
Title B-spline recurrent neural network and its application to
modelling of non-linear dynamic systems

Author(s) Chan, CW; Cheung, KC; Jin, H; Zhang, HY

Citation The 1998 American Control Conference, Philadelphia, PA., 24-26
June 1998. In Conference Proceedings, 1998, v. 1, p. 78-82

Issued Date 1998

URL http://hdl.handle.net/10722/46636

Rights

©1998 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Proceedings of the American Control Conference
Philadelphia, Pennsylvania June 1998

B-Spline Recurrent Neurall Network and Its Application to Modelling

C. W. Chan*, K. C. Cheung", Hong Jint, H. Y. Zhangt

* Department of Mechanical Engineering, University of Hong Kong
Pokfulam road, Hong Kong, Email: mechan@hkucc.hku.hk

f Department of Automatic Control, Beijing University of Aeronautics and Astronautics
Beijing 100083, P. R. China, Email: buaa301 @mimicnc.aC.cn

The authors are currently with the Department of Mechanical Engineering, University of Hong Kong

Abstract: A new recurrent neural network based on B-
spline function approximation is presented. The network can
be easily trained and its training converges more quickly
than that for other recurrent neural networks. Moreover, an
adaptive weight updating algorithm for the recurrent
network is proposed. It can speed up the training process of
the network greatly and its learning speed is more quickly
than existing algorithms, e.g., back-propagation algorithm.
Examples are presented comparing the adaptive weight
updating algorithm and the constant learning rate method,
and illustrating its application to modelling of nonlinear
dynamic system.
Keywords: Recurrent Neural Network, B-Spline network,
Adaptive Learning Algorithm, State Estimation, System
Modelling.

1. Introduction
Recurrent neural networks(RNN) have proved to be valuable
tools and have been studied extensively in modelling and
control of non-linear dynamic systems, e.g., the designs of
non-linear dynamic system identifier and
controller[13 [2][3]. When the state variables of non-linear
dynamic system are not accessible, the identification of the
system and the system states[4](i.e., observer's problem), is
substantially more complex than in the case where the states
are accessible.
The critical issues in the application of recurrent networks
are the choice of the network architecture, i.e., number of
network elements, and the location of feedback loops, or
RNN based on Gaussian radial basis function[5] with
multilayer feedforward neural network, etc.[1][6] and the
development of suitable training procedures. A single or
multiple hidden layer networks with feedback loop induces
the dynamic complexity while the number of hidden layer
elements are associated with the degree of non-linearity. In
addition, the training of recurrent network is of much more
complex than the training of feedforward networks.

Another problem associated with recurrent networks is that
the convergence of learning can be very slow and training
errors are not always guaranteed to reduce to previously
defined tolerances. By using constructive training methods,
it is possible that the neural network could possibly build
itself little by little, and speed up the whole training process.
So a good architecture and quickly learning algorithm are
important for us to apply RNN better.
In this paper, a new recurrent neural network architecture is
proposed, which is based on B-Spline Neural
Network(BSNN)[7] and denoted by BSRNN(B-Spline
Recurrent Neural Network). Basis spline function has
several advantages. For example, it has a good ability of
approximation; it only needs local adjustment of weights for
every input; it needs less computation and storage than
other basis functions(e.g., Gaussian function and Berstein
function etc.); moreover, the derivative of basis spline
function can be readily obtained. Further, the training of the
BSNN is more quickly than other networks(e.g., multilayer
feedforword network) and has been applied for guidance[81,
fault detection and isolation[9], Kalman filter
initialisation[101. Here we discuss the recurrent networks
based on BSNN. Our aim is to model nonlinear dynamic
systems better and faster by applying the basis spline
function for training recurrent networks. It is, to our
knowledge, that few works have focused on BSRNNs.
Other parts of this paper are arranged as follows:
In 2"d and 3'd sections, we briefly discuss BSNN and BSRNN
respectively, and give the BSRNN models and their
architectures for two kinds of non-linear systems. In 4" and
5* sections, we discuss the learning algorithm of weights
and the determination of the amounts of weights to update.
In 6* section, an adaptive weight updating algorithm is
proposed. This adaptive updating method can increase the
learning speed greatly, make the learning process converge
quickly and overcome the ad hoc choice of learning rate in
weight updating. In 7th section, an example is given to show

0-7803-4530-4198 $10.00 0 1998 AACC 78

mailto:mimicnc.aC.cn

the application of BS,RNN to the modelling of nonlinear
dynamic systems. Finally, we give the conclusion about
BSRNN.

2. B-Spline neural network
Let x (t) E R " be the input vector of the network. By using
the operation of tensor product, we can calculate the
multivariate basis function vector, i.e., transformed input
vector[7], s(x) = (s, (x) ... sq (x))' or so-called box
spline[111 of x and the jth multivariate B-spline function is
denoted by s,(x) . The number q of multivariate B-spline
functions is dependent on the order of basis spline function
and the number of inner knots of the interval given for every
component of x. The space {s(x)} is so-called transformed
input space. These q multivariate B-spline functions can be
considered as net inpu1.s of the hidden layer, and the output
of network ?(t) (Fig.1)) is,

i (t > = x;=, w,s, (x (t>> (1)
where w, is the weight valueo= I,. . .,q).

W I

h:&fl
Fig. 1: BSNN(B-Spline Neural Network)

When x is a univariate variable, equation (1) can be
considered as a B-spline curve[121, otherwise, as a B-spline
surface[131, where (w1 , - , wq) can be also considered as
control points[l4], so the process of adjusting the weights is
that of adjusting the control points. The main advantage of
the B-spline formulation over other curve fitting(e.g., the
Bezier curve) is local control of the curve shape, i.e., the
shape of the curve clhanges only in the vicinity of few
changed control points[l2]. As in the training of BSNN,
only a few weights need to be adjusted, much computation
time can be saved.
The p-order B-spline function s, (x) can be determined by
using following B-spline recurrence relationship[131:

(3)
I Ti 5 x < for i=l, ..., n 0 otherwise s,p (x) =

where zi is the i-th knot.

3. B-Spline recurrent neural network
In BSNN, the training ie undertaken by supervising learning,
i.e., the input of network is known and output of network
need to be compared to the actual value which is accessible.
But for some applications, only output of a system can be

obtained. When we need to know the inner state of a
system, recurrent neural network is a good choice. In this
section, two kinds of recurrent neural network based on
BSNN are described for two classes of non-linear models.
These two models are given as follows:
Model I:
x(i + 1) = f (x (i) , x(i - l), . . . x (i --n+ 1);

(4) u(i), u(i - l),... , u(i - m+ 1))
Model 11:

xn-r (i + 1) = f , ,-r (xI (i),. . . , x ~ - ~ - , (9, xn-r (0,. . ., x,, (9;

X"(i+ l) =fn(xl(i) ,..., x"-~-l(i) ,xn-r(i) , . . . ,x"(i);

u(i), u(i - l), . .e, u(i -m+ 1))

u(i), u(i - l),..., u(i -m+ 1))

(5) I
where r is given.
For these two models, we can use BSNN and BSRNN to
implement. For example of Model I, its BSNN and BSRNN
models can be described by following equations:
BSNN:

(6)
E(i + 1) = BSNN (~ (i) , ~ (i - l), . . * ~ (i - n + 1);

u(i) ,u(i - l) ; . . ,u(i -m+I))
BSRNN(Fig. 2) :

(7)
i (i + 1) = BSRNN(i(i), i (i - l) ,**- i (i -n+ 1);

u(i), u(i - l), ... , u(i - m+ 1))
(6) and (7) are called series-parallel model and parallel
model respectively [11.

@ci -m+l)

Fig.2: BSRNN of Model I

Fig.3: BSRNN of Model I1

Fig.3 gives the BSRNN of Model 11. In these two BSRN",
the output of network is fed back as an input. In this case,
the transformed input vector is dependent on the weight

79

values of the previous step, which influences the updating of
the weights. This issue will be discussed next.

4. Learning algorithm for BSRNN
In training BSRNN, the steepest descent gradient algorithm
can be used to adjust weights of network. For example, in
Model I, a natural performance criterion for a recurrent
network is the sum of the squared of errors between the
target sequence and the outputs of the network,

where y(i) is the real output of system(4) at time i, i (i) is
the output of the BSRNN for estimating y(i).
The least-squares approximation to y(i) is to minimise E by
finding the optimal weight values {wi , i = I , . . . , q } . A
typical learning rule is the so-called dynamic back
propagation algorithm[151 and the weights are adjusted by,

where q is the learning rate or step size. Weight
adjustments can be performed at each time or in a batch
mode.

E = Ct, (~ (i) - j (i)) * (8)

rl . way1 wold (9) WneW = -

5. Determination of the partial derivatives with respect
to the weights
The partial derivative of (8) with respect to wt can be
written as follows:

(10)
dE --

ay,
where k= 1 , q. From (1),

Because the transformed input vector of the BSRNN is
dependent on the weights of the network, in contrast to that
of the BSNN or other non-recurrent radial basis function
neural networks, the second term in the right hand side of
(11) is not equal to zero. It needs to know how large the
effect caused by this factor is when calculating (10). In
matrix formation, (1 1) becomes

s1 (x(1)) * * + s1 (x(m>)

s,(x(l)) --. s,(x("
...]

...
1 % 1

where the determination of is, (x (i)) p w , is very complex.
As the 2nd term in the right hand side of equation (12)
requires a heavy calculation load, Considerable saving in
computing time can be made if this term is ignored. It is
shown in the following example that ignoring this term
affects only the rate of convergence of the estimates of

the weights.
Example 1: Consider a model as follows:
x(k) = 0.5sin(x(k - 1)) - O.Ix(k - 2) + u (k) (13)

where u(k) is zero-mean white noise with the standard
deviation of CT = 0.01 . Given x(0) = 0, x (l) = 1 . Fig.4
gives curves of errors performance with or without
considering the second term of (12). (a) the number of inner
knots N , = 1 ; (b) inner knots N , = 2 . It shows that
consideration of the 2nd term in (12) has no obvious
advantage.

y (k) = 100x(k) (14)

....................... 4 0 0

2ooo ?b 2b 3b 4; 5 0 E p o c h

I term I" (5 . 3)

...................
500

' 0 ~b I b 2b 2 5 30 1 7 E p o c h

Fig.4: Performance indexes

6. Adaptive Weight Updating Algorithm
The proposed learning algorithm is based on the gradient
decent method, and is similar to the backpropagation
algorithm. Hence it suffers from the same drawback as that
in the back propagation algorithm, i.e., slow learning rate.
This slowness arises largely from the lack of suitable
methods in selecting the step size 7 7 . It is that if 77 is
sufficiently small, the overall learning process will be
stable[l6], but the cost for small 77 is a very long time for
convergence. But if the step size is chosen too large, there is
a possibility of divergence.
In this section, we give an optimal value of learning rate for
both BSNN and BSRNN. Firstly, we discuss the
determination of learning rate of BSNN.
Let Y = [~ (I) ... y(m>l', P) =[y(,'(1) ... y'"((m)l',
A f (k) = Y - f',), S = [s(l) s(m)]' . where k denotes
the training epoch time, s (i) = [sI1 ... s,,]' is composed

...

of q B-spline function values of the i-th input vector. An
adaptive learning step size is derived as
6 = IIS'Af(k-l) 11' /ll,S'Af(k-l) ll$s

where Ilxll: := x'Ax . The derivation is given in the
Appendix. As for the BSRNN, if the matrix S is used as an
approximation instead of the right hand side of (12), then
(15) also applies. The following example compares the

(15)

80

adaptive weight updating algorithm with ordinary constant
learning rate algorithm by using BSNN.
Example 2: Consider :v = sin' x .
Since no information on the learning rate is available, we
tried different learning rates and find q = 0.01 is best. Table
1 gives epoch number I(N e) and its final performance index
(E) for different numbler N , of inner knots and a constant
learning rate 7 = 0.01 by using lSt-order B-spline function
to train the BSNN, the samples of variable x = 0:0.1:27~, and
the initial weights were zero. The condition of stopping
learning is: E < eps or (E (k) - E (k - l)) / E (k -1) < eps ,
where eps = 1.e - 6 .
Table 2 gives the results under the same condition except
the adaptive learning rate given by (15) is used and the
initial learning rate is 17 = 0.01 .

Table 1: Using a constant learning rate 7 = 0.01
I Nk I Ne I E I

I ;; 1 ;;i4 I 0.0022 1
2.233e-4

I 40 I 2581 I 3.600e-5 I
Table 2: Usin the acla tive learnin rate (15) m-1 m-1

20 20 0.0022
2.2327e-4
3.5986e-5

Clearly, the learning is much faster when the adaptive
learning rate is used.

7. Example
Example 3: Modelling of ARMA models
Model:

x (k +1) = O.Olx(k)+0.4sin(3x(k))+05u(k)
y (k) = sin(x(k)) +O.lx(k - 1)

Let x1 (k) = x (k) , x:! (k) = x (k - 1) , the architecture of
BSRNN is shown in Fig.5. Simulation conditions: initial
input x, (1) = 1 , x 2 (1) = 1 , initial learning rate ~ (0) = 0.95,
eps=O.OOl, N , = 5 for every variable of input,
u(i) = sin(2ni/l0) + sin(2ni/25) , sample number m=100
and 1"-order B-spline function for training.

Fig.5: Architecture of BSRNN
Fig.6 gives some simulation results. (a) real state with its
estimate of network; (b) estimate error curve of state; (c)
learning rate curve; (d) performance index curve; (e) real
measurement with its estimate; (f) measurement estimate
error curve. When epoch time N e = 720, E=0.00099942,
its corresponding learning rate is q = 2.84775.

I 1

1 1 0 ,
(d). Perfomanes index

0 5 10 IS 20 25 30 15 E w r h

81

0 02

If). Eslimaleerror of measurement: Y (k) - p (k)

Fig.6
8. Conclusion
Recurrent neural networks based on B-spline neural
networks are proposed in this paper. In order to decrease the
computational burden of the learning algorithm, an adaptive
learning rate of updating weights is used. Simulation results
have shown that a great reduction of learning time is
achieved.

Acknowledgment
The work was supported by the Research Grants Council of
Hong Kong.

Reference
[l]. Narendra K. S . and K. Parthasarathy(l990),
Identification and Control of Dynamic Systems Using
Neural Networks, IEEE Trans. on Neural Networks, Vol.1,

[2]. Yip P. P. C. and Y. H. Pao(1994), A Recurrent Network
Net Approach to One -Step Ahead Control Problems, IEEE
Trans. on Systems, Man, and Cybernetics, Vo1.24, No.4,

[3]. Park Y. M., M. S . Choi and K.Y. Lee, An Optimal
Tracking Neuro-Controller for Nonlinear Dynamic Systems,
IEEE Trans. on Neural Networks, Vo1.7, No.5, 1996, 1099-
11 10.
[4]. Levin A. U. and K. S . Narendra(l996), Control of
Nonlinear Dynamical Systems Using Neural Networks----
Part 11: Observability, Identification, and Control, IEEE
Trans. On Neural Networks, Vo1.7, No.1, pp30-42.
[5] . Obradovic D, On-line Training of Recurrent Neural
Networks with Continuous Topology Adaptation, IEEE
Trans. on Neural Networks, Vo1.7, No. 1996, 222-228.
[6]. Lee S. W. and H. H. Song, A New Recurrent Neural -
Network Architecture for Visual Pattern Recognition, IEEE
Trans. on Neural Networks, Vol.8, No.2, 1997, pp331-340.
[7] . Brown M. and C . Harris(1994), Neurofuzzy Adaptive
Modelling and Control, Prentice Hall International (UK)
Limited.
[8]. Doyle R. S. and C. J. Harris(1996), Multi-sensor data
fusion for helicopter guidance using neuro-fuzzy estimation
algorithms, The Aeronautical Journal of the Royal
Aeronautical Society, June/July, pp240-25 1.
[9]. H. Benkhedda and R. J. Patton, B-spline Network
Integrated Qualitative and Quantitative Fault Detection,
IFAC 13th Triennial World Congress, San Francisco, USA,
1996.

NO. 1, pp4-27.

~ ~ 6 7 8 - 6 8 3 .

82

[lo]. Roberts J. M., D. J. Mills, D. Charnley and C. J.
Harris(1995), Improved Kalman Filter Initialisation using
Neurofuzzy Estimation, 1995/6 Research Journal: Image,
Speech and Intelligent Systems, The University of
Southampton, pplO.1-10.10
[111. Chui C. K., Multivariate Spline, Society for Industrial
and Applied Mathematics, 1988.
[12]. Newman W. M. and R. F. Sprod1(1979), Principles of
Interactive Computer Graphics, McGraw-Hill, Inc.
[13]. Piegl L. and W. Tiller, The NURBS Book, Springer-
Verlag Berlin Heidelberg, 1995.
[14]. Wang C. H., W. Y. Wang, T. T. Lee and P. S . Tseng,
Fuzzy B-spline Membership Function (BMF) and Its
Applications in Fuzzy-neural Control, IEEE Trans. on
Systems, Man, and Cybernetics, Vo1.25, No.5, 1995,

[15]. Levin A. U. and K. S . Narendra(1993), Control of
Nonlinear Dynamical Systems Using Neural Networks:
Controllability and Stabilization, IEEE Trans. On Neural
Networks, Vo1.4, No.2, pp192-206.
[16]. Narendra K.S. and S . M. Li, Neural Networks in
Control System, Neural Networks Theory, Technology, and
Applications (Ed. By P. K. Simpson), The Institute of
Electrical and Electronics Engineers ,Inc., New York City,
New York, 1996.

~ ~ 8 4 1 - 8 5 1 .

Appendix: Derivation of (15)

The performance index at the k-th iteration can be written as
follows:

For the BSNN, the 2”d term of right hand side in (1 1) is
equal to zero, so (9) can be rewritten as follows

(A21
Here we have not considered the coefficient 2 in (10).
Because j (k) (i) = s’(i)w(k) and noting that

E (k) = x;l(y(i)-j(k)(i))z (AI)

w (k) = w(k - 1) + vS’A?~-’)

j j (k) (i) - j j (k-l) (i) = qsr(i)StAf(k-I)

Differentiating this quadratic equation with respect to
parameter , (15) can be easily derived.

