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Abstract: A new recurrent neural network based on B- 
spline function approximation is presented. The network can 
be easily trained and its training converges more quickly 
than that for other recurrent neural networks. Moreover, an 
adaptive weight updating algorithm for the recurrent 
network is proposed. It can speed up the training process of 
the network greatly and its learning speed is more quickly 
than existing algorithms, e.g., back-propagation algorithm. 
Examples are presented comparing the adaptive weight 
updating algorithm and the constant learning rate method, 
and illustrating its application to modelling of nonlinear 
dynamic system. 
Keywords: Recurrent Neural Network, B-Spline network, 
Adaptive Learning Algorithm, State Estimation, System 
Modelling. 

1. Introduction 
Recurrent neural networks(RNN) have proved to be valuable 
tools and have been studied extensively in modelling and 
control of non-linear dynamic systems, e.g., the designs of 
non-linear dynamic system identifier and 
controller[ 13 [2][3]. When the state variables of non-linear 
dynamic system are not accessible, the identification of the 
system and the system states[4](i.e., observer's problem), is 
substantially more complex than in the case where the states 
are accessible. 
The critical issues in the application of recurrent networks 
are the choice of the network architecture, i.e., number of 
network elements, and the location of feedback loops, or 
RNN based on Gaussian radial basis function[5] with 
multilayer feedforward neural network, etc.[ 1][6] and the 
development of suitable training procedures. A single or 
multiple hidden layer networks with feedback loop induces 
the dynamic complexity while the number of hidden layer 
elements are associated with the degree of non-linearity. In 
addition, the training of recurrent network is of much more 
complex than the training of feedforward networks. 

Another problem associated with recurrent networks is that 
the convergence of learning can be very slow and training 
errors are not always guaranteed to reduce to previously 
defined tolerances. By using constructive training methods, 
it is possible that the neural network could possibly build 
itself little by little, and speed up the whole training process. 
So a good architecture and quickly learning algorithm are 
important for us to apply RNN better. 
In this paper, a new recurrent neural network architecture is 
proposed, which is based on B-Spline Neural 
Network(BSNN)[7] and denoted by BSRNN(B-Spline 
Recurrent Neural Network). Basis spline function has 
several advantages. For example, it has a good ability of 
approximation; it only needs local adjustment of weights for 
every input; it needs less computation and storage than 
other basis functions(e.g., Gaussian function and Berstein 
function etc.); moreover, the derivative of basis spline 
function can be readily obtained. Further, the training of the 
BSNN is more quickly than other networks(e.g., multilayer 
feedforword network) and has been applied for guidance[ 81, 
fault detection and isolation[9], Kalman filter 
initialisation[ 101. Here we discuss the recurrent networks 
based on BSNN. Our aim is to model nonlinear dynamic 
systems better and faster by applying the basis spline 
function for training recurrent networks. It is, to our 
knowledge, that few works have focused on BSRNNs. 
Other parts of this paper are arranged as follows: 
In 2"d and 3'd sections, we briefly discuss BSNN and BSRNN 
respectively, and give the BSRNN models and their 
architectures for two kinds of non-linear systems. In 4" and 
5* sections, we discuss the learning algorithm of weights 
and the determination of the amounts of weights to update. 
In 6* section, an adaptive weight updating algorithm is 
proposed. This adaptive updating method can increase the 
learning speed greatly, make the learning process converge 
quickly and overcome the ad hoc choice of learning rate in 
weight updating. In 7th section, an example is given to show 
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the application of BS,RNN to the modelling of nonlinear 
dynamic systems. Finally, we give the conclusion about 
BSRNN. 

2. B-Spline neural network 
Let x ( t )  E R "  be the input vector of the network. By using 
the operation of tensor product, we can calculate the 
multivariate basis function vector, i.e., transformed input 
vector[7], s(x) = (s, ( x )  ... sq (x))' or so-called box 
spline[ 111 of x and the jth multivariate B-spline function is 
denoted by s,(x) . The number q of multivariate B-spline 
functions is dependent on the order of basis spline function 
and the number of inner knots of the interval given for every 
component of x. The space {s(x)} is so-called transformed 
input space. These q multivariate B-spline functions can be 
considered as net inpu1.s of the hidden layer, and the output 
of network ?( t )  (Fig.1)) is, 

i ( t >  = x;=, w,s, (x ( t>> (1) 
where w, is the weight valueo= I,. . .,q). 

W I  

h:&fl 
Fig. 1: BSNN(B-Spline Neural Network) 

When x is a univariate variable, equation (1) can be 
considered as a B-spline curve[ 121, otherwise, as a B-spline 
surface[ 131, where ( w1 , - , wq ) can be also considered as 
control points[l4], so the process of adjusting the weights is 
that of adjusting the control points. The main advantage of 
the B-spline formulation over other curve fitting(e.g., the 
Bezier curve) is local control of the curve shape, i.e., the 
shape of the curve clhanges only in the vicinity of few 
changed control points[l2]. As in the training of BSNN, 
only a few weights need to be adjusted, much computation 
time can be saved. 
The p-order B-spline function s, (x) can be determined by 
using following B-spline recurrence relationship[ 131: 

(3) 
I Ti  5 x < for i=l, ..., n 0 otherwise s,p (x) = 

where zi is the i-th knot. 

3. B-Spline recurrent neural network 
In BSNN, the training ie undertaken by supervising learning, 
i.e., the input of network is known and output of network 
need to be compared to the actual value which is accessible. 
But for some applications, only output of a system can be 

obtained. When we need to know the inner state of a 
system, recurrent neural network is a good choice. In this 
section, two kinds of recurrent neural network based on 
BSNN are described for two classes of non-linear models. 
These two models are given as follows: 
Model I: 
x( i  + 1) = f ( x ( i ) ,  x(i - l), . . . x ( i  --n+ 1); 

(4) u(i), u(i - l),... , u(i - m+ 1)) 
Model 11: 

xn-r (i + 1) = f , ,-r  (xI (i),. . . , x ~ - ~ - ,  (9, xn-r (0,. . ., x,, (9; 

X"( i+ l )  =fn(xl(i) ,..., x"-~-l(i) ,xn-r(i) , . . . ,x"(i);  

u(i), u(i - l), . .e, u(i -m+ 1)) 

u(i), u(i - l),..., u(i -m+ 1)) 

( 5 )  I 
where r is given. 
For these two models, we can use BSNN and BSRNN to 
implement. For example of Model I, its BSNN and BSRNN 
models can be described by following equations: 
BSNN: 

(6) 
E(i + 1) = BSNN ( ~ ( i ) ,  ~ ( i  - l), . . * ~ ( i  - n + 1); 

u( i ) ,u( i - l ) ; . . ,u( i -m+I))  
BSRNN( Fig. 2) : 

(7) 
i ( i +  1) = BSRNN(i(i), i ( i  - l ) ,**- i ( i  -n+ 1); 

u(i), u(i - l), ... , u(i - m+ 1)) 
(6) and (7) are called series-parallel model and parallel 
model respectively [ 11. 

@ci -m+l) 

Fig.2: BSRNN of Model I 

Fig.3: BSRNN of Model I1 

Fig.3 gives the BSRNN of Model 11. In these two BSRN", 
the output of network is fed back as an input. In this case, 
the transformed input vector is dependent on the weight 
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values of the previous step, which influences the updating of 
the weights. This issue will be discussed next. 

4. Learning algorithm for BSRNN 
In training BSRNN, the steepest descent gradient algorithm 
can be used to adjust weights of network. For example, in 
Model I, a natural performance criterion for a recurrent 
network is the sum of the squared of errors between the 
target sequence and the outputs of the network, 

where y(i)  is the real output of system(4) at time i, i ( i )  is 
the output of the BSRNN for estimating y(i). 
The least-squares approximation to y(i)  is to minimise E by 
finding the optimal weight values {wi , i  = I , . . .  , q }  . A 
typical learning rule is the so-called dynamic back 
propagation algorithm[ 151 and the weights are adjusted by, 

where q is the learning rate or step size. Weight 
adjustments can be performed at each time or in a batch 
mode. 

E = Ct, ( ~ ( i )  - j ( i ) ) *  (8) 

rl . way1 wold (9) WneW = - 

5. Determination of the partial derivatives with respect 
to the weights 
The partial derivative of (8) with respect to wt can be 
written as follows: 

(10) 
dE -- 

ay, 
where k= 1 , .  ... q. From ( 1), 

Because the transformed input vector of the BSRNN is 
dependent on the weights of the network, in contrast to that 
of the BSNN or other non-recurrent radial basis function 
neural networks, the second term in the right hand side of 
(11) is not equal to zero. It needs to know how large the 
effect caused by this factor is when calculating (10). In 
matrix formation, (1 1) becomes 

s1 (x(1)) * * +  s1 (x(m>) 

s,(x(l)) --.  s,(x(" 
... . . . . . .  ... ] 

... 
1 % 1 

where the determination of is, ( x ( i ) ) p w ,  is very complex. 
As the 2nd term in the right hand side of equation (12) 
requires a heavy calculation load, Considerable saving in 
computing time can be made if this term is ignored. It is 
shown in the following example that ignoring this term 
affects only the rate of convergence of the estimates of 

the weights. 
Example 1: Consider a model as follows: 
x(k) = 0.5sin(x(k - 1)) - O.Ix(k - 2) + u ( k )  (13) 

where u(k) is zero-mean white noise with the standard 
deviation of CT = 0.01 . Given x(0 )  = 0, x ( l )  = 1 . Fig.4 
gives curves of errors performance with or without 
considering the second term of (12). (a) the number of inner 
knots N ,  = 1 ;  (b) inner knots N ,  = 2 .  It shows that 
consideration of the 2nd term in (12) has no obvious 
advantage. 

y ( k )  = 100x(k) (14) 

....................... 4 0 0  

2ooo ?b 2b 3b 4; 5 0  E p o c h  

I term I" ( 5 . 3 )  

................... 
500 

' 0  ~b I b  2b 2 5  30 1 7 E p o c h  

Fig.4: Performance indexes 

6. Adaptive Weight Updating Algorithm 
The proposed learning algorithm is based on the gradient 
decent method, and is similar to the backpropagation 
algorithm. Hence it suffers from the same drawback as that 
in the back propagation algorithm, i.e., slow learning rate. 
This slowness arises largely from the lack of suitable 
methods in selecting the step size 7 7 .  It is that if 77 is 
sufficiently small, the overall learning process will be 
stable[l6], but the cost for small 77 is a very long time for 
convergence. But if the step size is chosen too large, there is 
a possibility of divergence. 
In this section, we give an optimal value of learning rate for 
both BSNN and BSRNN. Firstly, we discuss the 
determination of learning rate of BSNN. 
Let Y = [ ~ ( I )  ... y(m>l', P) =[y(,'(1) ... y'"((m)l', 
A f ( k )  = Y - f',), S = [s(l) s(m)]' . where k denotes 
the training epoch time, s ( i )  = [sI1 ... s,,]' is composed 

... 

of q B-spline function values of the i-th input vector. An 
adaptive learning step size is derived as 
6 = IIS'Af(k-l) 11' /ll,S'Af(k-l) ll$s 

where Ilxll: := x'Ax . The derivation is given in the 
Appendix. As for the BSRNN, if the matrix S is used as an 
approximation instead of the right hand side of (12), then 
(15) also applies. The following example compares the 

(15) 
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adaptive weight updating algorithm with ordinary constant 
learning rate algorithm by using BSNN. 
Example 2: Consider :v = sin' x . 
Since no information on the learning rate is available, we 
tried different learning rates and find q = 0.01 is best. Table 
1 gives epoch number I( N e  ) and its final performance index 
(E)  for different numbler N ,  of inner knots and a constant 
learning rate 7 = 0.01 by using lSt-order B-spline function 
to train the BSNN, the samples of variable x = 0:0.1:27~, and 
the initial weights were zero. The condition of stopping 
learning is: E < eps or ( E ( k ) -  E ( k  - l ) ) / E ( k  -1 )  < eps ,  
where eps = 1.e - 6 . 
Table 2 gives the results under the same condition except 
the adaptive learning rate given by (15) is used and the 
initial learning rate is 17 = 0.01 . 

Table 1: Using a constant learning rate 7 = 0.01 
I Nk I Ne I E I 

I ;; 1 ;;i4 I 0.0022 1 
2.233e-4 

I 40 I 2581 I 3.600e-5 I 
Table 2: Usin the acla tive learnin rate (15) m-1 m-1 

20 20 0.0022 
2.2327e-4 
3.5986e-5 

Clearly, the learning is much faster when the adaptive 
learning rate is used. 

7. Example 
Example 3: Modelling of ARMA models 
Model: 

x ( k  +1) = O.Olx(k)+0.4sin(3x(k))+05u(k)  
y ( k )  = sin(x(k)) +O.lx(k - 1) 

Let x1 ( k )  = x ( k )  , x:! ( k )  = x ( k  - 1) , the architecture of 
BSRNN is shown in Fig.5. Simulation conditions: initial 
input x, (1) = 1 , x 2  (1) = 1 , initial learning rate ~ ( 0 )  = 0.95, 
eps=O.OOl, N ,  = 5  for every variable of input, 
u(i)  = sin(2ni/l0) + sin(2ni/25) , sample number m=100 
and 1"-order B-spline function for training. 

Fig.5: Architecture of BSRNN 
Fig.6 gives some simulation results. (a) real state with its 
estimate of network; (b) estimate error curve of state; (c) 
learning rate curve; (d) performance index curve; (e) real 
measurement with its estimate; (f) measurement estimate 
error curve. When epoch time N e  = 720, E=0.00099942, 
its corresponding learning rate is q = 2.84775. 

I 1 

1 1 0 , .  . . . . . . 
(d). Perfomanes index 

0 5 10 IS 20 25 30 15 E w r h  
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0 02 

If). Eslimaleerror of measurement: Y ( k ) - p ( k )  

Fig.6 
8. Conclusion 
Recurrent neural networks based on B-spline neural 
networks are proposed in this paper. In order to decrease the 
computational burden of the learning algorithm, an adaptive 
learning rate of updating weights is used. Simulation results 
have shown that a great reduction of learning time is 
achieved. 
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Appendix: Derivation of (15) 

The performance index at the k-th iteration can be written as 
follows: 

For the BSNN, the 2”d term of right hand side in (1 1) is 
equal to zero, so (9) can be rewritten as follows 

(A21 
Here we have not considered the coefficient 2 in (10). 
Because j ( k )  (i) = s’(i)w(k) and noting that 

E ( k )  = x;l(y(i)-j(k)(i))z (AI) 

w ( k )  = w(k - 1) + vS’A?~-’) 

j j ( k )  (i) - j j (k-l )  (i) = qsr(i)StAf(k-I) 

Differentiating this quadratic equation with respect to 
parameter , (15) can be easily derived. 


