347 research outputs found

    Neurofuzzy model of an industrial process, reducing complexity by using principal component analysis

    Get PDF
    XVI Congreso Español sobre Tecnologías y Lógica Fuzzy Valladolid, 1-3 de febrero de 2012A Neurofuzzy model of a mixing chamber pressure has been proposed. The process is a part of a copper smelter plant. The principal component analysis (PCA) method has been used to reduce the inputs space for a recurrent fuzzy model. The coupling among variables and their mutual influence between themselves, are taken into account by the projection into the PCA axis. The model have been validated with real data from the factory. The validation result shows that the model is suitable for simulation.Ministerio de Ciencia e Innovación DPI2010-21589-C05-0

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Modelling of nonlinear stochastic dynamical systems using neurofuzzy networks

    Get PDF
    Though nonlinear stochastic dynamical system can be approximated by feedforward neural networks, the dimension of the input space of the network may be too large, making it to be of little practical importance. The Nonlinear Autoregressive Moving Average model with eXogenous input (NARMAX) is shown to be able to represent nonlinear stochastic dynamical system under certain conditions. As the dimension of the input space is finite, it can be readily applied in practical application. It is well known that the training of recurrent networks using gradient method has a slow convergence rate. In this paper, a fast training algorithm based on the Newton-Raphson method for recurrent neurofuzzy network with NARMAX structure is presented. The convergence and the uniqueness of the proposed training algorithm are established. A simulation example involving a nonlinear dynamical system corrupted with the correlated noise and a sinusoidal disturbance is used to illustrate the performance of the proposed training algorithm.published_or_final_versio

    Support vector recurrent neurofuzzy networks in modeling nonlinear systems with correlated noise

    Get PDF
    Good generalization results are obtained from neurofuzzy networks if its structure is suitably chosen. To select the structure of neurofuzzy networks, the authors proposed a construction algorithm that is derived from the Support Vector Regression. However, the modeling errors are assumed to be uncorrelated. In this paper, systems with correlated modeling errors are considered. The correlated noise is modeled separately by a recurrent network. The overall network is referred to as the support vector recurrent neurofuzzy networks. The prediction error method is used to train the networks, where the derivatives are computed by a sensitivity model. The performance of proposed networks is illustrated by an example involving a nonlinear dynamic system corrupted by correlated noise.published_or_final_versio

    Design an intelligent controller for full vehicle nonlinear active suspension systems

    Get PDF
    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    Electricity Price Forecasting using Asymmetric Fuzzy Neural Network Systems

    Get PDF
    Electricity price forecasting is considered as an important tool for energy-related utilities and power generation industries. The deregulation of power market, as well as the competitive financial environment, which have introduced new market players in this field, makes the electricity price forecasting problem a demanding mission. The main focus of this paper is to investigate the performance of asymmetric neuro-fuzzy network models for day-ahead electricity price forecasting. The proposed model has been developed from existing Takagi–Sugeno–Kang fuzzy systems by substituting the IF part of fuzzy rules with an asymmetric Gaussian function. In addition, a clustering method is utilised as a pre-processing scheme to identify the initial set and adequate number of clusters and eventually the number of rules in the proposed model. The results corresponding to the minimum and maximum electricity price have indicated that the proposed forecasting scheme could be considered as an improved tool for the forecasting accuracy

    B-spline recurrent neural network and its application to modelling of non-linear dynamic systems

    Get PDF
    A new recurrent neural network based on B-spline function approximation is presented. The network can be easily trained and its training converges more quickly than that for other recurrent neural networks. Moreover, an adaptive weight updating algorithm for the recurrent network is proposed. It can speed up the training process of the network greatly and its learning speed is more quickly than existing algorithms, e.g., back-propagation algorithm. Examples are presented comparing the adaptive weight updating algorithm and the constant learning rate method, and illustrating its application to modelling of nonlinear dynamic system.published_or_final_versio

    Day ahead hourly Price Forecast in ISO New England Market using Neuro-Fuzzy Systems

    Get PDF
    Accurate electricity price forecasting is an alarming challenge for market participants and managers owing to high volatility of the electricity prices. Price forecasting is also the most important management goal for market participants since it forms the basis of maximizing profits. These markets are usually organized in power pools and administrated by the independent system operator (ISO). The aim of this study is to examine the performance of asymmetric neuro-fuzzy network models for day-ahead electricity price forecasting in the ISO New England market. The implemented model has been developed with two alternative defuzzification models. The first model follows the Takagi–Sugeno–Kang scheme, while the second the traditional centre of average method. A clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of rules in the network. Simulation results corresponding to the minimum and maximum electricity price indicate that the proposed network architectures could provide a considerable improvement for the forecasting accuracy compared to alternative learning-based scheme
    • 

    corecore