1,087 research outputs found

    Workshop on Fuzzy Control Systems and Space Station Applications

    Get PDF
    The Workshop on Fuzzy Control Systems and Space Station Applications was held on 14-15 Nov. 1990. The workshop was co-sponsored by McDonnell Douglas Space Systems Company and NASA Ames Research Center. Proceedings of the workshop are presented

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Control of autonomous multibody vehicles using artificial intelligence

    Get PDF
    The field of autonomous driving has been evolving rapidly within the last few years and a lot of research has been dedicated towards the control of autonomous vehicles, especially car-like ones. Due to the recent successes of artificial intelligence techniques, even more complex problems can be solved, such as the control of autonomous multibody vehicles. Multibody vehicles can accomplish transportation tasks in a faster and cheaper way compared to multiple individual mobile vehicles or robots. But even for a human, driving a truck-trailer is a challenging task. This is because of the complex structure of the vehicle and the maneuvers that it has to perform, such as reverse parking to a loading dock. In addition, the detailed technical solution for an autonomous truck is challenging and even though many single-domain solutions are available, e.g. for pathplanning, no holistic framework exists. Also, from the control point of view, designing such a controller is a high complexity problem, which makes it a widely used benchmark. In this thesis, a concept for a plurality of tasks is presented. In contrast to most of the existing literature, a holistic approach is developed which combines many stand-alone systems to one entire framework. The framework consists of a plurality of modules, such as modeling, pathplanning, training for neural networks, controlling, jack-knife avoidance, direction switching, simulation, visualization and testing. There are model-based and model-free control approaches and the system comprises various pathplanning methods and target types. It also accounts for noisy sensors and the simulation of whole environments. To achieve superior performance, several modules had to be developed, redesigned and interlinked with each other. A pathplanning module with multiple available methods optimizes the desired position by also providing an efficient implementation for trajectory following. Classical approaches, such as optimal control (LQR) and model predictive control (MPC) can safely control a truck with a given model. Machine learning based approaches, such as deep reinforcement learning, are designed, implemented, trained and tested successfully. Furthermore, the switching of the driving direction is enabled by continuous analysis of a cost function to avoid collisions and improve driving behavior. This thesis introduces a working system of all integrated modules. The system proposed can complete complex scenarios, including situations with buildings and partial trajectories. In thousands of simulations, the system using the LQR controller or the reinforcement learning agent had a success rate of >95 % in steering a truck with one trailer, even with added noise. For the development of autonomous vehicles, the implementation of AI at scale is important. This is why a digital twin of the truck-trailer is used to simulate the full system at a much higher speed than one can collect data in real life.Tesi

    A Review Of Design And Control Of Automated Guided Vehicle Systems

    Get PDF
    This paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict resolution. We discuss and classify important models and results from key publications in literature on automated guided vehicle systems, including often-neglected areas, such as idle-vehicle positioning and battery management. In addition, we propose a decision framework for design and implementation of automated guided vehicle systems, and suggest some fruitful research directions

    Lateral guidance control of a low-speed vehicle

    Get PDF
    This thesis examines the lateral guidance control of a low-speed vehicle. Several topics are studied in detail: (1) vehicle error-state model for lateral guidance based on Ackerman steering and (2) lateral guidance control of a low-speed vehicle using fuzzy logic. Independently written research papers address each topic. The first paper presents a second order error-state kinematic model based on Ackerman steering appropriate for studying the lateral guidance control of low-speed vehicles traversing on roads of constant curvature. Lateral guidance control of vehicles is of great interest to the Advanced Vehicle Control Systems (AVCS) Division of the Intelligent Transportation System (ITS) community. Both linear and nonlinear models are derived in detail. The error states considered are the vehicle\u27s lateral error and heading error measured with respect to the instantaneous road centerline tangent. In addition to the derivation, both simulation and experimental results are presented with very good correspondence being achieved. The second paper investigates the performance of several different controllers used to perform lateral guidance control of a low-speed vehicle described as a linear nonminimum-phase error-state bicycle model based on Ackerman steering. Both a conventional type I proportional-integral (PI) controller and a fuzzy logic controller (FLC) are considered. The PI controller is designed using standard techniques and the two-level FLC / PI controller adjusts both proportional and integral feedback control gains around the baseline values based on heuristics and the current conditions as measured by the lateral error. Time-based simulations using MATLAB / SIMULINK permit a comparison between both controllers for several different simulation scenarios of interest. Primary performance metrics considered were percent overshoot and settling time in response to a step input. In general, the two-level FLC / PI controller performed better; 6 % reduction in overshoot and 21 % reduction in settling time

    Stability Control of Triple Trailer Vehicles

    Get PDF
    While vehicle stability control is a well-established technology in the passenger car realm, it is still an area of active research for commercial vehicles as indicated by the recent notice of proposed rulemaking on commercial vehicle stability by the National Highway Traffic Safety Administration (NHTSA, 2012). The reasons that commercial vehicle electronic stability control (ESC) development has lagged passenger vehicle ESC include the fact that the industry is generally slow to adopt new technologies and that commercial vehicles are far more complex requiring adaptation of existing technology. From the controller theory perspective, current commercial vehicle stability systems are generally passenger car based ESC systems that have been modified to manage additional brakes (axles). They do not monitor the entire vehicle nor do they manage the entire vehicle as a system

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment
    • …
    corecore