10 research outputs found

    Gaussian mixture model based probabilistic modeling of images for medical image segmentation

    Get PDF
    In this paper, we propose a novel image segmentation algorithm that is based on the probability distributions of the object and background. It uses the variational level sets formulation with a novel region based term in addition to the edge-based term giving a complementary functional, that can potentially result in a robust segmentation of the images. The main theme of the method is that in most of the medical imaging scenarios, the objects are characterized by some typical characteristics such a color, texture, etc. Consequently, an image can be modeled as a Gaussian mixture of distributions corresponding to the object and background. During the procedure of curve evolution, a novel term is incorporated in the segmentation framework which is based on the maximization of the distance between the GMM corresponding to the object and background. The maximization of this distance using differential calculus potentially leads to the desired segmentation results. The proposed method has been used for segmenting images from three distinct imaging modalities i.e. magnetic resonance imaging (MRI), dermoscopy and chromoendoscopy. Experiments show the effectiveness of the proposed method giving better qualitative and quantitative results when compared with the current state-of-the-art. INDEX TERMS Gaussian Mixture Model, Level Sets, Active Contours, Biomedical Engineerin

    Image deblurring and decomposition: texture and color image analysis

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    A Machine Learning based Improvised Follicle Polycystic Ovarian Detection Through Ultrasound Images Through IOT

    Get PDF
    Polycystic ovarian syndrome which is commonly called as PCOS is a endocrine malfunction affecting women of reproductive age. Its diagnosis involves in detection of multiple small follicles mainly in the ovaries through ultrasound imaging. However, manual detection is time-consuming, subjective, and prone to errors. Hence, this study proposes an improvised follicle PCOS detection method using machine learning(Random Forest and Logistic Regression) from a sequence of given ultrasound images. The proposed method involves pre-processing the ultrasound images through IoT, followed by segmenting and extracting follicle features. Subsequently, a machine learning model is trained to classify the extracted features as normal or PCOS cases. The proposed method's performance is evaluated on a dataset of 400 ultrasound images from 50 patients, including 25 PCOS cases and 25 healthy controls. The experimental results demonstrate that the proposed method achieves a high classification accuracy of 93.75% and an AUC of 0.96. In addition, the proposed methodology outperforms in comparison with the state-of-the-art PCOS detection methods in terms of accuracy, sensitivity, specificity, and AUC. The proposed method also provides a quantitative measure of the severity of PCOS based on the number and size of the follicles detected

    Image Segmentation and Its Applications Based on the Mumford-Shah Model

    Get PDF
    Image segmentation is an important topic in computer vision and image processing. As a region-based (global) approach, the Mumford and Shah (MS) model is a powerful and robust segmentation technique as compared to edge-based (local) methods. In this thesis we apply the MS model to two interesting problems: image inpainting and text line detection. We further extend it by proposing a new image segmentation model to overcome some of the difficulties of the original model. As a demonstration of the new model, we apply it to the segmentation of retinal images. The results are better than the state-of-the-art approaches. In image inpainting, the MS model is used to detect and estimate the object boundaries inside the inpainting areas. These boundaries are preserved in the inpainting results. We present a hierarchical segmentation method to detect boundaries of both the main structure and the details. The inpainting result can preserve detailed edges. In text line detection, we use a combination of Gaussian blurring, the MS model, and morphing method. Different from other general text image detection approaches, our method segments text documents without any knowledge of the written texts, so it can detect handwriting text lines of different languages. It can also handle different gaps and overlaps among the text lines. Although the MS model has been used successfully in many applications, its implementation has always been based on some forms of approximation. These approximations are either inefficient computationally or applicable only to some special cases. Our new model consists of only one variable, the segmentation curve, therefore the computation is very efficient. Furthermore, no approximation is required, hence the method can segment objects with complicated intensity distribution. The new model can detect both step and roof edges, and can use different filters to detect objects of different levels of intensity. To show the advantages of the new model, we use a combination of the new model and Gabor filter to detect blood vessels in retinal images. This new model can detect objects with complicated image intensity distribution, and can handle non-uniform illumination cases effectively

    Image Segmentation by Energy and Related Functional Minimization Methods

    Get PDF
    Effective and efficient methods for partitioning a digital image into image segments, called ¿image segmentation,¿ have a wide range of applications that include pattern recognition, classification, editing, rendering, and compressed data for image search. In general, image segments are described by their geometry and similarity measures that identify them. For example, the well-known optimization model proposed and studied in depth by David Mumford and Jayant Shah is based on an L2 total energy functional that consists of three terms that govern the geometry of the image segments, the image fidelity (or closeness to the observed image), and the prior (or image smoothness). Recent work in the field of image restoration suggests that a more suitable choice for the fidelity measure is, perhaps, the l1 norm. This thesis explores that idea applied to the study of image segmentation along the line of the Mumford and Shah optimization model, but eliminating the need of variational calculus and regularization schemes to derive the approximating Euler-Lagrange equations. The main contribution of this thesis is a formulation of the problem that avoids the need for the calculus of variation. The energy functional represents a global property of an image. It turns out to be possible, however, to predict how localized changes to the segmentation will affect its value. This has been shown previously in the case of the l2 norm, but no similar method is available for other norms. The method described here solves the problem for the l1 norm, and suggests how it would apply to other forms of the fidelity measure. Existing methods rely on a fixed initial condition. This can lead to an algorithm finding local instead of global optimizations. The solution given here shows how to specify the initial condition based on the content of the image and avoid finding local minima

    Artificial Intelligence Based Classification for Urban Surface Water Modelling

    Get PDF
    Estimations and predictions of surface water runoff can provide very useful insights, regarding flood risks in urban areas. To automatically predict the flow behaviour of the rainfall-runoff water, in real-world satellite images, it is important to precisely identify permeable and impermeable areas. This identification indicates and helps to calculate the amount of surface water, by taking into account the amount of water being absorbed in a permeable area and what remains on the impermeable area. In this research, a model of surface water has been established, to predict the behavioural flow of rainfall-runoff water. This study employs a combination of image processing, artificial intelligence and machine learning techniques, for automatic segmentation and classification of permeable and impermeable areas, in satellite images. These techniques investigate the image classification approaches for classifying three land-use categories (roofs, roads, and pervious areas), commonly found in satellite images of the earth’s surface. Three different classification scenarios are investigated, to select the best classification model. The first scenario involves pixel by pixel classification of images, using Classification Tree and Random Forest classification techniques, in 2 different settings of sequential and parallel execution of algorithms. In the second classification scenario, the image is divided into objects, by using Superpixels (SLIC) segmentation method, while three kinds of feature sets are extracted from the segmented objects. The performance of eight different supervised machine learning classifiers is probed, using 5-fold cross-validation, for multiple SLIC values, while detailed performance comparisons lead to conclusions about the classification into different classes, regarding Object-based and Pixel-based classification schemes. Pareto analysis and Knee point selection are used to select SLIC value and the suitable type of classification, among the aforementioned two. Furthermore, a new diversity and weighted sum-based ensemble classification model, called ParetoEnsemble, is proposed, in this classification scenario. The weights are applied to selected component classifiers of an ensemble, creating a strong classifier, where classification is done based on multiple votes from candidate classifiers of the ensemble, as opposed to individual classifiers, where classification is done based on a single vote, from only one classifier. Unbalanced and balanced data-based classification results are also evaluated, to determine the most suitable mode, for satellite image classifications, in this study. Convolutional Neural Networks, based on semantic segmentation, are also employed in the classification phase, as a third scenario, to evaluate the strength of deep learning model SegNet, in the classification of satellite imaging. The best results, from the three classification scenarios, are compared and the best classification method, among the three scenarios, is used in the next phase of water modelling, with the InfoWorks ICM software, to explore the potential of modelling process, regarding a partially automated surface water network. By using the parameter settings, with a specified amount of simulated rain falling, onto the imaged area, the amount of surface water flow is estimated, to get predictions about runoff situations in urban areas, since runoff, in such a situation, can be high enough to pose a dangerous flood risk. The area of Feock, in Cornwall, is used as a simulation area of study, in this research, where some promising results have been derived, regarding classification and modelling of runoff. The correlation coefficient estimation, between classification and runoff accuracy, provides useful insight, regarding the dependence of runoff performance on classification performance. The trained system was tested on some unknown area images as well, demonstrating a reasonable performance, considering the training and classification limitations and conditions. Furthermore, in these unknown area images, reasonable estimations were derived, regarding surface water runoff. An analysis of unbalanced and balanced data-based classification and runoff estimations, for multiple parameter configurations, provides aid to the selection of classification and modelling parameter values, to be used in future unknown data predictions. This research is founded on the incorporation of satellite imaging into water modelling, using selective images for analysis and assessment of results. This system can be further improved, and runoff predictions of high precision can be better achieved, by adding more high-resolution images to the classifiers training. The added variety, to the trained model, can lead to an even better classification of any unknown image, which could eventually provide better modelling and better insights into surface water modelling. Moreover, the modelling phase can be extended, in future research, to deal with real-time parameters, by calibrating the model, after the classification phase, in order to observe the impact of classification on the actual calibration

    Fast iterative methods for variational models in image segmentation

    Get PDF
    Image segmentation is an important branch of computer vision. It aims at extracting meaningM objects lying in images either by dividing images 5 into contiguous semantic regions, or by extracting one or more specific objects in images such as left kidney in CT image. The image segmentation task is, in general, very difficult to achieve since natural images are diverse and complex, and the way we perceive them varies according to individuals

    A New Model for Image Segmentation

    No full text

    A New Model for Image Segmentation Based on Deep Learning

    No full text
    Image segmentation of the medical image and its conversion into anatomical models is an important technique and main point in computer vision (CV) and image processing (IP), training tools that are used routinely in the fields of medicine and surgery. Segmenting images and converting them into a model that depends on its work on the different algorithms and the extent of technological advancement and method of application. The advancement of segmentation algorithms has led to the possibility of creating three-dimensional models for the patient to study without endangering his life. This paper describes a combination of two fields of solving segmentation problem to convert through the workflow of a hybrid algorithm structure Convolutional neural network (CNN, Active Contour & Deep Multi-Planar) and seg3d2 to switch DICOM medical rays “Digital Imaging and Communications in Medicine” into a 3Dimintional model, using data from active contour to be the input of deep learning. This research will be using are human liver DICOM images and is divided into two stages (medical image segmentation - retinal model optimization). This is to help doctors and surgeons to study the patient’s condition with accuracy and efficiency through the use of mixed reality technology in liver surgery [living donor liver transplantation (LDLT)], all implement by Seg3D2 and Python
    corecore