105,161 research outputs found

    Placement driven retiming with a coupled edge timing model

    Get PDF
    Retiming is a widely investigated technique for performance optimization. It performs powerful modifications on a circuit netlist. However, often it is not clear, whether the predicted performance improvement will still be valid after placement has been performed. This paper presents a new retiming algorithm using a highly accurate timing model taking into account the effect of retiming on capacitive loads of single wires as well as fanout systems. We propose the integration of retiming into a timing-driven standard cell placement environment based on simulated annealing. Retiming is used as an optimization technique throughout the whole placement process. The experimental results show the benefit of the proposed approach. In comparison with the conventional design flow based on standard FEAS our approach achieved an improvement in cycle time of up to 34% and 17% on the average

    Performance Driven Standard-cell Placement Using the Genetic Algorithm

    Get PDF
    Current placement systems attempt to optimize several objectives, namely area, connection lenght, and timing performance. In this paper we present a timing-driven placer for standard-cell IC design. The placement algorithm follows the genetic paradigm. Besides optimizing for area and wire length, the placer minimizes the propogation delays on a predicted set of critical paths. The paths are enumerated using a new approach based on the notion of criticality. Experiments with test circuits demonstrate delay performance improvement by upto 20

    Performance driven standard-cell placement using the geneticalgorithm

    Get PDF
    Current placement systems attempt to optimize several objectives, namely area, connection length, and timing performance. In this paper we present a timing-driven placer for standard-cell IC design. The placement algorithm follows the genetic paradigm. Besides optimizing for area and wire length, the placer minimizes the propagation delays on a predicted set of critical paths. The paths are enumerated using a new approach based on the notion of -criticality. Experiments with test circuits demonstrate delay performance improvement by up to 20

    Performance driven standard-cell placement using the geneticalgorithm

    Get PDF
    Current placement systems attempt to optimize several objectives, namely area, connection length, and timing performance. In this paper we present a timing-driven placer for standard-cell IC design. The placement algorithm follows the genetic paradigm. Besides optimizing for area and wire length, the placer minimizes the propagation delays on a predicted set of critical paths. The paths are enumerated using a new approach based on the notion of -criticality. Experiments with test circuits demonstrate delay performance improvement by up to 20

    An integrated placement and routing approach

    Get PDF
    As the feature size continues scaling down, interconnects become the major contributor of signal delay. Since interconnects are mainly determined by placement and routing, these two stages play key roles to achieve high performance. Historically, they are divided into two separate stages to make the problem tractable. Therefore, the routing information is not available during the placement process. Net models such as HPWL, are employed to approximate the routing to simplify the placement problem. However, the good placement in terms of these objectives may not be routable at all in the routing stage because different objectives are optimized in placement and routing stages. This inconsistancy makes the results obtained by the two-step optimization method far from optimal;In order to achieve high-quality placement solution and ensure the following routing, we propose an integrated placement and routing approach. In this approach, we integrate placement and routing into the same framework so that the objective optimized in placement is the same as that in routing. Since both placement and routing are very hard problems (NP-hard), we need to have very efficient algorithms so that integrating them together will not lead to intractable complexity;In this dissertation, we first develop a highly efficient placer - FastPlace 3.0 for large-scale mixed-size placement problem. Then, an efficient and effective detailed placer - FastDP is proposed to improve global placement by moving standard cells in designs. For high-degree nets in designs, we propose a novel performance-driven topology design algorithm to generate good topologies to achieve very strict timing requirement. In the routing phase, we develop two global routers, FastRoute and FastRoute 2.0. Compared to traditional global routers, they can generate better solutions and are two orders of magnitude faster. Finally, based on these efficient and high-quality placement and routing algorithms, we propose a new flow which integrates placement and routing together closely. In this flow, global routing is extensively applied to obtain the interconnect information and direct the placement process. In this way, we can get very good placement solutions with guaranteed routability

    A framework for fine-grain synthesis optimization of operational amplifiers

    Get PDF
    This thesis presents a cell-level framework for Operational Amplifiers Synthesis (OASYN) coupling both circuit design and layout. For circuit design, the tool applies a corner-driven optimization, accounting for on-chip performance variations. By exploring the process, voltage, and temperature variations space, the tool extracts design worst case solution. The tool undergoes sensitivity analysis along with Pareto-optimality to achieve required specifications. For layout phase, OASYN generates a DRC proved automated layout based on a sized circuit-level description. Morata et al. (1996) introduced an elegant representation of block placement called sequence pair for general floorplans (SP). Like TCG and BSG, but unlike O-tree, B*tree, and CBL, SP is P-admissible. Unlike SP, TCG supports incremental update during operation and keeps the information of the boundary modules as well as their relative positions in the representation. Block placement algorithms that are based on SP use heuristic optimization algorithms, e.g., simulated annealing where generation of large number of sequence pairs are required. Therefore a fast algorithm is needed to generate sequence pairs after each solution perturbation. The thesis presents a new simple and efficient O(n) runtime algorithm for fast realization of incremental update for cost evaluation. The algorithm integrates sequence pair and transitive closure graph advantages into TCG-S* a superior topology update scheme which facilitates the search for optimum desired floorplan. Experiments show that TCG-S* is better than existing works in terms of area utilization and convergence speed. Routing-aware placement is implemented in OASYN, handling symmetry constraints, e.g., interdigitization, common centroid, along with congestion elimination and the enhancement of placement routability
    corecore