46,558 research outputs found

    Identifying Overlapping and Hierarchical Thematic Structures in Networks of Scholarly Papers: A Comparison of Three Approaches

    Get PDF
    We implemented three recently proposed approaches to the identification of overlapping and hierarchical substructures in graphs and applied the corresponding algorithms to a network of 492 information-science papers coupled via their cited sources. The thematic substructures obtained and overlaps produced by the three hierarchical cluster algorithms were compared to a content-based categorisation, which we based on the interpretation of titles and keywords. We defined sets of papers dealing with three topics located on different levels of aggregation: h-index, webometrics, and bibliometrics. We identified these topics with branches in the dendrograms produced by the three cluster algorithms and compared the overlapping topics they detected with one another and with the three pre-defined paper sets. We discuss the advantages and drawbacks of applying the three approaches to paper networks in research fields.Comment: 18 pages, 9 figure

    Motif Clustering and Overlapping Clustering for Social Network Analysis

    Full text link
    Motivated by applications in social network community analysis, we introduce a new clustering paradigm termed motif clustering. Unlike classical clustering, motif clustering aims to minimize the number of clustering errors associated with both edges and certain higher order graph structures (motifs) that represent "atomic units" of social organizations. Our contributions are two-fold: We first introduce motif correlation clustering, in which the goal is to agnostically partition the vertices of a weighted complete graph so that certain predetermined "important" social subgraphs mostly lie within the same cluster, while "less relevant" social subgraphs are allowed to lie across clusters. We then proceed to introduce the notion of motif covers, in which the goal is to cover the vertices of motifs via the smallest number of (near) cliques in the graph. Motif cover algorithms provide a natural solution for overlapping clustering and they also play an important role in latent feature inference of networks. For both motif correlation clustering and its extension introduced via the covering problem, we provide hardness results, algorithmic solutions and community detection results for two well-studied social networks

    Evidential Label Propagation Algorithm for Graphs

    Get PDF
    Community detection has attracted considerable attention crossing many areas as it can be used for discovering the structure and features of complex networks. With the increasing size of social networks in real world, community detection approaches should be fast and accurate. The Label Propagation Algorithm (LPA) is known to be one of the near-linear solutions and benefits of easy implementation, thus it forms a good basis for efficient community detection methods. In this paper, we extend the update rule and propagation criterion of LPA in the framework of belief functions. A new community detection approach, called Evidential Label Propagation (ELP), is proposed as an enhanced version of conventional LPA. The node influence is first defined to guide the propagation process. The plausibility is used to determine the domain label of each node. The update order of nodes is discussed to improve the robustness of the method. ELP algorithm will converge after the domain labels of all the nodes become unchanged. The mass assignments are calculated finally as memberships of nodes. The overlapping nodes and outliers can be detected simultaneously through the proposed method. The experimental results demonstrate the effectiveness of ELP.Comment: 19th International Conference on Information Fusion, Jul 2016, Heidelber, Franc

    Evidential Communities for Complex Networks

    Get PDF
    Community detection is of great importance for understand-ing graph structure in social networks. The communities in real-world networks are often overlapped, i.e. some nodes may be a member of multiple clusters. How to uncover the overlapping communities/clusters in a complex network is a general problem in data mining of network data sets. In this paper, a novel algorithm to identify overlapping communi-ties in complex networks by a combination of an evidential modularity function, a spectral mapping method and evidential c-means clustering is devised. Experimental results indicate that this detection approach can take advantage of the theory of belief functions, and preforms good both at detecting community structure and determining the appropri-ate number of clusters. Moreover, the credal partition obtained by the proposed method could give us a deeper insight into the graph structure
    • …
    corecore