We implemented three recently proposed approaches to the identification of
overlapping and hierarchical substructures in graphs and applied the
corresponding algorithms to a network of 492 information-science papers coupled
via their cited sources. The thematic substructures obtained and overlaps
produced by the three hierarchical cluster algorithms were compared to a
content-based categorisation, which we based on the interpretation of titles
and keywords. We defined sets of papers dealing with three topics located on
different levels of aggregation: h-index, webometrics, and bibliometrics. We
identified these topics with branches in the dendrograms produced by the three
cluster algorithms and compared the overlapping topics they detected with one
another and with the three pre-defined paper sets. We discuss the advantages
and drawbacks of applying the three approaches to paper networks in research
fields.Comment: 18 pages, 9 figure