985 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    An economic market for the brokering of time and budget guarantees

    Get PDF
    Grids offer best effort services to users. Service level agreements offer the opportunity to provide guarantees upon services offered, in such a way that it captures the users’ requirements, while also considering concerns of the service providers. This is achieved via a process of converging requirements and service cost values from both sides towards an agreement. This paper presents the intelligent scheduling for quality of service market-oriented mechanism for brokering guarantees upon completion time and cost for jobs submitted to a batch-oriented compute service. Web Services agreement (negotiation) is used along with the planning of schedules in determining pricing, ensuring that jobs become prioritised depending on their budget constraints. An evaluation is performed to demonstrate how market mechanisms can be used to achieve this, whilst also showing the effects that scheduling algorithms can have upon the market in terms of rescheduling. The evaluation is completed with a comparison of the broker’s capabilities in relation to the literature

    Towards QoS-Oriented SLA Guarantees for Online Cloud Services

    Get PDF
    International audienceCloud Computing provides a convenient means of remote on-demand and pay-per-use access to computing resources. However, its ad hoc management of quality-of-service and SLA poses significant challenges to the performance, dependability and costs of online cloud services. The paper precisely addresses this issue and makes a threefold contribution. First, it introduces a new cloud model, the SLAaaS (SLA aware Service) model. SLAaaS enables a systematic integration of QoS levels and SLA into the cloud. It is orthogonal to other cloud models such as SaaS or PaaS, and may apply to any of them. Second, the paper introduces CSLA, a novel language to describe QoS-oriented SLA associated with cloud services. Third, the paper presents a control-theoretic approach to provide performance, dependability and cost guarantees for online cloud services, with time-varying workloads. The proposed approach is validated through case studies and extensive experiments with online services hosted in clouds such as Amazon EC2. The case studies illustrate SLA guarantees for various services such as a MapReduce service, a cluster-based multi-tier e-commerce service, and a low-level locking service
    • …
    corecore