41 research outputs found

    A quality of service architecture for WLAN-wired networks to enhance multimedia support

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 77-84).The use of WLAN for the provision of IP multimedia services faces a number of challenges which include quality of service (QoS). Because WLAN users access multimedia services usually over a wired backbone, attention must be paid to QoS over the integrated WLAN-wired network. This research focuses on the provision of QoS to WLAN users accessing multimedia services over a wired backbone. In this thesis, the IEEE 802.11-2007 enhanced data channel access (EDCA) mechanism is used to provide prioritized QoS on the WLAN media access control (MAC) layer, while weighted round robin (WRR) queue scheduling is used to provide prioritized QoS at the IP layer. The inter-working of the EDCA scheme in the WLAN and the WRR scheduling scheme in the wired network provides end-to-end QoS on a WLAN-wired IP network. A mapping module is introduced to enable the inter-working of the EDCA and WRR mechanisms

    SDN-Enabled Li-Fi/Wi-Fi Wireless Medium Access Technologies Integration Framework

    Get PDF

    A VOICE PRIORITY QUEUE (VPQ) SCHEDULER FOR VOIP OVER WLANs

    Get PDF
    The Voice over Internet Protocol (VoIP) application has observed the fastest growth in the world of telecommunication. The Wireless Local Area Network (WLAN) is the most assuring of technologies among the wireless networks, which has facilitated high-rate voice services at low cost and good flexibility. In a voice conversation, each client works as a sender and as a receiver depending on the direction of traffic flow over the network. A VoIP application requires a higher throughput, less packet loss and a higher fairness index over the network. The packets of VoIP streaming may experience drops because of the competition among the different kinds of traffic flow over the network. A VoIP application is also sensitive to delay and requires the voice packets to arrive on time from the sender to the receiver side without any delay over WLANs. The scheduling system model for VoIP traffic is still an unresolved problem. A new traffic scheduler is necessary to offer higher throughput and a higher fairness index for a VoIP application. The objectives of this thesis are to propose a new scheduler and algorithms that support the VoIP application and to evaluate, validate and verify the newly proposed scheduler and algorithms with the existing scheduling algorithms over WLANs through simulation and experimental environment. We proposed a new Voice Priority Queue (VPQ) scheduling system model and algorithms to solve scheduling issues. VPQ system model is implemented in three stages. The first stage of the model is to ensure efficiency by producing a higher throughput and fairness for VoIP packets. The second stage will be designed for bursty Virtual-VoIP Flow (Virtual-VF) while the third stage is a Switch Movement (SM) technique. Furthermore, we compared the VPQ scheduler with other well known schedulers and algorithms. We observed in our simulation and experimental environment that the VPQ provides better results for the VoIP over WLANs

    The VPQ scheduler in access point for VoIP over WLAN

    Get PDF
    The Voice over Internet Protocol (VoIP) application has observed the fastest growth in the world of telecommunication.VoIP is seen as a short-term and long-trem transmission for voice and audio traffic. Meanwhile, VoIP is moving on Wireless Local Area Networks (WLANs) based on IEEE 802.11 standards.Currently, there are many packet scheduling algorithms for real-time transmission over network.Unfortunately, the current scheduling will not be able to handle the VoIP packets with the proper manner and they have some drawbacks over real-time applications.The objective of this research is to propose a new Voice Priority Queue (VPQ) packet scheduling and algorithm to ensure more throughput, fairness and efficient packet scheduling for VoIP performance of queues and traffics.A new scheduler flexible which is capable of satisfying the VoIP traffic flows.Experimental topologies on NS-2 network simulator were analyzed for voice traffic. Preliminary results show that this can achieve maximum and more accurate VoIP quality throughput and fairness index in access point for VoIP over WLANs.We verified and validated VPQ an extensive experimental simulation study under various traffic flows over WLANs

    Quality of Service Control for WLAN-based Converged Personal Network Service

    Get PDF
    This paper proposes a framework for quality of service (QoS) control in WLAN-based converged personal network service (CPNS). First, we show that the CPNS devices in WLANs occupy the shared wireless channel in an unfair manner; and thus, QoS is degraded. The reasons of such problem are analyzed from two viewpoints of (i) channel access mechanism according to carrier sensing multiple access protocol of WLAN and (ii) TCP congestion control mechanism in response to packet loss. To improve QoS and assure fair channel sharing, we propose an integrated QoS control framework consisting of admission control and rate control. Based on the available capacity, the admission control determines whether or not a specific QoS service can be admitted. The rate control is implemented using congestion window control or token bucket algorithm. The proposed mechanism differentiates QoS service from best-effort (BE) service such that the QoS service is preferentially served to satisfy its QoS requirements and the BE service is served to share the remaining resource in a fair manner. The extensive simulation results confirm that the proposed scheme assures QoS and fair channel sharing for WLAN-based CPNS

    QoS Abstraction Layer in 4G Access Networks

    Get PDF
    Tese de Mestrado. Redes e Serviços de Comunicação. Faculdade de Engenharia. Universidade do Porto. 200

    A Testbed About Priority-Based Dynamic Connection Profiles in QoS Wireless Multimedia Networks

    Get PDF
    The ever-growing demand of high-quality broadband connectivity in mobile scenarios, as well as the Digital Divide discrimination, are boosting the development of more and more efficient wireless technologies. Despite their adaptability and relative small installation costs, wireless networks still lack a full bandwidth availability and are also subject to interference problems. In context of a Metropolitan Area Network serving a large number of users, a bandwidth increase can turn out to be neither feasible nor justified. In consequence, and in order to meet the needs of multimedia applications, bandwidth optimization techniques were designed and developed, such as Traffic Shaping, Policy-Based Traffic Management and Quality of Service (QoS). In this paper, QoS protocols are adopted and, in particular, priority-based dynamic profiles in a QoS wireless multimedia network. This technique allows to asssign different priorities to distinct applications, so as to rearrange service quality in a dynamic way and guarantee the desired performance to a given data flow
    corecore