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Abstract 
Though nonlinear stochastic dynamical system can be 
approximated by feedforward neural networks, the 
dimension of the input space of the network may be too 
large, making it to be of little practical importance. The 
Nonlinear Autoregressive Moving Average model with 
exogenous input (NARMAX) is shown to be able to 
represent nonlinear stochastic dynamical system under 
certain conditions. As the dimension of the input space is 
finite, it can be readily applied in practical application. It is 
well known that the training of recurrent networks using 
gradient method has a slow convergence rate. In this paper, 
a fast training algorithm based on the Newton-Raphson 
method for recurrent neurofuzzy network with NARMAX 
structure is presented. The convergence and the uniqueness 
of the proposed training algorithm are established. A 
simulation example involving a nonlinear dynamical 
system corrupted with the correlated noise and a sinusoidal 
disturbance is used to illustrate the performance of the 
proposed training algorithm. 
Keywords: stochastic dynamical system, NARMAX 
model, neurofuzzy network, Newton-Raphson method. 

1. Introduction 
Neurofuzzy Networks are neural networks, where the 
output of the network can be considered to be derived from 
a set of linguistic rules. Hence, neurofuzzy network has the 
transparency of fuzzy systems [8,9]. Further, as neurofuzzy 
networks have the ability to approximate nonlinear 
function with arbitrary accuracy, they are widely used for 
modelling nonlinear dynamical systems [8,9,12]. To model 
stochastic dynamical systems using feedforward networks, 
it would require a network with a large number of inputs. 
The Nonlinear Autoregressive Moving Average model 
with exogenous input (NARMAX) [5,13], represents 
stochastic dynamical system with finite order and can be 
readily implemented by recurrent networks. 

In this paper, recurrent neurofuzzy networks [ 111 with 
NARMAX structure are presented. The recurrent network 
consists of two subnetworks: one representing the 
nonlinear dynamical system, and the other the 
contaminated correlated noise. The advantage of using the 
NARMAX structure is model parsimony, since the input 
dimension of NARMAX model is much smaller than that 
of the Nonlinear Autoregressive model with exogenous 
input (NARX). Though the dynamic back propagation 
proposed by Narendra and Parthasarathy is suitable for 

training the recurrent network [ 1 11, fast convergence rate 
cannot always be obtained. A new training algorithm with 
a faster convergence rate is derived based on the Newton- 
Raphson method [9,10]. In this algorithm, the concept of 
the sensitivity model in [ l l ]  is used to establish the 
relationship between the partial derivatives of the output 
error and the basis functions of the recurrent neurofuzzy 
network. 

In 92, the nonlinear stochastic dynamical system and the 
NARMAX model are introduced. Then, the recurrent 
neurofuzzy network with NARMAX structure is presented 
in 93. In training the network, the new training algorithm 
is devised in 94. The convergence analysis is given in 95. 
In 96, the fast convergence rate of the new training 
algorithm and the unbiased estimates are illustrated by 
examples of nonlinear dynamical systems corrupted with 
the correlated noise and a sinusoidal disturbance. 

2. Nonlinear Stochastic Dynamical Systems 
Consider a nonlinear stochastic dynamical system [5,13] 
given by, 

( 1 )  
where y(k), u(k), and &(k)-N(0,02) are respectively the 
output, the input and the white noise, and fs(.) is a 
nonlinear function. Let 

y(k) = fs (k, yk-' ,uk-' )t&(k) 

yk  =[y(k), ..., y(O>lT1 u k  =[u(k), ..., u(0>lT 
Since y(k) is a function of &(k), a random variable and 
hence yk is also a random variable. The conditional 
probability density function of yk given uk, g(ykluk-l), 
characterizes completely the nonlinear stochastic 
dynamical system. By Bayes's rule, the conditional 
probability density function of the output y(k) is: 
g(y(k)lyk-', uk-'), and the conditional mean of y(k) given 

(2) 

(3) 

and yk-' is Uk-l 

i ( k )  = E[y(k)ly ' - I ,  U k - l ]  = f, (k, y k - l ,  U k - l )  

In prediction-error form, y(k) is given by, 

where e(k) is the prediction error. Let 
y(k) = ?(k) + e(k) 

e k  = [e(k) ,..., e(O)y 
Then ek-l can be evaluated iteratively from yk-' and uk-' 
using (3). Similarly, yk-' can be obtained from ek-l and uk-l. 
Therefore the information contained in (yk-',uk-') is 
equivalent to that in (ek-',uk-l), hence 

0-7803-5250-5/99/$10.00 0 1999 IEEE 2643 



(4) 
Alternatively, the prediction of y(t) is obtained from, 

f(k) = E[y(k))ek-', uk-'] = f h  (k, ek-l, uk-') (5 ) 
Indeed, the dimension of f M  and fM* increases as k 
increases, and thus the computation cost and memory 
storage will also increase. Based on (2) and (5), the system 
can be represented by a model with finite input dimension, 

y( k) = F( y( k - l),. . . , y(k - m), u(k - 11,. . ., u(k - p), 
(6) 

The model given by (6) is known as Nonlinear 
Autoregressive Moving Average model with exogenous 
input (NARMAX). It is shown in [5,13] that a stochastic 
dynamical system can always be represented by the 
NARMAX model in the region around an equilibrium 
point subject to two sufficient conditions: 
M1: The deterministic function fM : [Uk-' Yk-']-+Y of the 

system is finitely realizable (i.e. it has a state-space 
realization) where Uk and Yk are respectively the sets 

and Y is the output set. 

close to the specified equilibrium point. 

e(k -l),...,e(k -n))+e(k) 

of all sequence (u(l),u(2),. . .,u(k)), (y(l),y(2),.. .,y(k)) 

M2: A linearized model exists if the system is operating 

3. Recurrent Neurofuzzy Networks 
B-spline neurofuzzy networks 181 are often used to 
estimate the output of nonlinear systems for given input 
and output measurement. Let x(k) be the input of the 
network. It is shown in [8,9] that under certain conditions, 
the output of a single hidden layer B-spline neural network 
is a linear function of the weights of the hidden layer (wi, 
i=l,. . .,q), and the transformed inputs (si(x(k)), i=l,. . .,q), 

(7) 
The transformed input si(x) is obtained by tensor product 
from the following k" order B-spline basis function [7], 

where xj is the j" knot defined on X, and I@, is the j" 
interval, [x,.l,xj). Let X(k) and Z(k) be defined as 

X(k)=[ y(k- 1 ), . . . , y(k-m),u( k- 1 ), . . . ,u(k-p)lT 
Z(k)=[e(k-l),. . .,e(k-n)lT (9) 

Assuming that the system is corrupted with the correlated 
noise, the NARMAX model can be rewritten by the sum of 
two neurofuzzy networks, 

where m' and n' are the numbers of weights; q(X(k)) and 
bi(Z(k)) are the tensor products obtained from (8); a, and pi 
are the corresponding parameters. Note that X(k), Z(k), m' 
and n' should be chosen correctly because they affect the 
networks' approximation capability. Hence, the prediction 
of y(k) can be represented by the output of the following 
recurrent neurofuzzy network, 

( 1  1) 

where r(k) = [al(k) ... a,q(k) bI(k) ... b,,-(k)F 

6=[a1 ... am, p1 ..$J 

The training of the network involves estimating the 
weights 6 ,  as discussed in the next section. 

4. Training Algorithm for Neurofuzzy Networks 
Following [ 11, it is assumed that the system given by (1) 
satisfies the following assumptions. 
S1: Let ek=[&(k) ,..., &(O)IT and Gk be the o-algebra 

generated by (2, uk). Then E[&(k) I Q k - I ]  = 0 .  

S2: E[ek .ekT I Qk-'] 2 61, 6 > 0. 
Let 8 be a parameter vector, and DM, a compact set. The 
model set M is denoted by 

The proposed training algorithm is aimed at finding a least 
mean square estimator from the models defined in M. 
Since E(k) is zero mean, the neurofuzzy network can be 
trained using N measured input and output data, 
(y(l), ...,y( N), u(l), ..., u(N)) by minimizing the following 
cost function, 

M = { M ( ~ ) I ~ E  D ~ }  (12) 

where L(.) is a scalar function of e(k) defined by 

(111) 

As the neurofuzzy network is a recurrent network, the 
estimate of its weights 6 can only be obtained numerically 
by minimizing (13) using hill-climbing methods. Though 
gradient method [8,9,11] is popular, it is not too suitable 
here as the weights of the neurofuzzy networks given by  
(11) are from two networks whose inputs can be quite 
different in magnitude, leading to slow convergence rate. 
Instead, Newton-Raphson method is used here, as it  has a 
faster convergence rate when the estimate is close to the 
optimum solution [lo]. For convenience, let 6 and r(k) in 
(1 1)  be denoted by 

it=[e, e, ... (15)  

r(k) = [rl (k) r2(k> . . . rms+,3(k)F (16) 

e(k) = y(k)-rT(k)6 (17) 
The estimate of 0 using Newton-Raphson method is 
computed as follows, 

e(t + I )=  Q(t)- H-'G (18) 
where G and H are respectively the gradient vector and ths 
Hessian matrix of the cost function J(0) as given below. 

1 
2 

L( 6, e( k)) = - e (k) 

The inverse model of ( I  0) is given by, 

2644 



Differentiating the cost function given by (13). C and H 
can be written as, 

1 1 1 
N N N 

C=--CPTE, H=-CPTCP+-S 

where 0 and S are, 

Hence, ( 18) becomes, 

where E(t) = [e(l),e(2) ,..., e(N)IT. In the feedforward 
neurofuzzy networks, the derivatives of the output error 
e(t) with respect to the weights are simply the 
corresponding basis functions. However, the calculation of 
these derivatives in the recurrent networks is not so 
straightforward. Here, the derivatives are derived based on 
the dynamic back propagation introduced in [ 111. Define 

0(t + I ) =  O( t ) - (OTO+S)- ’OTE (22) 

k - l 2 j 2 k - n  
arT (k)0 r aeo? 

k = j  (23) 
otherwise 

d(k, j) = 

Calculating d(kj)  involves the derivative of B-spline 
function. Assuming that the initial conditions of the first 
and second partial derivatives are zero, differentiating (17) 
with respect to Bi, yields, 

The first partial derivative - ae(k) is regarded as the output 

of a linear dynamic model, called sensitivity model [ l l ] .  
From (23), (24) can be rearranged as, 

aei 

The Jacobian matrix CP is the solution of (25) in matrix 
form. 

where D and R are given by 

D =  

DO = -R (26) 

d(1,l) d(1,N) 

d(N.1) d(N, N) q(N) rm*+n*(N) 
From the definition of d(kj), it is easy to observe that D is 
a lower triangular square matrix with unity diagonal 
element. For large N, <p can be obtained by direct 
substitution instead of inverting D, since D is triangular. 
Define 

ari (k) i = m’+l, ..., m’+n’ and 
ci  (k,j) = { ae(i)’ k - 1 2  j 2 k - n  

0 ,  otherwise 
Differentiating (25) with respect to Bi, a sensitivity model 
of the second partial derivative is obtained. 

then 

where V(i) and C(i) are given by, 
DV(i) = -C(i)O 

Matrix C(i) is a lower triangular square matrix with zero 
diagonal elements. Direct substitutions can be applied 
again to solve (28). Hence, matrix S can be obtained from, 

S=[VT( l )E  ... VT(m’+n’)E] 

5. Convergence Analysis 
The convergence analysis of the estimate 8 of using the 
algorithm derived in section 4 follows closely to that given 
in [l] .  

Lemma 1. The function L ( 6  ,e(k)) given by (14) 
satisfies the following two regularity conditions [ I ] .  

C l :  --(&e) ICle(  ; 8 e  D, I:-- I 
Proof: Differentiating the function L(B,e(k)) with respect 
to e(k), gives, 

Clearly, condition C 1 is satisfied for some C 2  1. The first 
derivative of L(B,e(k)) with respect to 0 is the product of 
e(k) and the first derivative of e(k) with respect to 0, i.e., 

As 8 is defined as the weight vector in DM, the prediction 

error is exponentially stable. Since the derivative, - 

is assumed to be bounded by 

W k )  
a0 ’ 

then condition C2 is also satisfied. 0 

Since the input and output are random variables, J( 6 ) and 

6 are also random variables. It is assumed that the 

expected value of J( 6 ) exists and is denoted by 7 ( 6 ). 
Theorem 1. The estimate of the cost function, J(  6 )  
given by (1 3), has the following property, 

(32) 

Proof: Consider the supremum of the sum over small open 
spheres given by 

(33) 

sup IJ(Q) -~(6)1-+ o W.P. 1 as N-+- 

we* , P I  = { elk - 0.1 <p ] 

%DM 
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Let D be the open neighborhood of DM. Choose ~ * G D M  , 
let B = B(B’,p)nD and consider 

where 
q(k) = sup L(B,e(k)) - EL(e,e(k)) 

C B  

Let (x(k)} be a sequence of random variables with zero- 
mean values and 

IEx(k)x(h)l I C k P + h P  O I 2 p < q < I  (35) 
1+Ik-hIq 

Then ‘IC” x(k) + 0 w.p.1 as N+-. N k=l 

From the Schwarz’ inequality and assumption S1, 

E\q(k)-qh (k)I2 I Ckk-h (38) 
As q(k) satisfies ( 3 3 ,  it implies that 

L x r ( q ( k ) - E q ( k ) ) + O  w.p.1 as N + -  (39) 
N 

The expected value of q(k) is bounded and is given by 
E[q(k)l= E sup L(0, e(k)) -EL(€), 

I EsupL(0, e(k)) -L(0*, e(k)) 

&B 

&B 

+sup E[L(0*, e(k)) - L(0, e(k))l 
&B 

5 c*p  (40) 

where C* is a constant according to the scalar function Id(.) 
and p is radius of the open sphere B. Substituting this 
inequality into (34) gives 

From (39), the first term of (41) vanishes as N tends to 
infinity. Hence, 

s u p L C N  &B N k=l [L(0,e(k))-EL(0,e(k))]< 6(N) (42) 

where 6(N)>O and it takes arbitrarily small value for large 

N. Equation (32) implies that J( 6 ) is arbitrary close to the 

minimum of 5 ( 6 ) as N increases, giving the convergence 

property of the estimate, 6 . 0 

Let 3 be the true weight vector. It is shown below that the 

unique minimum of 7 ( 6 ) is 7 ( 3  >. 
Theorem 2. j ( 6 ) satisfies the following property, 

J(6) > 5(S) 
Proof: Let 8 be the true weights of the B-spline neural 
network [8,12], i.e., - - 

y (k) = f (X( k)) + g( Z( k)) = r (k)8 8 E D (43) 
The difference between the cost functions with the true 
weight vector and another weight vector in DM can be 
written as, 

As &(k) is a white noise sequence independent of the past 
inputs and outputs, the first term on the right hand side of 
(44) is zero and (44) becomes, 

j(6)-j(<) = Lxr E[(L(k) - f(k))’]> 0,6 f s (45) 
2N 

giving j(6) > j(e). Hence e is the unique minimum. U 

6. Training Procedure 
The training procedure of the recurrent neurof‘uzzy 
network given by (1 1) is presented below. 

Select suitable input variables X(k) and Z(k), m’ and 
n’, and the initial values of 0, 0(0). 
Compute E=[e( I),. . .,e(N)IT using the inverse model 
given by (17), for k=l ,..., N. 
Compute @ and S in (21) using the respective 
sensitivity models. 
Update the parameter 6 using (22). 
Repeat (ii) to (iv). Terminate the iteration process i f  
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7. Example 

y(k)  = 0.8 - 0.5e-Y2(k-’) )(k - 1) 

Consider the following nonlinear system [8], 

)(k - 2) (46) 

where q(k) is a disturbance. For q(k) = 0, and initial 
conditions of y(k-1) and y(k-2) are [0.1,0.1], y(k) spirals 
out from an unstable equilibrium at the origin towards a 
periodic attractor, as shown in Fig. l(a). 
(i) Correlated noise 
Let q(t) be a correlated noise given by 

(47) 
where &(k)-N(0,O.l2) and IhlSl. From (46) and (47), m=2 
and n=l.  The range of y(k) is k1.5. Following [12], two 
second order basis functions are used for y(k-2), and four 
third order basis functions for y(k-1). Two second order 
basis functions is used for e(k). Three values of h are 
selected: 0.5, 0.8 and 1. 1000 training data are generated 
using (46). The estimate of the weights converges in about 
10 iterations. The estimated outputs from the networks are 
shown in Figs. l(b), l(c) and l(d), showing good estimates 
of the output. 
(ii) Sinusoidal disturbance 
Consider next q(k) given by [12], 

As q(k) is a second order system, it can be modelled by 

The system given by (46) is now modelled by the 
following recurrent network. 

~ ( k  - 2))+q(k) 

i 
-( 0.3+0.9e-Y2(k-1) 

+O. lsin(xy(k - 1)) +q(k) 

q(k) = ( 1  - hz-’)~(k)  

q(k) =0.5sin(O.lk) (48) 

(49) q(k) = g(q(k - l),rl(k - 2))+ g’(e(k - 1)) 

?(k) = f(y(k - 
= f(y(k - 11, ~ ( k  - 2))+ - 11, q(k - 2)) (50) 

Second order basis functions are used in g(.) and g’(.), 
whilst that for f(.) are the same as used previously. q(k - 1) 
and q(k-2) are obtained from equation (49) and 
e(k -1)= y(k -1)- 9(k -1). In training the networks, the 
same initial values are used for f(.). However, care must be 
exerted in choosing the initial values of the weights of the 
network g(.) for q(k). If the initial values are too far from 
the actual value, the training may stop at a local minimum, 
as the network may be estimating the harmonics of the 
sinusoidal disturbance instead. In this example, the initial 
values of the weights of g(.) are chosen to be: (-1.4747, - 
4.4747, 4.4747. 1.4747}, generating signal whose 
frequency is 30% higher than the actual frequency. The 
results, shown in Fig. 2, are comparable to that obtained in 
[12], though it is assumed in [12] that the frequency of the 
sinusoidal disturbance is known. 

+g‘(e(k-U) 

8. Conclusion 
Recurrent neurofuzzy network with NARMAX structure 
for modelling nonlinear stochastic dynamical systems is 
presented. To improve the convergence rate of the 
estimated weights of the network, a training algorithm 
based on Newton-Raphson method is derived. The 
convergence of the proposed training algorithm is 
established and its performance is illustrated by a 
simulation example involving a nonlinear stochastic 
dynamical system. From the simulation example, it is 
shown that the proposed training algorithm converges in a 
small number of iterations. 
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Fig. 1 (a) Output of nonlinear system for q(k)=O; (b), (c) 
and (d) Estimated outputs for k0.5,0.8,1 respectively. 
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Fig. 2 (a) Estimated output; (:b) Prediction error; (c) h t o -  
correlation function of e(k); and (d) Cost function. 
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