Performance Driven Standard-cell Placement Using the Genetic Algorithm

Performance Driven Standard-cell Placement Using the Genetic
Algorithm

Habib Youssef Sadiq M. Sait Khaled Nassar

Muhammad S. T. Benten.

Department of Computer Engineering
King Fahd University of Petroleum and Minerals
Dhahran-31261, Saudi Arabia
e-mail: facy009@saupm00.bitnet

Abstract

Current placement systems attempt to optimize sev-
eral objectives, namely area, connection length, and
timing performance. In this paper we present a timing-
driven placer for standard-cell IC design. The place-
ment algorithm follows the genetic paradigm. Besides
optimizing for area and wire length, the placer mini-
mizes the propagation delays on a predicted set of crit-
ical paths. The paths are enumerated using a new
approach based on the notion of a-criticality. Ez-
periments with test circuits demonstrate delay perfor-
mance improvement by up to 20%.

1 Introduction

Placement comnsists of assigning cells of a given
circuit to physical locations on a 2-dimensional lay-
out surface. In this work we consider standard-cell
placement. Contemporary placement tools are multi-
objective, where timing performance is one of the main
quality measures used when looking for a solution.

The speed of a circuit is determined by the time
it takes for a signal to travel on its longest path. A
signal traveling on any path 7 is constrained to reach
the path end point no later than its latest required
arrival time (LRAT,). A design is free from long path
timing problems if, for every path ,

T, < LRAT, (1)
where T is the overall delay on path 7. The problem
of performance driven placement consists of finding
suitable locations of cells so as to minimize the total
wirelength and area, while satisfying Equation 1 for
each path .

In this work a linear cell delay model is used. The
delay T'D of a cell is computed as follows,

TD=BD+ LD+ 1D 2)
where, LD is the load delay due to loading pins of
the net driven by the cell, and ID is the interconnect
delay on the net. Expressions for these quantities are
given below.

(3)

(4)

LD LF % Cyp,
ID - LF X C-net -+ R-net X (C-net + C.Ln)

1066-1395/95 $4.00 © 1995 IEEE

124

where, LF is the load factor, C;, is the total input
capacitance of the loading cells, R,; is the total in-
terconnect resistance of the net, and C,.; is the total
interconnect capacitance of the net (fringe plus sur-
face).

Numerous attempts have been reported which tried
to make the physical design sensitive to the timing re-
quirements. In [10], path timing constraints are trans-
formed into bounds on interconnect delays, which are
used by the following placement procedure. A con-
structive placement method that uses a cost function
that captures the timing behavior was presented in [9].
In [4, 8], performance driven placement is solved using
mathematical programming,.

Iterative improvement techniques have also been
employed. In [2], the authors employ simulated an-
nealing to improve both the wirelength and perfor-
mance. QOther iterative nondeterministic techniques
that have been applied to the placement are genetic
algorithm (GA) [1, 7] and simulated evolution [5]. But
for both, the placement objective was the minimiza-
tion of wirelength, timing performance was not an is-
sue.

In this work we describe a timing driven genetic
algorithm for placement. Imitially, a number of
placement configurations are constructively produced.
Then, the genetic algorithm is used to iteratively
search for a new solution that combines the good char-
acteristics of the initial configurations. The overall ob-
jective is two-fold; (1) satisfy path timing constraints
and (2) minimize overall wiring length (area).

1.1 Timing Prediction for Placement

The timing data passed from the timing analyzer to
TDGAP cousists of a predicted set of the most critical
paths. This set is predicted as follows. From past
layouts of circuits with similar complexity, the average
and standard deviation of net lengths are estimated
for each type of net (2 pin-, 3 pin-,..., k pin-nets).
These are converted to capacitances for the particular
technology of the design at hand.

Let T, and S, be the overall delay (including the
net delay estimations) and standard deviation along
path 7. Let Tp.x be the estimated delay of the longest

Administrator
Text Box
Performance Driven Standard-cell Placement Using the Genetic Algorithm

path in the design, that is,

T'max = mT?AX{Tw} (5)
A path 7 is called a-critical if and only if,
Tr+ X Sp 2 Tinax (6)

The parameter ¢ acts as a confidence level. This pre-
diction approach was effective in predicting all of the
critical paths in the design we experimented with.!

2 TDGAP: Timing Driven Genetic Al-

gorithm for Placement

Genetic algorithm is a search technique which em-
ulates the natural process of evolution as a means of
progressing toward the optimum.

Starting with an initial population of placement
configurations, TDGAP applies its operators and
functions to improve the overall fitness of its individu-
als from a generation to the next. The search contin-
ues until all the timing constraints are met or a large
number of generations were bred. Timing constraints
cousist of delay bounds on the critical paths of the
circuit.

2.1 Solution Representation

Each individual (solution) in the population is en-
coded as a set of rows. Each row contains modules
(genes) that are represented as a set of three integers
indicating the cell serial number, the row number, and
the displacement from the left edge of the layout.

2.2 Initial Population Constructors

Initial solution construction is very critical to GA.
Five initial population constructors were investigated.
They are: (1) constructor IPC} selects modules at
random and places them in rows; (2) constructor
IPC, attempts to clusters cells affecting the same
path; (3) constructor IPCj is similar to IPCy except
that IPC, places cells left to right starting from row 0,
while IPCjs places cells starting from the middle row
and proceeding outward; (4) constructor IPC, com-
bines individuals from IPC} and IPCj; and (5) con-
structor I PCs is similar to constructor IPC4 with
the difference that it includes in its initial population
a placement configuration obtained using the mincut
partitioning algorithm (a solution with good wiring
characteristics).
2.3 Choice Function

The choice function adopted is based on the
stochastic remainder without replacement scheme [3].
This scheme works as follows. Let exp_count(P(i)) be
the value of the expected count of an individual 7(z).

cost(P (1))

exp_count(P(i)) = = (7

where,

(8)

costP(i) = cost value of individual P (i)

1Typicad values of o are: o X Sp < 5ns.

125

and,
i cost(P (1))

i=1

For each individual P(i), |exp_count(P(i)| in-
stances of P(¢) are included in a list L. The frac-
tional part f; = exp_count(P (i) — |exp_count(P(z)] is
interpreted as a probability, that is, with probability
fi one more instance of P(i) is included in the list
L. This operation is repeated until all individuals are
processed. Following this step, parents are randomly
selected from the list L for crossover (two at a time).

2.4 Crossover X

Crossover is the most significant genetic operator
and has the most effect on the convergence rate and
the quality of solution. Two types of crossover op-
erators A7 and A are considered in TDGAP. Both
operators are aimed at improving the timing aspects
of the reported a-critical paths. They try to pass the
information about some of the satisfied paths from
one generation to another. Operator X7 does this by
maintaining the same locations of the cells affecting
these satisfied paths. Operator >, however, does it by
keeping the cells affecting these satisfied paths within
a certain window.

Let P(s) and P(t) be the passing and target par-
ents respectively, and C'P be the set of the a-critical
paths of the circuit. Operator A starts by making
an identical copy (P(0)) of P(t). Then a critical path
cp is selected from CP such that ¢p has better timing
in the source parent then in the target. A reconfig-
ures offspring P (o) such that the cells of ep occupy the
same locations as in the passing parent. Collisions are
resolved by interchanging the locations of the colliding
modules.

On the other hand, crossover operator X; identifies
the size and location of the smallest bounding window
w, that encloses the cells of ¢p in P(s). A window w,
is also determined in parent P(¢) with the same di-
mensions and location as w, in P(s). Comparing the
contents of these two windows, three sets are defined:

J— 1
cost = — X
b2

(9)

o = cells in cp but not in wy;
cells € w, but are neither in w; nor in ¢p; and
cells € (ws Nwy).

p =
7’) =

Then operator X, reconfigures P(o0) as follows. It
first defines a window w, in P(0) of the same size and
location as w,. After that, it scans the contents of
w, cell by cell and one row at a time. Cells that are
in 7 are not affected by X,. For each scanned cell e;,
operator X, reconfigures the offspring according to the
algorithm given in Figure 1.

2.5 Selection (§) of the Next Generation

The selector function is used to maintain the pop-
ulation size fixed. It determines which individuals to
use as part of the next generation. We experimented
with four selector functions. Let P be the current
population and J = P U Of fsprings. Selector §; se-
lects from 7 the best scoring individual and N, — 1

other individuals at random, where N, =] P |. Se-
lector §, selects the best 10% of N, and the rest are
selected at random. Selector §; selects all N, individ-
uals from J at random. Selector §, selects individuals
on a competitive basis with each individual P(j) hav-
ing a probability Prob(j) to be selected, where

) score(P(j))
= e M 10
Proby) = s (P) (10)
where, ¢ =] J |, and score(P(4)) is the fitness of in-
dividual P(z). With this selector, the algorithm has

a higher probability than with other selectors to be
trapped into local minima. This might happen be-
cause individuals with low fitness values are quickly
discarded at the early generations.

2.6 Mutation u

Two mutation operators pq, and py were investi-
gated. Operator p, is targeted toward improving the
timing of the placement, while operator p; is targeted
at improving the wirelength of the placement. Except
for the best individual, any individual in the newly
selected generation may be a candidate for mutation.

Mautation operator p1 works as follows. For each in-
dividual P(z) that is selected for mutation, first a crit-
ical path cp with long path problem in P(z) is selected.
Next, a module e, which is affecting the performance
of ¢p is randomly selected. The module e, is pairwise
interchanged with the module at the center-of-mass of
Nety.

Mutation operator u; operatesin a similar manner.
It starts by selecting at random a two-pin net, where
neither of the two pinsis an I/O pad. Then, one of the
two modules is chosen to be swapped with a module
at the location of the center of the selected net. The
requirement that the selected net be a two-pin net
is motivated by experimental observations. Analysis
of several layouts revealed that most of the two-pin
nets that are on critical paths have their modules sep-
arated by large distances. This wide separation has
two undesirable effects: (1) it increases the number of
feedthroughs and (2) it increases the total wirelength.

2.7 Score Function

The score function is a weighted sum of three terms
that are directed toward the improvement of the cir-
cuit performance and total wirelength. Fitness is in-
creasing with increasing score values. The score of a
given individual P(4) is computed as follows:

Score(P(i)) =wy x S; + wy xW; + w3 x R; (11)

where wy,wy, and ws are different weights assigned
for each term. S; and W; are measures of the timing
and wirelength aspects of individual P (i), while R; is
a relaxation factor. It is a measure of the amount by
which satisfied paths can be made longer and remain
problem free. This is to give the wirelength metric a
chance to improve.

2.8 Experiments and Results

Extensive experimentation was conducted with
all suggested operators. The operators that per-
formed best with respect to wirelength and timing are

126

ALGORITHM(Reconfigure)
Stop=0;
Repeat
If e; € » Then
skip this cell and go to the next one;
Elself o ¢ § Then
Begin
pick a module e; from o and swap e; and ej;
remove module e; from o
End
Elself p ¢ § Then
Begin
pick a module e; from p and swap e; and e;;
remove module e; from p;
End
Else
Begin
skip this cell (all other cells will stay in their locations);
Stop=1
End
Until(all cells € w, are scanned or Stop=1)

Figure 1: Algorithm used by &> to reconfigure an off-
spring &,.

indicated? in Table 1. These operators showed a su-
perior performance as well as faster convergence.

We run TDGAP on four circuits (Table 2). Ckl is
a sample AHPL model that performs part of the stop
and wait protocol; CRC16 is a 16-bit Cyclic Redun-
dancy Checker; Highway is a traffic light controller;
and Fract is a fractional multiplier.

A summary of the initial and final values of the
best solution for all test cases with respect to timing
and area metrics is given in Table 3. The slack val-
ues given are obtained after the placement phase, but
before routing. To obtain these values we have devel-
oped and used a timing evaluator that checks for tim-
ing violations based on the reported a-critical paths.
The placements obtained by TDGAP were evaluated
with respect to timing as well as overall wirelength
and compared with placements produced by OASIS%G].
Timing performance improvements of up to 20% were
obtained. The area values given are obtained after
completing the routing phase and generating the lay-
out. The improvement achieved by TDGAP with re-
spect to timing aspects has resulted in a slight increase
in the overall area (between 1% and 9%). All results
were obtained after 100,000 generations (run time be-
tween 5 and 10 hours).

From experiments we identified two parameters
that, if allowed to adapt, would lead to superior re-
sults: (1) the crossover probability; and (2) the muta-
tion probability. From experimentation, starting with
a high crossover probability of 90% then gradually re-

2discussions and graphs are omitted due to lack of space.

Constructor function IPCs
Crossover operator X
Mutation operator p1 U pa
Selector function §,
Population size 24
Crossover probability | 0.5 - 0.7
Mutation probability 0.1

Table 1: A summary of the genetic parameters
that were found to perform better than others with
TDGAP.

Circuit # of | Clock 3# of # of rows
Name cells | period | critical paths | in final layout
Ckl 209 21 ns 200 8
CRC16 209 18 ns 330 9
Highway 56 20 ns 14 4
Fract 149 38 ns 368 6

Table 2: Characteristics of the circuits used.

ducing it to 70% seems to be a better choice then
keeping it constant. A similar strategy can be also
applied for the mutation probability, that is, starting
with relatively large value of 20% and then gradually
reducing it until it reaches 10%. These observations
require further investigations.

TDGAP is implemented in the C language. Exper-
iments were performed on a 64-bit DEC Alpha work-
station that is running OSF/1 operating system at the
speed of 100 MIPS.

3 Conclusions

In this paper we presented a timing-driven place-
ment program. The placement procedure follows the
genetic algorithm. The program uses path timing data
from a timing analyzer. The timing analyzer uses
a new criterion (a-criticality) to predict the critical
paths prior to placement. Extensive experiments were
conducted to tune the parameters of the program and
evaluate the extent of timing improvement. Results
from benchmark circuits show that timing improve-
ment of upto 20% can be achieved by our placement
system without any change to the logic of the circuit.
The sizable timing improvement is accompanied with
a very slight increase in the area of the circuit.

Acknowledgments

Authors acknowledge King Fahd University of
Petroleum and Minerals for all support. This
research is supported by KFUPM Project #
COE/VLSIDESIGN/162

127

Circuit Area Slack

Name TDGAT Increase OASIS TDGAT Tmpr OASIS
Ck1l 928 X1016 9.1% 923 X 936 +0.52 8.1% ~-1.14
CRC16 1131 x 968 5.5% 1072 X 968 +0.61 17.7% -2.47
Highway 478 X 496 6.2% 465 X 480 +0.51 11.4% -1.72
Fract 708 X 824 5.9% 768 X 808 +0.31 6.5% -2.14

Table 3: Area and Slack performance comparison be-
tween TDGAP and OASIS.

References
[1] J. P. Cohoon and W. D. Paris. Genetic place-
ment. IEEE Transactions on Computer Aided
Design, CAD-6:956-964, November 1987.

W. Donath et al. Timing-driven placement using
complete path delays. Proceedings of 27th Design
Automation Conference, pages 84-89, June 1990.

D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley Publishing Company, INC., 1989.

M. A. B. Jackson and E. S. Kuh. Performance-
driven placement of cell-based IC’s. Proceedings
of 26th Design Automation Conference, pages
370--375, June 1989.

R. M. Kling and P. Banerjee. Empirical and theo-
retical studies of the simulated evolution method
applied to standard cell placement. IEEE Trans-
actions on Computer Aided Design, CAD-10:1303
— 1315, October 1991.

MCNC Group. OASIS 2.0 Reference Manual,
1990.

K. Shahookar and P. Mazumder. A genetic ap-
proach to standard cell placement using meta-
genetic parameter optimization. IEEE Transac-
tions on Computer Aided Design, 9(5):500-511,
May 1990.

Arvind Srinivasan, Kamal Chaudhary, and
Ernest S. Kuh. Ritual: a performance-driven
placement algorithm. IEEE Transactions on Cir-
cuits and Systems, pages 825-840, November
1992.

S. Suthanthavibul, E. Shragowitz, and Rung-Bin
Lin. An adaptive timing-driven placement for
high performance VLSI’s. JEEE Transactions on
Computer Aided Design, 12(10):1488-1498, Oc-
tober 1993.

2]

[3]

[4

(5]

H. Youssef and E. Shragowitz. Timing constraints
on signal propagation in VLSI. Proceedings of In-
ternational Conference on Computer-Aided De-
sign, pages 24-27, 1990.

[10]

