(1):1–
35.

Büyüktahtakın, İ. E., des Bordes, E., and Kıbış, E. Y. (2018a). A new epidemics–
logistics model: Insights into controlling the ebola virus disease in West Africa.
European Journal of Operational Research, 265(3):1046–1063.

Büyüktahtakın, İ. E., Feng, Z., Frisvold, G., Szidarovszky, F., and Olsson, A. (2011).
A dynamic model of controlling invasive species. Computers & Mathematics
with Applications, 62(9):3326–3333.

Büyüktahtakin, İ. E., Feng, Z., Olsson, A. D., Frisvold, G., and Szidarovszky, F.
(2014). Invasive species control optimization as a dynamic spatial process:
an application to buffelgrass (pennisetum ciliare) in arizona. Invasive Plant
Science and Management, 7(1):132–146.

Büyüktahtakın, İ. E., Feng, Z., and Szidarovszky, F. (2014a). A multi-objective
optimization approach for invasive species control. Journal of the Operational
Research Society, 65(11):1625–1635.

Büyüktahtakın, İ. E. and Haight, R. G. (2018). A review of operations research
models in invasive species management: state of the art, challenges, and future
directions. Annals of Operations Research, 271(2):357–403.

Büyüktahtakın, İ. E. and Hartman, J. C. (2016). A mixed-integer programming
approach to the parallel replacement problem under technological change.
International Journal of Production Research, 54(3):680–695.

Büyüktahtakın, İ. E., Kıbış, E. Y., Cobuloglu, H. I., Houseman, G. R., and Lampe,
J. T. (2015). An age-structured bio-economic model of invasive species
management: insights and strategies for optimal control. Biological Invasions,
17(9):2545–2563.

Büyüktahtakın, İ. E. and Liu, N. (2016). Dynamic programming approximation
algorithms for the capacitated lot-sizing problem. Journal of Global
Optimization, 65(2):231–259.

206

Büyüktahtakın, İ. E., Smith, J. C., and Hartman, J. C. (2018b). Partial objective
inequalities for the multi-item capacitated lot-sizing problem. Computers &
Operations Research, 91:132–144.

Büyüktahtakın, İ. E., Smith, J. C., Hartman, J. C., and Luo, S. (2014b). Parallel
asset replacement problem under economies of scale with multiple challengers.
The Engineering Economist, 59(4):237–258.

Cacchiani, V., Hemmelmayr, V. C., and Tricoire, F. (2014). A set-covering based
heuristic algorithm for the periodic vehicle routing problem. Discrete Applied
Mathematics, 163:53–64.

Cacchiani, V., Iori, M., Locatelli, A., and Martello, S. (2022). Knapsack problems-
an overview of recent advances. Part II: Multiple, multidimensional, and
quadratic knapsack problems. Computers & Operations Research, 143:105693.

Carøe, C. C. and Schultz, R. (1999). Dual decomposition in stochastic integer
programming. Operations Research Letters, 24(1-2):37–45.

Carrión, M., Philpott, A. B., Conejo, A. J., and Arroyo, J. M. (2007). A stochastic
programming approach to electric energy procurement for large consumers.
IEEE Transactions on Power Systems, 22(2):744–754.

Chen, X. and Tian, Y. (2019). Learning to perform local rewriting for combinatorial
optimization. Advances in Neural Information Processing Systems, 32:6281–
6292.

Chen, Y. and Hao, J.-K. (2014). A “reduce and solve” approach for the multiple-
choice multidimensional knapsack problem. European Journal of Operational
Research, 239(2):313–322.

Chen, Z.-L., Li, S., and Tirupati, D. (2002). A scenario-based stochastic programming
approach for technology and capacity planning. Computers & Operations
Research, 29(7):781–806.

Chius, S. Y., Lu, L., and Cox Jr, L. A. (1996). Optimal access control for broadband
services: stochastic knapsack with advance information. European Journal of
Operational Research, 89(1):127–134.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014). Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-
based models for speech recognition. Advances in Neural Information
Processing Systems, 28:577–585.

207

Cobuloglu, H. I. and Büyüktahtakın, İ. E. (2014). A mixed-integer optimization
model for the economic and environmental analysis of biomass production.
Biomass and Bioenergy, 67:8–23.

Cobuloglu, H. I. and Büyüktahtakın, İ. E. (2015a). Food vs. biofuel: An
optimization approach to the spatio-temporal analysis of land-use competition
and environmental impacts. Applied Energy, 140:418–434.

Cobuloglu, H. I. and Büyüktahtakın, İ. E. (2015b). A stochastic multi-criteria
decision analysis for sustainable biomass crop selection. Expert Systems with
Applications, 42(15-16):6065–6074.

Cobuloglu, H. I. and Büyüktahtakın, İ. E. (2017). A two-stage stochastic
mixed-integer programming approach to the competition of biofuel and food
production. Computers & Industrial Engineering, 107:251–263.

Cohen, E., Cormode, G., Duffield, N., and Lund, C. (2016). On the tradeoff between
stability and fit. ACM Transactions on Algorithms, 13(1):1–24.

Cohn, A. M. and Barnhart, C. (1998). The stochastic knapsack problem with random
weights: A heuristic approach to robust transportation planning. Proceedings
of the Triennial Symposium on Transportation Analysis, 3:17–23.

Copil, K., Wörbelauer, M., Meyr, H., and Tempelmeier, H. (2017). Simultaneous
lot-sizing and scheduling problems: a classification and review of models. OR
Spectrum, 39(1):1–64.

Coşgun, Ö. and Büyüktahtakın, İ. E. (2018). Stochastic dynamic resource allocation
for hiv prevention and treatment: An approximate dynamic programming
approach. Computers & Industrial Engineering, 118:423–439.

Crespo-Vazquez, J. L., Carrillo, C., Diaz-Dorado, E., Martinez-Lorenzo, J. A., and
Noor-E-Alam, M. (2018). A machine learning based stochastic optimization
framework for a wind and storage power plant participating in energy pool
market. Applied Energy, 232:341–357.

Cygan, M., Jeż, Ł., and Sgall, J. (2016). Online knapsack revisited. Theory of
Computing Systems, 58(1):153–190.

Dantzig, G. B. (1955). Linear programming under uncertainty. Management Science,
1(3-4):197–206.

Delarue, A., Anderson, R., and Tjandraatmadja, C. (2020). Reinforcement learning
with combinatorial actions: An application to vehicle routing. Advances in
Neural Information Processing Systems, 33:609–620.

Denizel, M. and Süral, H. (2006). On alternative mixed integer programming
formulations and LP-based heuristics for lot-sizing with setup times. Journal
of the Operational Research Society, 57(4):389–399.

208

Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., and Rousseau, L.-M. (2018).
Learning heuristics for the tsp by policy gradient. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 170–181.
Cham, Switzerland: Springer.

Ding, J.-Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., and Song, L. (2020).
Accelerating primal solution findings for mixed integer programs based on
solution prediction. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 1452–1459. Palo Alto, CA: Association for the
Advancement of Artificial Intelligence.

Ding, L., Ahmed, S., and Shapiro, A. (2019). A python package for multi-stage
stochastic programming. Optimization Online.

Donti, P. L., Rolnick, D., and Kolter, J. Z. (2021). Dc3: A learning method for
optimization with hard constraints. arXiv preprint arXiv:2104.12225.

Dumouchelle, J., Patel, R., Khalil, E. B., and Bodur, M. (2022). Neur2sp: Neural
two-stage stochastic programming. arXiv preprint arXiv:2205.12006.

Eck, D. and Schmidhuber, J. (2002). Learning the long-term structure of the blues.
In International Conference on Artificial Neural Networks, pages 284–289.
Heidelberg, Germany: Springer.

Eisenstat, D., Mathieu, C., and Schabanel, N. (2014). Facility location in
evolving metrics. In Automata, Languages, and Programming, pages 459–470.
Heidelberg, Germany: Springer.

Eppen, G. D. and Martin, R. K. (1987). Solving multi-item capacitated lot-sizing
problems using variable redefinition. Operations Research, 35(6):832–848.

Fábián, C. I. and Szőke, Z. (2007). Solving two-stage stochastic programming
problems with level decomposition. Computational Management Science,
4(4):313–353.

Feng, Y., Niazadeh, R., and Saberi, A. (2021). Two-stage stochastic matching with
application to ride hailing. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, pages 2862–2877. Philadelphia, PA: Society for
Industrial and Applied Mathematics.

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014). Do we need
hundreds of classifiers to solve real world classification problems? The Journal
of Machine Learning Research, 15(1):3133–3181.

Finnah, B., Gönsch, J., and Ziel, F. (2022). Integrated day-ahead and intraday
self-schedule bidding for energy storage systems using approximate dynamic
programming. European Journal of Operational Research, 301(2):726–746.

209

Fischetti, M. and Fraccaro, M. (2019). Machine learning meets mathematical
optimization to predict the optimal production of offshore wind parks.
Computers & Operations Research, 106:289–297.

Florian, M., Lenstra, J. K., and Rinnooy Kan, A. (1980). Deterministic production
planning: Algorithms and complexity. Management Science, 26(7):669–679.

Frejinger, E. and Larsen, E. (2019). A language processing algorithm for predicting
tactical solutions to an operational planning problem under uncertainty. arXiv
preprint arXiv:1910.08216.

Gade, D., Hackebeil, G., Ryan, S. M., Watson, J.-P., Wets, R. J.-B., and Woodruff,
D. L. (2016). Obtaining lower bounds from the progressive hedging algorithm
for stochastic mixed-integer programs. Mathematical Programming, 157(1):47–
67.

Gade, D., Küçükyavuz, S., and Sen, S. (2014). Decomposition algorithms
with parametric gomory cuts for two-stage stochastic integer programs.
Mathematical Programming, 144(1):39–64.

Gaivoronski, A. A., Lisser, A., Lopez, R., and Xu, H. (2011). Knapsack problem with
probability constraints. Journal of Global Optimization, 49(3):397–413.

Gao, J. and You, F. (2015). Deciphering and handling uncertainty in shale gas
supply chain design and optimization: Novel modeling framework and compu-
tationally efficient solution algorithm. AIChE Journal, 61(11):3739–3755.

Gicquel, C., Minoux, M., and Dallery, Y. (2008). Capacitated lot sizing models:
a literature review. https://hal.archives-ouvertes.fr/hal-00255830/
document.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,
MA: MIT Press.

Grass, E., Fischer, K., and Rams, A. (2020). An accelerated l-shaped method for
solving two-stage stochastic programs in disaster management. Annals of
Operations Research, 284(2):557–582.

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks.
Heidelberg, Germany: Springer.

Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with
bidirectional lstm networks. In Proceedings of the IEEE International Joint
Conference on Neural Networks, pages 2047–2052. Piscataway, NJ: Institute
of Electrical and Electronics Engineers.

Gu, S., Hao, T., and Yao, H. (2020). A pointer network based deep learning algorithm
for unconstrained binary quadratic programming problem. Neurocomputing,
390:1–11.

210

https://hal.archives-ouvertes.fr/hal-00255830/document
https://hal.archives-ouvertes.fr/hal-00255830/document

Guastaroba, G. and Speranza, M. G. (2014). A heuristic for BILP problems: the single
source capacitated facility location problem. European Journal of Operational
Research, 238(2):438–450.

Guerriero, F. and Guido, R. (2011). Operational research in the management of the
operating theatre: a survey. Health Care Management Science, 14(1):89–114.

Guha, N., Wang, Z., Wytock, M., and Majumdar, A. (2019). Machine learning for ac
optimal power flow. arXiv preprint arXiv:1910.08842.

Gul, S., Denton, B. T., and Fowler, J. W. (2015). A progressive hedging approach
for surgery planning under uncertainty. INFORMS Journal on Computing,
27(4):755–772.

Guo, P., Huang, G. H., Zhu, H., and Wang, X. (2010). A two-stage programming
approach for water resources management under randomness and fuzziness.
Environmental Modelling & Software, 25(12):1573–1581.

Gupta, A., Müller, A. T., Huisman, B. J., Fuchs, J. A., Schneider, P., and Schneider,
G. (2018). Generative recurrent networks for de novo drug design. Molecular
Informatics, 37(1-2):1700111.

Gurobi Optimization, LLC (2022). Gurobi Optimizer Reference Manual, version 9.5.
https://www.gurobi.com.

Hao, X., Peng, Z., Ma, Y., Wang, G., Jin, J., Hao, J., Chen, S., Bai, R.,
Xie, M., Xu, M., Zheng, Z., Yu, C., Li, H., Xu, J., and Gai, K. (2020).
Dynamic knapsack optimization towards efficient multi-channel sequential
advertising. In International Conference on Machine Learning, pages 4060–
4070. Cambridge, MA: Proceedings of Machine Learning Research.

Hartman, J. C., Büyüktahtakın, İ. E., and Smith, J. C. (2010). Dynamic-
programming-based inequalities for the capacitated lot-sizing problem. IIE
Transactions, 42(12):915–930.

Haugen, K. K., Løkketangen, A., and Woodruff, D. L. (2001). Progressive hedging
as a meta-heuristic applied to stochastic lot-sizing. European Journal of
Operational Research, 132(1):116–122.

He, K., Zhang, X., Ren, S., and Sun, J. (2015a). Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE International Conference on Computer Vision, pages 1026–1034.
Piscataway, NJ: Institute of Electrical and Electronics Engineers.

He, P., Zhang, W., Xu, X., and Bian, Y. (2015b). Production lot-sizing and carbon
emissions under cap-and-trade and carbon tax regulations. Journal of Cleaner
Production, 103:241–248.

211

He, Y., Wu, G., Chen, Y., and Pedrycz, W. (2021). A two-stage framework and
reinforcement learning-based optimization algorithms for complex scheduling
problems. arXiv preprint arXiv:2103.05847.

Helber, S. and Sahling, F. (2010). A fix-and-optimize approach for the multi-
level capacitated lot sizing problem. International Journal of Production
Economics, 123(2):247–256.

Hjelmeland, M. N., Zou, J., Helseth, A., and Ahmed, S. (2018). Nonconvex medium-
term hydropower scheduling by stochastic dual dynamic integer programming.
IEEE Transactions on Sustainable Energy, 10(1):481–490.

Ho, J. K. and Manne, A. S. (1974). Nested decomposition for dynamic models.
Mathematical Programming, 6(1):121–140.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8):1735–1780.

Homem-de Mello, T. and Pagnoncelli, B. K. (2016). Risk aversion in multistage
stochastic programming: A modeling and algorithmic perspective. European
Journal of Operational Research, 249(1):188–199.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences,
79(8):2554–2558.

Hopfield, J. J. and Tank, D. W. (1985). "Neural" computation of decisions in
optimization problems. Biological Cybernetics, 52(3):141–152.

Hu, H., Zhang, X., Yan, X., Wang, L., and Xu, Y. (2017). Solving a new 3d bin
packing problem with deep reinforcement learning method. arXiv preprint
arXiv:1708.05930.

Huang, G. and Loucks, D. P. (2000). An inexact two-stage stochastic programming
model for water resources management under uncertainty. Civil Engineering
Systems, 17(2):95–118.

Huang, K. and Ahmed, S. (2009). The value of multistage stochastic programming
in capacity planning under uncertainty. Operations Research, 57(4):893–904.

Huang, K. and Küçükyavuz, S. (2008). On stochastic lot-sizing problems with random
lead times. Operations Research Letters, 36(3):303–308.

Huang, Z., Wang, K., Liu, F., Zhen, H.-L., Zhang, W., Yuan, M., Hao, J., Yu,
Y., and Wang, J. (2022). Learning to select cuts for efficient mixed-integer
programming. Pattern Recognition, 123:108353.

Hubbs, C. D., Perez, H. D., Sarwar, O., Sahinidis, N. V., Grossmann, I. E., and
Wassick, J. M. (2020). Or-gym: A reinforcement learning library for operations
research problems. arXiv preprint arXiv:2008.06319.

212

Hwang, D., Jaillet, P., and Manshadi, V. (2021). Online resource allocation under
partially predictable demand. Operations Research, 69(3):895–915.

IBM ILOG, CPLEX (2016). CPLEX User’s Manual, version 12.7.0.
https://www.ibm.com/analytics/cplex-optimizer.

Ishibuchi, H., Akedo, N., and Nojima, Y. (2014). Behavior of multiobjective evolu-
tionary algorithms on many-objective knapsack problems. IEEE Transactions
on Evolutionary Computation, 19(2):264–283.

Jans, R. and Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review.
International Journal of Production Research, 46(6):1619–1643.

Jiménez-Cordero, A., Morales, J. M., and Pineda, S. (2022). Warm-starting constraint
generation for mixed-integer optimization: A machine learning approach.
Knowledge-Based Systems, 253:109570.

Kaminsky, P. and Simchi-Levi, D. (2003). Production and distribution lot sizing in a
two stage supply chain. IIE Transactions, 35(11):1065–1075.

Kantas, A. B., Cobuloglu, H. I., and Büyüktahtakın, İ. E. (2015). Multi-source
capacitated lot-sizing for economically viable and clean biofuel production.
Journal of Cleaner Production, 94:116–129.

Karimi, B., Ghomi, S. F., and Wilson, J. (2003). The capacitated lot sizing problem:
a review of models and algorithms. Omega, 31(5):365–378.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive growing of GANs
for improved quality, stability, and variation. In International Conference on
Learning Representations. https://openreview.net/forum?id=Hk99zCeAb.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. (2017a). Learning
combinatorial optimization algorithms over graphs. Advances in Neural
Information Processing Systems, 30:6351–6361.

Khalil, E. B., Dilkina, B., Nemhauser, G. L., Ahmed, S., and Shao, Y. (2017b).
Learning to run heuristics in tree search. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17, pages 659–
666. https://www.ijcai.org/proceedings/2017/0092.pdf.

Khalil, E. B., Le Bodic, P., Song, L., Nemhauser, G., and Dilkina, B. (2016).
Learning to branch in mixed integer programming. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 724–731. Palo Alto, CA:
Association for the Advancement of Artificial Intelligence.

Kıbış, E. Y. and Büyüktahtakın, İ. E. (2017). Optimizing invasive species
management: A mixed-integer linear programming approach. European
Journal of Operational Research, 259(1):308–321.

213

Kıbış, E. Y. and Büyüktahtakın, İ. E. (2019). Optimizing multi-modal cancer
treatment under 3d spatio-temporal tumor growth. Mathematical Biosciences,
307:53–69.

Kıbış, E. Y., Büyüktahtakın, İ. E., Haight, R. G., Akhundov, N., Knight, K., and
Flower, C. E. (2021). A multistage stochastic programming approach to the
optimal surveillance and control of the emerald ash borer in cities. INFORMS
Journal on Computing, 33(2):808–834.

Kim, K. and Mehrotra, S. (2015). A two-stage stochastic integer programming
approach to integrated staffing and scheduling with application to nurse
management. Operations Research, 63(6):1431–1451.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kong, W., Liaw, C., Mehta, A., and Sivakumar, D. (2018). A new dog learns old
tricks: Rl finds classic optimization algorithms. In International Conference on
Learning Representations. https://openreview.net/forum?id=rkluJ2R9KQ.

Kool, W., van Hoof, H., and Welling, M. (2018). Attention, learn to solve
routing problems! In International Conference on Learning Representations.
https://openreview.net/forum?id=ByxBFsRqYm.

Kopanos, G. M., Puigjaner, L., and Georgiadis, M. C. (2010). Optimal production
scheduling and lot-sizing in dairy plants: the yogurt production line. Industrial
& Engineering Chemistry Research, 49(2):701–718.

Kosuch, S. and Lisser, A. (2011). On two-stage stochastic knapsack problems. Discrete
Applied Mathematics, 159(16):1827–1841.

Kotary, J., Fioretto, F., and Van Hentenryck, P. (2021). Learning hard optimization
problems: A data generation perspective. Advances in Neural Information
Processing Systems, 34:24981–24992.

Kruber, M., Lübbecke, M. E., and Parmentier, A. (2017). Learning when to use
a decomposition. In International Conference on AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, pages
202–210. Cham, Switzerland: Springer.

Küçükyavuz, S. and Sen, S. (2017). An introduction to two-stage stochastic
mixed-integer programming. In Leading Developments from INFORMS
Communities, pages 1–27. Catonsville, MD: Institute for Operations Research
and the Management Sciences.

Lamba, K., Singh, S. P., and Mishra, N. (2019). Integrated decisions for supplier
selection and lot-sizing considering different carbon emission regulations in
big data environment. Computers & Industrial Engineering, 128:1052–1062.

214

Laporte, G. and Louveaux, F. V. (1993). The integer l-shaped method for stochastic
integer programs with complete recourse. Operations Research Letters,
13(3):133–142.

Lara, C. L., Siirola, J. D., and Grossmann, I. E. (2020). Electric power
infrastructure planning under uncertainty: stochastic dual dynamic integer
programming (SDDiP) and parallelization scheme. Optimization and
Engineering, 21(4):1243–1281.

Larsen, E., Frejinger, E., Gendron, B., and Lodi, A. (2022a). Fast continuous
and integer l-shaped heuristics through supervised learning. arXiv preprint
arXiv:2205.00897.

Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., and Lodi, A.
(2022b). Predicting tactical solutions to operational planning problems under
imperfect information. INFORMS Journal on Computing, 34(1):227–242.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient backprop.
In Neural Networks: Tricks of the Trade, pages 9–48. Heidelberg, Germany:
Springer.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–
1373.

Li, J., Wang, Y., Lyu, M. R., and King, I. (2017). Code completion with neural
attention and pointer networks. arXiv preprint arXiv:1711.09573.

Li, K., Zhang, T., and Wang, R. (2021). Deep reinforcement learning for multiob-
jective optimization. IEEE Transactions on Cybernetics, 51(6):3103–3114.

Linderoth, J. and Wright, S. (2003). Decomposition algorithms for stochastic
programming on a computational grid. Computational Optimization and
Applications, 24(2):207–250.

Lisser, A. and Lopez, R. (2010). Stochastic quadratic knapsack with recourse.
Electronic Notes in Discrete Mathematics, 36:97–104.

Liu, C., Fan, Y., and Ordóñez, F. (2009). A two-stage stochastic programming model
for transportation network protection. Computers & Operations Research,
36(5):1582–1590.

Liu, D., Fischetti, M., and Lodi, A. (2022). Learning to search in local branching.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 3796–3803. Palo Alto, CA: Association for the Advancement of Artificial
Intelligence.

215

Liu, P., Pistikopoulos, E. N., and Li, Z. (2010). Decomposition based stochastic
programming approach for polygeneration energy systems design under uncer-
tainty. Industrial & Engineering Chemistry Research, 49(7):3295–3305.

Liu, X., Zheng, Z., Büyüktahtakın, İ. E., Zhou, Z., and Wang, P. (2021). Battery
asset management with cycle life prognosis. Reliability Engineering & System
Safety, 216:107948.

Lodi, A. and Zarpellon, G. (2017). On learning and branching: a survey. TOP,
25(2):207–236.

Louveaux, F. V. (1980). A solution method for multistage stochastic programs
with recourse with application to an energy investment problem. Operations
Research, 28(4):889–902.

Lu, H., Zhang, X., and Yang, S. (2019). A learning-based iterative method for
solving vehicle routing problems. In International Conference on Learning
Representations. https://openreview.net/forum?id=BJe1334YDH.

Lubin, M., Martin, K., Petra, C. G., and Sandıkçı, B. (2013). On parallelizing
dual decomposition in stochastic integer programming. Operations Research
Letters, 41(3):252–258.

Lulli, G. and Sen, S. (2004). A branch-and-price algorithm for multistage stochastic
integer programming with application to stochastic batch-sizing problems.
Management Science, 50(6):786–796.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025.

Maes, J. and Wassenhove, L. V. (1988). Multi-item single-level capacitated dynamic
lot-sizing heuristics: A general review. Journal of the Operational Research
Society, 39(11):991–1004.

Maqsood, I. and Huang, G. H. (2003). A two-stage interval-stochastic programming
model for waste management under uncertainty. Journal of the Air & Waste
Management Association, 53(5):540–552.

Marufuzzaman, M., Eksioglu, S. D., and Huang, Y. E. (2014). Two-stage stochastic
programming supply chain model for biodiesel production via wastewater
treatment. Computers & Operations Research, 49:1–17.

Masti, D. and Bemporad, A. (2019). Learning binary warm starts for multiparametric
mixed-integer quadratic programming. In 2019 18th European Control
Conference (ECC), pages 1494–1499. Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

216

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E. (2021). Reinforcement
learning for combinatorial optimization: A survey. Computers & Operations
Research, 134:105400.

Merzifonluoglu, Y. and Geunes, J. (2021). The risk-averse static stochastic knapsack
problem. INFORMS Journal on Computing, 33(3):931–948.

Mnih, V., Heess, N., Graves, A., and Kavukcuoglu, K. (2014). Recurrent models of
visual attention. Advances in Neural Information Processing Systems, 27:2204–
2212.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Möller, A., Römisch, W., and Weber, K. (2008). Airline network revenue management
by multistage stochastic programming. Computational Management Science,
5(4):355–377.

Monem, M., Alam, M. G. R., Abdullah-Al-Wadud, M., Huda, S., Hassan, M. M.,
and Fortino, G. (2022). An industry-4.0-compliant sustainable bitcoin model
through optimized transaction selection and sustainable block integration.
IEEE Transactions on Industrial Informatics, 18(12):9162–9172.

Morita, H., Ishii, H., and Nishida, T. (1989). Stochastic linear knapsack programming
problem and its application to a portfolio selection problem. European Journal
of Operational Research, 40(3):329–336.

Mottini, A. and Acuna-Agost, R. (2017). Deep choice model using pointer networks
for airline itinerary prediction. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
1575–1583. New York, NY: Association for Computing Machinery.

Müller, R., Kornblith, S., and Hinton, G. E. (2019). When does label smoothing
help? Advances in Neural Information Processing Systems, 32:4696–4705.

Mulvey, J. M. and Shetty, B. (2004). Financial planning via multi-stage stochastic
optimization. Computers & Operations Research, 31(1):1–20.

Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Lichocki, P., Lobov, I.,
O’Donoghue, B., Sonnerat, N., Tjandraatmadja, C., Wang, P., Addanki,
R., Hapuarachchi, T., Keck, T., Keeling, J., Kohli, P., Ktena, I., Li, Y.,
Vinyals, O., and Zwols, Y. (2020). Solving mixed integer programs using
neural networks. arXiv preprint arXiv:2012.13349.

Nazari, M., Oroojlooy, A., Takáč, M., and Snyder, L. V. (2018). Reinforcement
learning for solving the vehicle routing problem. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, pages
9861–9871. Red Hook, NY: Curran Associates Inc.

217

Nguyen, T. T., Nguyen, N. D., and Nahavandi, S. (2020). Deep reinforcement learning
for multiagent systems: A review of challenges, solutions, and applications.
IEEE Transactions on Cybernetics, 50(9):3826–3839.

Onal, S., Akhundov, N., Büyüktahtakın, İ. E., Smith, J., and Houseman, G. R.
(2020). An integrated simulation-optimization framework to optimize search
and treatment path for controlling a biological invader. International Journal
of Production Economics, 222:107507.

Oroojlooyjadid, A., Snyder, L. V., and Takáč, M. (2019). Applying deep learning to
the newsvendor problem. IISE Transactions, 52(4):444–463.

Pan, X., Zhao, T., and Chen, M. (2019). Deepopf: Deep neural network for dc optimal
power flow. In 2019 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm),
pages 1–6. Piscataway, NJ: Institute of Electrical and Electronics Engineers.

Pan, Z., Tang, J., and Liu, O. (2009). Capacitated dynamic lot sizing problems
in closed-loop supply chain. European Journal of Operational Research,
198(3):810–821.

Paulus, A., Rolínek, M., Musil, V., Amos, B., and Martius, G. (2021). Comboptnet:
Fit the right np-hard problem by learning integer programming constraints. In
International Conference on Machine Learning, pages 8443–8453. Cambridge,
MA: Proceedings of Machine Learning Research.

Pochet, Y. and Wolsey, L. A. (2006). Production planning by mixed integer
programming. New York, NY: Springer.

Powell, W. B. (2009). What you should know about approximate dynamic
programming. Naval Research Logistics, 56(3):239–249.

Prékopa, A. (2013). Stochastic programming. Dordrecht, Netherlands: Springer
Science & Business Media.

Quadt, D. and Kuhn, H. (2005). Conceptual framework for lot-sizing and scheduling of
flexible flow lines. International Journal of Production Research, 43(11):2291–
2308.

Quadt, D. and Kuhn, H. (2007). Capacitated lot-sizing with extensions: a review.
4OR, 6(1):61–83.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The
benders decomposition algorithm: A literature review. European Journal of
Operational Research, 259(3):801–817.

Rockafellar, R. T. and Wets, R. J.-B. (1991). Scenarios and policy aggregation
in optimization under uncertainty. Mathematics of Operations Research,
16(1):119–147.

218

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project
Para. Buffalo, NY: Cornell Aeronautical Laboratory.

Ruszczyński, A. (1986). A regularized decomposition method for minimizing a sum
of polyhedral functions. Mathematical Programming, 35(3):309–333.

Ruszczyński, A. and Shapiro, A. (2003). Stochastic programming models. Handbooks
in Operations Research and Management Science, 10:1–64.

Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. (2017). Deep reinforcement
learning framework for autonomous driving. Electronic Imaging, 2017(19):70–
76.

Samavati, M., Essam, D., Nehring, M., and Sarker, R. (2017). A methodology
for the large-scale multi-period precedence-constrained knapsack problem:
an application in the mining industry. International Journal of Production
Economics, 193:12–20.

Schmidt, G. and Wilhelm, W. E. (2000). Strategic, tactical and operational decisions
in multi-national logistics networks: a review and discussion of modelling
issues. International Journal of Production Research, 38(7):1501–1523.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681.

See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization
with pointer-generator networks. arXiv preprint arXiv:1704.04368.

Shen, Y., Sun, Y., Eberhard, A., and Li, X. (2021). Learning primal heuristics for
mixed integer programs. In 2021 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Shen, Y., Sun, Y., Li, X., Eberhard, A., and Ernst, A. (2022). Enhancing column
generation by a machine-learning-based pricing heuristic for graph coloring.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 9926–9934. Palo Alto, CA: Association for the Advancement of Artificial
Intelligence.

Shrouf, F. and Miragliotta, G. (2015). Energy management based on internet of
things: practices and framework for adoption in production management.
Journal of Cleaner Production, 100:235–246.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–503.

219

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
Deterministic policy gradient algorithms. In International Conference on
Machine Learning, pages 387–395. Cambridge, MA: Proceedings of Machine
Learning Research.

Singh, K. J., Philpott, A. B., and Wood, R. K. (2009). Dantzig-Wolfe decomposition
for solving multistage stochastic capacity-planning problems. Operations
Research, 57(5):1271–1286.

Skar, C., Doorman, G., and Tomasgard, A. (2014). Large-scale power system planning
using enhanced benders decomposition. In 2014 Power Systems Computation
Conference, pages 1–7. Piscataway, NJ: Institute of Electrical and Electronics
Engineers.

Smith, K. A. (1999). Neural networks for combinatorial optimization: A review of
more than a decade of research. INFORMS Journal on Computing, 11(1):15–
34.

Solveling, G., Solak, S., Clarke, J.-P., and Johnson, E. (2011). Runway operations
optimization in the presence of uncertainties. Journal of Guidance, Control,
and Dynamics, 34(5):1373–1382.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958.

Stahlberg, F. (2020). Neural machine translation: A review. Journal of Artificial
Intelligence Research, 69:343–418.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning
with neural networks. Advances in Neural Information Processing Systems,
27:3104–3112.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
Cambridge, MA: MIT press.

Tajeddini, M. A., Rahimi-Kian, A., and Soroudi, A. (2014). Risk averse optimal
operation of a virtual power plant using two stage stochastic programming.
Energy, 73:958–967.

Tang, D., Qin, B., and Liu, T. (2015). Document modeling with gated recurrent neural
network for sentiment classification. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 1422–1432. Red
Hook, NY: Curran Associates Inc.

Tang, Y., Agrawal, S., and Faenza, Y. (2020). Reinforcement learning for integer
programming: Learning to cut. In International Conference on Machine
Learning, pages 9367–9376. Cambridge, MA: Proceedings of Machine Learning
Research.

220

Tempelmeier, H. (2013). Stochastic lot sizing problems. In Handbook of Stochastic
Models and Analysis of Manufacturing System Operations, pages 313–344. New
York, NY: Springer.

Thevenin, S., Adulyasak, Y., and Cordeau, J.-F. (2022). Stochastic dual dynamic
programming for multiechelon lot sizing with component substitution.
INFORMS Journal on Computing.

Toledo, C. F. M., da Silva Arantes, M., Hossomi, M. Y. B., França, P. M., and
Akartunalı, K. (2015). A relax-and-fix with fix-and-optimize heuristic applied
to multi-level lot-sizing problems. Journal of Heuristics, 21(5):687–717.

Uzsoy, R., Lee, C.-Y., and Martin-Vega, L. A. (1992). A review of production planning
and scheduling models in the semiconductor industry part i: system charac-
teristics, performance evaluation and production planning. IIE Transactions,
24(4):47–60.

Van Slyke, R. M. and Wets, R. (1969). L-shaped linear programs with applications
to optimal control and stochastic programming. SIAM Journal on Applied
Mathematics, 17(4):638–663.

Varnamkhasti, M. J. (2012). Overview of the algorithms for solving the multidimen-
sional knapsack problems. Advanced Studies in Biology, 4(1):37–47.

Veliz, F. B., Watson, J.-P., Weintraub, A., Wets, R. J.-B., and Woodruff, D. L.
(2015). Stochastic optimization models in forest planning: a progressive
hedging solution approach. Annals of Operations Research, 232(1):259–274.

Vespucci, M. T., Maggioni, F., Bertocchi, M. I., and Innorta, M. (2012). A stochastic
model for the daily coordination of pumped storage hydro plants and wind
power plants. Annals of Operations Research, 193(1):91–105.

Vinyals, O., Bengio, S., and Kudlur, M. (2015a). Order matters: Sequence to sequence
for sets. arXiv preprint arXiv:1511.06391.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015b). Pointer networks. Advances in
Neural Information Processing Systems, 28:2692–2700.

Watson, J.-P. and Woodruff, D. L. (2011). Progressive hedging innovations for a
class of stochastic mixed-integer resource allocation problems. Computational
Management Science, 8(4):355–370.

Wichmann, M. G., Johannes, C., and Spengler, T. S. (2019). Energy-oriented lot-
sizing and scheduling considering energy storages. International Journal of
Production Economics, 216:204–214.

Wilbaut, C., Hanafi, S., and Salhi, S. (2008). A survey of effective heuristics and their
application to a variety of knapsack problems. IMA Journal of Management
Mathematics, 19(3):227–244.

221

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80–83.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3):229–256.

Wu, F. and Sioshansi, R. (2017). A two-stage stochastic optimization model
for scheduling electric vehicle charging loads to relieve distribution-system
constraints. Transportation Research Part B: Methodological, 102:55–82.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X.,
Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian,
G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals,
O., Corrado, G., Hughes, M., and Dean, J. (2016). Google’s neural machine
translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144.

Wu, Y., Song, W., Cao, Z., and Zhang, J. (2021). Learning scenario representation for
solving two-stage stochastic integer programs. In International Conference on
Learning Representations. https://openreview.net/forum?id=06Wy2BtxXrz.

Xavier, Á. S., Qiu, F., and Ahmed, S. (2021). Learning to solve large-scale security-
constrained unit commitment problems. INFORMS Journal on Computing,
33(2):739–756.

Xiao, J., Yang, H., Zhang, C., Zheng, L., and Gupta, J. N. (2015). A hybrid
lagrangian-simulated annealing-based heuristic for the parallel-machine capac-
itated lot-sizing and scheduling problem with sequence-dependent setup times.
Computers & Operations Research, 63:72–82.

Yen, J. W. and Birge, J. R. (2006). A stochastic programming approach to the airline
crew scheduling problem. Transportation Science, 40(1):3–14.

Yilmaz, D. and Büyüktahtakın, İ. E. (2022a). An expandable learning-optimization
framework for sequentially dependent decision-making. Submitted to European
Journal of Operational Research.

Yilmaz, D. and Büyüktahtakın, İ. E. (2022b). Learning optimal solutions via an
LSTM-optimization framework. Submitted to Operations Research Forum.

Yin, X. and Büyüktahtakın, İ. E. (2021). A multi-stage stochastic programming
approach to epidemic resource allocation with equity considerations. Health
Care Management Science, 24(3):597–622.

Yin, X. and Büyüktahtakın, İ. E. (2022). Risk-averse multi-stage stochastic
programming to optimizing vaccine allocation and treatment logistics for
effective epidemic response. IISE Transactions on Healthcare Systems
Engineering, 12(1):52–74.

222

Yin, X., Büyüktahtakın, İ. E., and Patel, B. P. (2023). Covid-19: Data-driven optimal
allocation of ventilator supply under uncertainty and risk. European Journal
of Operational Research, 304(1):255–275.

Yu, X. and Shen, S. (2020). Multistage distributionally robust mixed-
integer programming with decision-dependent moment-based ambiguity sets.
Mathematical Programming.

Zakaria, A., Ismail, F. B., Lipu, M. H., and Hannan, M. A. (2020). Uncertainty models
for stochastic optimization in renewable energy applications. Renewable
Energy, 145:1543–1571.

Zamzam, A. S. and Baker, K. (2020). Learning optimal solutions for extremely
fast ac optimal power flow. In 2020 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), pages 1–6. Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Zha, D., Lai, K.-H., Zhou, K., and Hu, X. (2019). Experience replay optimization.
arXiv preprint arXiv:1906.08387.

Zheng, J., Wang, L., Wang, S., Liang, Y., and Pan, J. (2021). Solving two-stage
stochastic route-planning problem in milliseconds via end-to-end deep learning.
Complex & Intelligent Systems, 7(3):1207–1222.

Zhou, Z., Li, X., and Zare, R. N. (2017). Optimizing chemical reactions with deep
reinforcement learning. ACS Central Science, 3(12):1337–1344.

Zou, J., Ahmed, S., and Sun, X. A. (2019). Stochastic dual dynamic integer
programming. Mathematical Programming, 175(1):461–502.

223

	Integrated machine learning and optimization approaches
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Learning Optimal Solutions via an LSTM-Optimization Framework
	Chapter 3: An Expandable Learning-Optimization Framework for Sequentially Dependent Decision-Making
	Chapter 4: A Deep Reinforcement Learning Framework for Solving Two-Stage Stochastic Programs
	Chapter 5: A Non-Anticipative Learning-Optimization Framework for Solving Multi-Stage Stochastic Programs
	Chapter 6: Summary and Future Directions
	Appendix A: Model Training Times and Further Experiments for Chapter 2
	Appendix B: Details of the Test Instances for Chapter 5
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures

