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Abstract

Effective and efficient methods for partitioning a digital image into image segments,
called “image segmentation,” have a wide range of applications that include pattern
recognition, classification, editing, rendering, and compressed data for image search.
In general, image segments are described by their geometry and similarity measures
that identify them. For example, the well-known optimization model proposed and
studied in depth by David Mumford and Jayant Shah is based on an L2 total en-
ergy functional that consists of three terms that govern the geometry of the image
segments, the image fidelity (or closeness to the observed image), and the prior (or
image smoothness).

Recent work in the field of image restoration suggests that a more suitable choice
for the fidelity measure is, perhaps, the l1 norm. This thesis explores that idea applied
to the study of image segmentation along the line of the Mumford and Shah opti-
mization model, but eliminating the need of variational calculus and regularization
schemes to derive the approximating Euler-Lagrange equations.

The main contribution of this thesis is a formulation of the problem that avoids the
need for the calculus of variation. The energy functional represents a global property
of an image. It turns out to be possible, however, to predict how localized changes
to the segmentation will affect its value. This has been shown previously in the case
of the L2 norm, but no similar method is available for other norms. The method
described here solves the problem for the l1 norm, and suggests how it would apply
to other forms of the fidelity measure.

Existing methods rely on a fixed initial condition. This can lead to an algorithm
finding local instead of global optimizations. The solution given here shows how to
specify the initial condition based on the content of the image and avoid finding local
minima.
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Preface

This thesis describes a new kind of mathematical image segmentation. The ideas
first began to form in a course taught by Charles Chui, the chairman of my advisory
committee. He introduced us to the methods first proposed by Perona and Malik that
use a non-isotropic form of the heat equation to enhance images and to the energy
functional developed by Mumford and Shah for segmentation. The latter was, to
me, a remarkable formulation. The essence of the problem could be expressed in a
single minimization. The course was also my first serious exposure to the calculus
of variation. It seemed to be a shame to take the elegant formulation and construct
the complicated partial differential equations that can, in some situations, lead to a
characterization of a solution.

Nevertheless, the topic seemed worth pursuing as a dissertation topic. That re-
search led to the level set formulation put forth by Chan and Vese. They were able to
cast the problem in a form that leads to automatic solution in a very practical sense.
The calculus of variation and the partial differential equations remain, but the solu-
tion is manageable. It is not possible to study their work without finding references
to the total variation model for image restoration proposed by Rudin, Osher, and
Fatimi. That eventually leads to the recent work in the use of different norms for the
fidelity term and to the fast algorithm proposed by Song and Chan that addresses the
minimization problem by working directly with the energy functional. The combina-
tion of these two ideas is the theme of this thesis. Is it possible to apply the notion of
working directly with the energy functional to different norms? In particular, using
an integer lattice as the domain of the image, is it possible to measure and minimize
the absolute deviation from a centroid instead of with a square error term, and to
demonstrate a practical algorithm? The question is answered here in the affirmative.
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Chapter 1

Introduction

The field of image segmentation deals with the problem of identifying and isolating

those portions of an image that possess like properties. At one level the problem can

seem almost trivial because it is a natural part of our ability to recognize specific

objects in a scene. However, as the content of an image increases in complexity and

possesses more and more detail, the problem becomes more complex. For example,

even in noise free images, precise boundaries of a region can be occluded by the

interiors of other regions.

The applications of image segmentation typically are to improve the appearance

of an image whose quality has been degraded by noise or damage and to identify

those parts of the image that may be of additional interest. The first of these is

part of the field of image restoration or noise removal. This was one of the early

objectives of image processing and is the source of the tools that are widely used

today in commercially available image processing packages.

One common application of segmented images is in the field of medicine where
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the aim is to identify anomalous portions that may have clinical significance. There

is also the potential of using information about a particular portion of the image to

characterize it and call it to the attention of the diagnostician examining the image.

The first step in any such process would be segmenting the image into areas that may

require further attention.

Another use has both military and security applications. As with medical images

the first step is to segment the image. The segments can then be examined for

identification of the content. The aim is to categorize the object perhaps as friend

or foe or even to identify a particular individual person or structure from a security

video.

Finally, there are potential applications in motion detection. Given a segmented

image from a video frame it is possible to compare it with subsequent frames and

discover which portions have moved relative to the background.

It is because of this very large potential application space that image segmentation

is such an active area of research. There is a much to be gained by advancing the

state of the art. Also, many classical mathematical tools are applicable to the field

and can be readily adapted and exploited for the purpose. The basic model of an

image is simple yet it can be easily molded to different needs.

An image is defined to be a mapping

u : Ω → I (1.1)

The assumptions made about the nature of u, Ω, and I depend on the application and
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the theorems to be established. The most common situation is that Ω is a bounded,

simply connected subset of R2, and that I is a bounded subset of the non-negative

reals, R+. The function u is at least assumed to be measurable. The elements of

I typically represent the intensity of the image at each pixel location. Ω represents

the geometry of the object on which the image is rendered. This could include a

computer screen or a printed medium.

The discrete form of an image is a mapping on an integer lattice. In practice this

is the usual case and the domain Ω is a rectangle.

u : {1, 2, . . . ,W} × {1, 2, . . . , L} → R (1.2)

In this form the symbols W and L represent the width and length of the rectangle.

For black and white images the range represents the gray scale level at each location

(i, j). The level is often represented by a subset of non-negative integers, Z+. For

example, in most of the common image formats in use today u(i, j) ∈ {0, 1, . . . , 255}.

Thus, the following definition suffices for many theoretical purposes and for almost

all practical representations of a black and white image.

u : {1, 2, . . . ,W} × {1, 2, . . . , L} → Z+ (1.3)

It is this form that is most commonly employed in this thesis. The only modification

needed to equation (1.3) to include color images is to increase the dimension of the

range of u. Three dimensions would cover the common case of an image with red, blue,
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and green intensity levels. Using the continuous domain model the formal definition

of a segmentation of an image is as follows:

Definition 1. Let u0 be a real valued observed image defined on a bounded, open,

simply connected subset, Ω, of R2. A segmentation of u0 is a finite collection of open

subsets of Ω, R1, R2, . . . , Rn, and a function u with the following properties:

1. The boundary ∂Rl of each Rl has finite length.

2. Using S to denote the closure of the set S,

Ω = R1 ∪R2 ∪ · · · ∪Rn.

3. u : Ω → R

The function u is called the approximating function of the segmentation. Each of the

the sets Rl is called a segmentation component.

One method of segmentation that has been studied extensively is the use of an

energy functional that is minimized by a good segmentation. This idea began with

the well known paper by David Mumford and Jayant Shah [41]. They proposed using

the following functional:

E(u, K) = µ2

∫
Ω

(u− u0)
2 dxdy +

∫
Ω\K

|∇u|2 dxdy + ν|K|. (1.4)

Here u0 us the observed image, u is a test function that approximates the original

image, K is a closed subset of Ω that represents the edges, and |K| is the length of
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the edge set. The coefficients µ and ν are positive weighting parameters. In terms of

definition 1 u is the approximating function and

K = (∂R1 ∪ ∂R2 . . . ∂Rn) \ ∂Ω.

The general idea with this method is to find a finite number of regions in the image

where u varies smoothly and to make the boundaries of the segmentation smooth.

The first term in equation 1.4 measures how closely the function u approximates

the observed image. For that reason it is called the fidelity term. The second term

measures the smoothness of the function u in the regions bounded by the edges. The

third term measures the smoothness of the edges by their total length, so it is called

the length term. Intuitively, then, a solution to the problem

E(u∗, K∗) = inf
u,K

E(u, K)

is a function u∗ that closely approximates the observed image and a collection of

regions bordered by K∗ with the property that in each region the function u∗ has no

abrupt changes. It is, however, possible that the value of u∗ could have discontinuities

at the boundaries of the regions.

Much has been written about both explicit solutions of this problem and about

algorithms available to solve it numerically. In the complete formulation it is very

difficult to study without making some specific assumptions about the result. In fact,

in their paper Mumford and Shah only conjecture that the problem is well posed
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in the case where u0 is assumed to be continuous. A problem is said to be well

posed if (1) a solution exists, (2) the solution is unique, and (3) the solution depends

continuously on the data. The term is applied to differential equations, so in this

context it asks that the Euler-Lagrange equation derived from euqation (1.4) be well

posed.

The complete statment of this conjecture is, “E has a minimum in the set of all

pairs (u, K), u differentiable in each region, K a finite set of points joined by C1

arcs.” There are cases where a solution is known. For example, De Pauw and Smets

show in [46] that there are solutions for some cases when Ω is the disk. However, this

conjecture remains unsolved.

Mumford and Shah also demonstrate that, in some sense, all three terms in equa-

tion 1.4 are necessary. They do this by showing that if any one is removed without

some additional restrictions on u the infimum is zero. The argument is brief but

instructive. They write:

Dropping any of these three items, inf E = 0:

without the first, take u = 0, K = ∅;

without the second, take u = u0, K = ∅;

without the third, take K to be a fine grid of N horizontal and vertical

lines, Ri = N2 small squares, u = average of u0 on each Ri.

The presence of all three terms makes E interesting.

An assumption often made is that the image is constant, or at least has small
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variation, in each of the regions of the segmentation. In that case the second term

vanishes and the segmentation becomes sets of constant intensity. The set K is

defined to be the boundary of the regions where u is constant. This implies that the

admissible functions, u, are those whose range is a finite set {c1, c2, . . . , cn}. It also

follows that there will be only a finite number of components in the segmentation

which are Ri = {x ∈ Ω: u(x) = ci}. Thus, the requirement in the definition of

a segmentation that there be only a finite number of segmentation components is

redundant in this case. This is the so called piece-wise constant Mumford Shah

model. They use the symbol E0 for this functional and demonstrate that it is the

natural limit of E as µ → 0. Furthermore, they show that this problem is well posed

for contunuos u0. It is this piece-wise model and a closely related functional that

are the subject of this thesis. At first glance this formulation may seem to be at

odds with the necessity of all three terms in equation 1.4. The difference is that

here the edge set cannot be arbitrarily chosen. It depends on the choice of u. A

complete description of the existence theorem can be found in chapter 2. There is

another interesting observation about the functional E0. It completely separates two

problems. The fidelity term measures how well u approximates u0 and the length

term is solely about geometry.

In their 2001 paper, Chan and Vese [14] propose an algorithm that uses the level

set method developed by Osher and others. They use a regularization of the Heaviside

function to write the Euler-Lagrange equation for the energy functional 1.4 with the

piece-wise constant assumption. Their original paper only addresses the two-phase

model, which assumes that there are only two distinct intensity levels of interest. In
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a later paper [8] they show how the method can be extended to multi-phase problems

when the number of phases is a power of 2.

In [51] and later in [50], Song and Chan give an improvement to the Chan Vese

algorithm that eliminates the Euler-Lagrange equations. This avoids the need for any

regularization of the Heaviside function because it deals with the energy functional

directly. The method also eliminates the somewhat troublesome long processing time

of the Chan Vese algorithm as well as the problem of beginning with an assumption of

a Lipshitz level set function then having its derivative appear in the Euler-Lagrange

equation.

Song and Chan’s method is based on the idea that at each pixel it is possible to

easily compute the change in the energy functional value if the pixel is moved from

one partition to the other. This results in a large improvement in the time required

to arrive at a solution. Song and Chan show that the algorithm will converge in just

a few sweeps through the image.

In a 2004 paper, Chan and Esedoglu [9] studied the possibility of replacing the

fidelity term in equation (1.4) with the L1 norm. The paper actually focuses on the

closely related problem of image restoration, but in a special case the two problems

are the same. They suggest that there may be advantages to using that norm instead

of the square error term in the original model. However, this change to the model

eliminates the solution path of the calculus of variation since the absolute value

function in the fidelity term is not differentiable. They show how it is possible to

approximate a solution by using a regularization of the fidelity term. In [10] the

authors study the use of this norm in the case of binary images and the two-phase
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piece-wise Mumford Shah model. A binary image takes on only the two values 0 and

1, so in equation (1.1) I = {0, 1}. This modification changes the functional to

E(u) = µ

∫
Ω

|u− u0| dxdy +

∫
Ω\K

|∇u|2 dxdy + ν|K|. (1.5)

In this form the fidelity L1 norm replaces the L2 norm and the coefficient is no longer

squared to make the units of the parameter the same.

One of the main results in this thesis will show how the problem of using the l1

norm can be solved directly without the use of regularization. The general idea is

as follows: Another name for the fidelity term with absolute value instead of square

error comes from statistics. The quantity is known as the absolute deviation. It is

well known that the term can be minimized not with the mean, as is the case with a

square error, but with the median of the sample.

Song and Chan’s method uses a well known recurrence relation for the mean and

variance to compute the change in energy at each pixel. No such recurrence relation

is readily available for the median and absolute deviation. Such a method is given in

chapter 3. It makes it possible to predict the change in energy from a histogram of

each segment of the image. Thus, by investing a small amount of memory and time in

constructing the histograms it becomes a simple matter to both compute the change

in energy and, if necessary move a given pixel from one partition to the other.

Furthermore, theorem 4 in chapter 3 shows that it is also possible to predict a

priori what the minimum value of the fidelity term will be and what the values of

the range of u should must be to obtain that minimum. This leads to a method of
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determining an initial condition for the solution of the problem and for determining

reasonable values for the parameters µ and ν.

The outline of the thesis is as follows:

Chapter 2 provides some background on the segmentation problem and a description

of other approaches.

Chapter 3 develops the basic theory needed to apply the l1 norm as a fidelity term.

Chapter 4 applies the results of chapter 3 to formulate a solution using the l1 norm

and develops the details of a practical algorithm.

Chapter 5 shows some experimental results.

Chapter 6 draws conclusions and makes suggestions for future work.

Appendix A and appendix B present the computer code used to produce the exper-

imental results.

Appendix C contains some descriptions of the source of the images used and ac-

knowledgments where appropriate

The notation used throughout this thesis is standard. One detail that should be

mentioned is the use of the symbols l2, L2, l1, and L1. When the context involves a

continuos image domain the symbols L1 and L2 appear. When the context involves

an image defined on an integer lattice the symbols l1 and l2 are used to indicate that

the counting measure is being applied instead of Lebesgue measure.
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Chapter 2

Background

This chapter gives some general background on the image segmentation problem as

formulated by Mumford and Shah. The focus is on the piece-wise constant model for

which there is a reasonable mathematical theory. Next there is a description of two

algorithms proposed to solve the problem in the special case where the segmentation

is assumed to have only two phases. That is, the range of the approximating image

function has a cardinality of two. Following that is an explanation of what the

possible benefits are to replacing the usual fidelity term with the L1 norm. Next is an

introduction to the ideas that lead to an algorithm using that norm and a description

of the theory available to show the existence of solutions. The chapter concludes with

a brief description of other segmentation methods.
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2.1 The piece-wise constant model of Mumford

and Shah

In [41] Mumford and Shah prove the following theorem:

Theorem 1. Let Ω be an open rectangle in R2, and let u0 be continuous on Ω ∪ ∂Ω.

For every one dimensional K ⊂ Ω such that K ∪ ∂Ω is made up of a finite number

of C1 arcs meeting only at end points and for all locally constant u on Ω \K let

E0(u, K) =

∫∫
Ω

(u− u0)
2 dxdy + λ · Length(K). (2.1)

Then there exists a u and a K that minimize E0.

Proof. see [41], pages 613–629.

In [40] Morel and Solimini prove a more general version of this theorem. Their

proof only requires that u0 be measurable. The theorem as stated here is sufficient

for practical applications. Before proving this theorem Mumford and Shah make the

following important remark:

If K has an arc, γ, which is surrounded by a single component of Ω \K

we can reduce E0 just by removing γ. Hence, we may as well assume in

our original formulation that the boundary of each component consists of

piece-wise C1 loops which mutually intersect in only finitely many points.

This situation is shown in figure 2.1. The arc

(

df is completely surrounded by region

R2. Therefore, if it is removed from the set K the value of the fidelity term is
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ra

rb rc
rd

r
e rf

R1

R2

Figure 2.1: A two-component segmentations with an extra arc

unaffected while the total length of K decreases. Since the objective is to find the

minimum of E0 nothing is lost by removing

(

df .

Figure 2.2 shows a three component segmentation with the boundaries formulated

as piece-wise C1 loops. The boundary between R1 and R2 is formed by the two arcs

(

ae and

(

ed. Morel and Solimini [40] call this kind of segmentation 1-normal. More

specifically they write,

A segmentation will be called 1-normal if it is made of a finite number

of rectifiable Jordan curves, meeting each other and ∂Ω only at their tips

and if each Jordan curve separates two different regions.

It is these 1-normal segmentations with which this thesis is primarily concerned.

The examples of boundaries shown thus far have all been interior. That is, they

do not intersect with the boundary of the image. The theorem does allow for this

possibility. Notice that it requires that K ⊂ Ω so that the length of K does not

include the boundary of the image. This is as it should be because including it would
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ra
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g

R1

R2

R3

Figure 2.2: A three-component segmentations with piece-wise C1 loops forming the
boundaries of the components

have the undesired result of adding a constant to the length term. It is possible,

however, for an arc to terminate at the boundary because it is K ∪ ∂Ω that is made

up of C1 arcs. This arrangement is shown in figure 2.3. The boundaries R3 and R4

include the arcs
(

ah and

(

gi.

In the literature about this kind of minimization problem one frequently encoun-

ters statements about the energy functionals and convexity. This section concludes

with a discussion of that property and its role in proving the existence of solutions.

A linear functional E : L → R on a linear space L is said to be convex if for any

x, y ∈ L and t ∈ (0, 1)

E(tx + (1− t)y) ≤ tE(x) + (1− t)E(y).

E is called strictly convex if this inequality is strict when x 6= y. A subset M of L is
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Figure 2.3: A four-component segmentation showing arcs ending at the image bound-
ary, ∂Ω

said to be convex if

x ∈ M and y ∈ M ⇒ tx + (1− t)y ∈ M

In [54] the following fundamental theorem is proved.

Theorem 2. Let M be a convex subset of a linear space L and let E : L → R be

convex. If x∗ ∈ M is a local minimizer of E, i.e., there is a neighborhood U of x∗ for

which E(x∗) ≤ E(x) for each x ∈ U , then x∗ is also a global minimizer of E. If E is

strictly convex then there is at most one global minimizer.

The difficulty with applying this theorem to minimizing equation (2.1) is that the

energy E0 is not even linear. The length term depends only on the geometry of the

segmentation. That means that if u is the approximating function and K(u) is the
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implied boundary then

Length (K(u)) = Length (K(αu)) for any nonzero α.

Thus the straightforward path of applying theorem 2 is not available.

2.2 The two-phase algorithm of Chan and Vese

While theorem 1 assures the existence of solutions to the minimization of E0 it pro-

vides no hint at how they are to be found. This chapter now turns to a description

of two algorithms described in the literature for a two phase segmentation. Before

introducing the ideas a description of the background that leads to the algorithms is

in order. The methods are inspired to a large extent by the use of the level set method

developed by Osher an Sethian and first published in [44]. A more recent overview is

given in [43]. Besides image analysis, level sets have been applied to computational

fluid dynamics and crystal growth.

In image processing the idea of a level set is used as at tool to define the regions of

an image. Using the notation of equation (1.1) on page 2, assume that Ω is a bounded

and simply connected subset of the plane. Define a real valued function φ that is at

least assumed to satisfy the Lipshitz condition on Ω. The set C = {(x, y) : φ(x, y) =

0} is called the zero level set of φ. An example of a level set function is the signed
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Euclidean distance to a given curve. That is, if C is a given closed curve in Ω then

φ(x, y) =



+ inf(w,z)∈C(
√

(x− w)2 + (y − z)2) if (x, y) is inside C

− inf(w,z)∈C(
√

(x− w)2 + (y − z)2) if (x, y) is outside C

0 if (x, y) ∈ C.

(2.2)

If, for example, C is the unit circle φ(x, y) is a cone with vertex one unit above

the origin. A precise definition of inside and outside is obtained by letting ω be an

open subset of Ω with boundary C = ∂ω of finite length. A point (x, y) is inside

C if (x, y) ∈ ω, and outside C if (x, y) ∈ Ω \ ω̄. There is no requirement that ω

be connected, so C can be the union of several disjoint Jordan curves. The surface

defined in equation (2.2) satisfies a Lipshitz condition everywhere as required of a level

set function. Chan and Vese used a level set function in [14] to give an algorithm for

the 2-phase piece-wise constant Mumford-Shah model.

The idea with the Chan-Vese algorithm is to restrict the function u in equation

(1.4) on page 4 to take on only two values. That is, u(x, y) = c1 inside C and c2

outside C. This reduces the energy functional to

E(c1, c2, C) =

∫
inside C

(u0(x, y)− c1)
2 dxdy

+

∫
outside C

(u0(x, y)− c2)
2 dxdy

+ λ · Length(C).

(2.3)

Notice that in this formulation there is only the parameter λ on the length term. Of
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course, this makes the energy a function of just the curve C, the constants c1 and c2,

and the parameter λ. In their paper Chan and Vese also include a term for the area

inside C. Moreover, they use separate coefficients for each of the terms. They then

point out that in all their numerical results they ignored the area term and used the

same coefficient for both the fidelity terms. In all that follows that same approach is

taken and only the coefficient on the length term is considered. This is more in keeping

with the original formulation of the energy functional which had a single parameter

on the fidelity term. This is a nice formulation of the Mumford-Shah functional. It

reduces it to a form that lends itself well to the level set method. Instead of the curve

C use the level set function φ which, as noted above, also defines a curve as its zero

level set. The level set function, φ, is used in place of the independent variable C to

write equation (2.3) as

E(c1, c2, φ) =

∫
φ(x,y)>0

(u0 − c1)
2 dxdy

+

∫
φ(x,y)<0

(u0 − c2)
2 dxdy

+ λ ·
∫

Ω

|∇H(φ(x, y))| dxdy

=

∫
Ω

(u0 − c1)
2H(φ(x, y)) dxdy

+

∫
Ω

(u0 − c2)
2(1−H(φ(x, y))) dxdy

+ λ ·
∫

Ω

|∇H(φ(x, y))| dxdy.
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Here H(·) is the Heaviside function

H(z) =


0, if z < 0

1, if z ≥ 0

and is used in place of the characteristic function of the interior, ω, of the curve C.

That

Length(C) =

∫
Ω

|∇H(φ(x, y))| dxdy

follows from the identity proved in [23]

Perimiter(ω) =

∫
Ω

|∇1ω(x, y)| dxdy,

where 1ω(x, y) is the characteristic function of ω. Now, using standard methods like

those described in [56], it is possible to write the Euler-Lagrange equation that gives

the minimal energy for fixed c1 and c2,

δ(φ(x, y))

[
λ div

(
∇φ(x, y)

|∇φ(x, y)|

)
− (u0(x, y)− c1)

2 − (u0(x, y)− c2)
2

]
= 0, (2.4)

with a Neumann boundary condition of zero. The symbol δ(φ) represents the deriva-

tive of the Heaviside function.

As Mumford and Shah point out in [41] it is immediate that for fixed C the

value of c1 and c2 that minimizes the energy is just the mean of u0 in the regions to

which they apply because then the length term in equation (2.3) is just a constant.
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Assuming that u0 permits differentiation under the integral, setting partials to zero

to find the extreme points gives

0 =
∂E

∂c1

=

∫
inside C

2(−c1)(u0 − c1) dxdy

0 =
∂E

∂c2

=

∫
outside C

2(−c2)(u0 − c2) dxdy

which can be solved for c1 and c2 showing that equation (2.3) is minimized when

c1 =

∫
inside C

u0 dxdy ÷
∫

inside C

dxdy

c2 =

∫
outside C

u0 dxdy ÷
∫

outside C

dxdy

(2.5)

Chan and Vese use a regularization of the Heaviside function to develop a numer-

ical scheme for solving the Euler-Lagrange equation (2.4). The steps of the algorithm

are as follows:

1. Choose an initial value of the curve C and compute the corresponding level set

function φ as defined in equation (2.2).

2. Compute c1(φ) and c2(φ) by finding the mean value of u0 inside C, where φ > 0,

and outside C, where φ < 0.

3. Solve the Euler-Lagrange equation (2.4) with fixed c1 and c2 to get a new φ.

4. Reinitialize φ to be the signed distance to C as in equation (2.2)

5. Check for a stationary solution that indicates convergence,.
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This is the algorithm as it was proposed in [14]. It is often cited in the literature

and is commonly known as the two phase Chan-Vese algorithm for the solution of the

Mumford-Shah model or simply the Chan-Vese algorithm. It was later expanded in

[12] and earlier in [13] and [8] to include the case of 2n phases by incorporating n level

set functions. Improvements and modifications are still an active area of study. See,

for example, [5] and [26], and [22]. A novel approach to the problem appeared shortly

after the publication of the Chan-Vese algorithm. A description of that approach is

the next topic.

2.3 The two-phase algorithm of Song and Chan

The second algorithm avoids the use of the calculus of variation. Song and Chan

observed in [50] that it was possible to develop an algorithm to minimize the Chan

and Vese functional that did not involve the calculus of variation. This is an example

of a greedy algorithm as described in [19]. Greedy algorithms seek to find a solution

to a global optimization problem by, at each step, making what seems to be the best

choice. To be greedy the method of choice at each step may depend on previous

steps but not on future ones. The algorithm described here solves the two phase

segmentation using the Mumford-Shah model. That is, it solves the same problem

as does the Chan-Vese algorithm but with a very different method. The idea follows

from two observations about the level set solutions.

1. The level set function, φ, in the Chan-Vese algorithm serves primarily to par-

tition the domain of the image. The actual nature of the function is of little
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consequence. With that in mind, it should suffice to assume that it takes on

only two values, say -1 and 1. This completely eliminates the need to maintain

the shape of φ as the Euclidean distance to the zero level set.

2. For a given pixel it is possible to predict how the energy will change if the pixel

is moved from one partition to another.

It is observation 2 that makes the greedy algorithm possible. To understand the

concept recall the well known recursive method of computing the mean of a data

sample. If X = {x1, x2, . . . , xN} with mean x and if a new element xN+1 is added to

form a new set X ′ = X ∪ {xN+1} then the mean of X ′ is

x′ =
Nx + xN+1

N + 1
. (2.6)

Similarly, a rather tedious but straight forward calculation shows that if

SN =
N∑

i=1

(xi − x)2 then SN+1 = SN +
N

N + 1
(xN+1 − x)2. (2.7)

Thus it is possible to compute a new value of SN when an element is added to X

without computing a new mean. Equations (2.6) and (2.7) can both be rearranged

to compute the result when an element of X is removed. It is the combination of

adding and removing an element that Song and Chan exploit.
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Replace the integrals in equation (2.3) on page 17 with summations on an integer

lattice and write, using observation 1,

E(c1, c2, C) =
∑

φ(i,j)=1

(u0(i, j)− c1)
2

+
∑

φ(i,j)=−1

(u0(i, j)− c2)
2

+ λ · Length(C).

(2.8)

The two summations in (2.8) are in precisely the form of (2.7) because, as shown in

equation (2.5) on page 20, once C is fixed they are minimized by the mean pixel value

in the partition. Because, as will be shown in section 3.2, the length is also a local

property a simple calculation using equation (2.7) makes it possible to determine how

the energy will change if a pixel is moved from one partition to the other. With this

background the description of the algorithm is as follows:

1. Pick an initial partition of the image, φ0, and compute the corresponding c1

and c2.

2. Examine each pixel of the image and determine how the energy will change if

the pixel is moved to the other partition.

3. If the energy will decrease then move the pixel and recompute c1 and c2 using

equation (2.6).

4. Repeat until an entire pass through the image moves no pixels from one partition

to the other.
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A complete listing of MATLAB code for this is presented in appendix A.

It is the nature of greedy algorithms that there is no guarantee that they will find

a global optimum. The result here is that the segmentation found will not necessarily

be the best possible. It is the price paid for the large increase in speed.1 On the

one hand this may appear to be a serious flaw. However, as Chan and Vese note,

the same thing is possible with their algorithm. They use a special regularization of

the Heaviside function that seems to avoid finding local instead of global minima. It

would seem evident that a regularization with compact support would more closely

represent equation (2.4). Chan and Vese note that this does not seem to be the case.

Instead they report that the following regularization is more likely to avoid local

minima

Hε(z) =
1

2

(
1 +

2

π
arctan

(z

ε

))
. (2.9)

They hypothesize that, because the support is not compact, it can more reliably act

on all the level curves of φ. Nevertheless, there is no theory available that guarantees

a global optimization even with the use of equation (2.9). Other methods have been

proposed to deal with the problem of finding local minima. For example, in [59] the

authors artificially set the length to a large negative number when it is zero. The

hope is that the policy will help a solution to escape from a local minimum. They

claim some empirical success, but still no theory is available to avoid the situation. It

will be shown in chapter 4 that is possible, with a sound theoretical basis, to predict a

priori that there is the potential of a local minimum interfering with a global solution.

1Song and Chan claim that a factor of ten increase in speed is possible.
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2.4 Image restoration and the L1 norm

Thus far, all the models have involved a fidelity term of the form

F2(u) =

∫∫
Ω

(u− u0)
2 dxdy = ‖u− u0‖2

2.

It is the purpose of this thesis to explore how this can be replaced with the fidelity

term

F1(u) =

∫∫
Ω

|u− u0| dxdy = ‖u− u0‖1.

The notion comes from recent research in the closely related problem of image restora-

tion. The goal of image restoration is to remove the artifacts of noise or possible

damage to the original image. The first is commonly called image denoising while the

second is known as image inpainting.

Many methods have been proposed for image denoising. The simplest is a low

pass filter. This technique convolves the original image with a smoothing kernel to

create a new image with a reduced noise level. That is,

u∗(x, y) = g(x, y) ∗ u0(x, y)

=

∫∫
Ω

u(s, t)g(x− s, y − t) dsdt
(2.10)

The convolution kernel g is typically a smooth bump shaped function such as a
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Figure 2.4: Left: A noisy image. Right: Filtered with a Gaussian kernel

Gaussian normalized to have unit volume,

g(s, t) =
1

2π σ2
exp

(
s2 + t2

2σ2

)
.

While this is often useful in conjunction with other methods it has the undesired

effect of blurring the edges and other sharp features in an image. This can be seen in

figure 2.4. The noise is reduced, but the edges are blurred as well. This shortcoming

leads to the study of non-linear methods of image denoising.

A recent example is proposed by Garnett and others in [27]. They introduce

the Rank-Ordered Absolute Differences statistic which is a measure of how close the

intensity of a pixel is to its most similar neighbors. Their method successfully removes

both Gaussian and impulse noise.

Another method is described in detail in [2] and also in chapter 2 of [40]. These are

called anisotropic diffusion methods and are variations of the idea, originally proposed

by Perona and Malik in [47], to replace the heat equation with a nonlinear diffusion
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equation

∂u

∂t
= div (f (|∇u|)∇u)

u(0) = u0.

(2.11)

The function f in equation (2.11) is smooth, non-increasing, defined on R+, and has

the following additional properties:

f(0) = 1; f(s) ≥ 0; lim
s→∞

f(s) = 0.

It replaces the usual constant in the isotropic heat equation. Where u is smooth it

permits diffusion but limits it when the gradient of u is large near an edge. Thus, it

permits noise to be smoothed without disturbing the edges and avoids the blurring

caused by equation (2.10). This formulation is an improvement, but there is a subtle

difficulty with equation (2.11). It lacks a fidelity term. That means there is nothing

to force the solution to remain close to u0. Instead, a stopping time for the evolution

is used that is based on the variance of the noise. An improvement to this method

is the total variation method of Rudin, Osher, and Fatimi [48] commonly called the

ROF model.
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The original formulation of the ROF model is also a minimization problem.

Minimize

∫∫
Ω

√
u2

x + u2
y dxdy

Subject to the constraints

∫∫
Ω

u dxdy =

∫∫
Ω

u0 dxdy

and

∫∫
Ω

1

2
(u− u0)

2 dxdy = σ2

which can be written in an unconstrained form as,2

Minimize

∫∫
Ω

(u− u0)
2 dxdy + λ

∫∫
Ω

√
u2

x + u2
y dxdy (2.12)

This is a satisfying formulation of the noise elimination problem. By way of the con-

straints it includes a reference to the original image thereby eliminating the objections

of the Perona-Malik theory. The first constraint maintains the average value of the

image. The second asks that denoised image u approximate the original within the

variance, σ2, of the noise. Rudin, Osher, and Fatimi took this as a given, but there

are now methods for estimating the variance (e.g., see [32]) from the observed image,

u0. The term to be minimized in equation (2.12) is called the total variation of u.

Notice that is essentially an L1 norm of derivatives. As stated it requires that u be

differentiable, but a more general definition can be found in [23] that removes this

restriction and is the basis for the space of functions of bounded variation on Ω.

A great deal has been written about the ROF model, see [7] for example which

2All this really means is that the minimization problem is written in a form to use Lagrange
multipliers for the solution.
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is a summary of recent developments in the field. As noted in that paper there is

good reason to consider replacing the fidelity term with the L1 norm. The question

of different norms for the fidelity term is also found in [45] and [20]. Under this

formulation the ROF model can be written in unconstrained form as the following

problem:3

Minimize

∫∫
Ω

|u− u0| dxdy + λ

∫
Ω

|∇u| (2.13)

where the total variation term has been written in the more customary form, see [23].

Regarding the benefits of this change of the fidelity term the authors of [7] write

First and foremost, the scaling between the two terms of (2.13) is different

from the one in the original ROF model (2.12), and leads to contrast

invariance: If u is the solution of (2.13) with u0 as the given image, then

cu is the solution of (2.13) with cu0 as the given image.

In addition to the contrast invariance property, the authors note that this form leaves

a large class of images unmodified. The definitive papers on the idea of using the

L1 norm with the ROF model are [9] and [10]. They list these advantages to using

model (2.13) in place of model (2.12):

1. The regularization imposed on solutions by the L1 model is more

geometric. By “more geometric” we mean that the regularization

process has less dependence on the contrast of image features than

on their shapes. Indeed, as some of our analytical results show, the

3There is a slight difference between the way the ROF model is written here and how it usually
appears in the literature. Here the parameter λ is the coefficient of the total variation term. It is
often shown elsewhere as the coefficient of the fidelity term. Chapter 3 will show that when the
parameter is with the regularization term it more closely resembles a scale.
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L1 model almost decouples the level sets of the given image from

each other and treats them independently of their associated level

(grayscale value).

2. As distinct from the standard model, small features in the image

maintain their contrast even as the fidelity parameter is lowered,

maintaining good contrast until they suddenly disappear.

3. An unexpected consequence of the modification is that it suggests a

data driven scale selection technique: It seems possible to identify

certain critical values of the parameter λ at which features at the

corresponding scale go through a discontinuous change.

The first observation above is of particular interest as segmentation is more of a

geometric problem than it is a noise removal problem. Therefore, it is natural to ask,

having studied both the Mumford-Shah model for segmentation and the modified

ROF model of equation (2.13) how the same idea might apply.

The goal then, is to minimize

E
(1)
0 (u, K) =

∫∫
Ω

|u− u0| dxdy + λ · Length(K), (2.14)

again with u restricted to piece-wise constant functions. Notice the use of the symbol

E
(1)
0 (u, K) to distinguish this energy from (2.1). An immediate consequence of this

new model is that the claim that for fixed K the value of u in each region is the mean

is no longer true. In fact, the differentiation that leads to equation (2.5) is not even

possible. The existence of solutions to the problem of non-smooth fidelity terms was
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studied extensively by Nikolova in [42]. The theory developed there applies to the

ROF model where the regularization term is directly a function of the approximating

image u. In the case of the Mumford-Shah model regularization comes from the

length of the set K which is an independent variable. The subject of using absolute

deviations in place of least squares method is described in great detail in [4]. The

question of the L1 norm is also addressed in [35] and [36]. However, if the domain is

assumed to be an integer lattice as in equation (1.2) on page 3 the results of chapter

3 show how the minimum can be obtained. Moreover, it will be possible to solve

the problem with no regularization of the L1 norm. All the methods typically in use

approximate the L1 norm with

‖u‖1 =

∫∫
Ω

√
u2 + ε dxdy

where ε is some small constant. That makes it possible to write an Euler-Lagrange

equation. Thus any algorithm will be similar in many respects to the Chan-Vese

method described above. Another possibility would be to follow a strategy similar to

that of Song and Chan and develop a greedy algorithm for the solution of (2.14). It

is this algorithm that will be developed in detail in the following chapters.

2.5 Other segmentation methods

Before proceeding to further theoretical development a description of some other

methods of image segmentation is appropriate. The most basic methods are those



Mason, Eric, 2006, UMSL, p. 32

that seek to isolate the significant edges in an image. They are based on the notion

that an edge is defined by rapidly changes in the intensity level. They have the

advantage that they are simple to implement and require little processing time. These

generally fall into three categories.

The first type is based on the magnitude of the gradient of the image. Methods of

this type approximate the first partials in both the horizontal and vertical directions

with a first difference equation. Various methods are in use. The most basic is, using

an integer lattice for the image domain,

ux =
∂u

∂x
(i, j) ≈ u(i + 1, j)− u(i, j)

uy =
∂u

∂y
(i, j) ≈ u(i, j + 1)− u(i, j).

The magnitude of the gradient at the point (i, j) is then

|∇u(i, j)| =

√(
∂u

∂x
(i, j)

)2

+

(
∂u

∂y
(i, j)

)2

.

This quantity is then compared with some predefined threshold to determine if a

particular point does or does not belong to an edge. The second type is similar,

but instead of computing the gradient magnitude at each point they look for zero

crossings of the Laplacian,∇2u = uxx+uyy. These methods require a second difference

equation. Because of their dependence on first and second differences both gradient

magnitude and Laplacian based methods are sensitive to noise in the image in that

they frequently identify pixels corrupted by noise as an edge.
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To address this problem Canny [6] proposed an approach that reduces the sensi-

tivity to noise. He does a thorough analysis of the problem. His method is based on

two criteria. In the introduction to [6] Canny writes:

. . . there are common criteria relevant to edge detector performance. The

first and most obvious is low error rate. It is important that edges that

occur in the image should not be missed and that there be no spurious

responses. In all the above cases, system performance will be hampered

by edge detector errors. The second criterion is that the edge points be

well localized. That is, the distance between the points marked by the

detector and the “center” of the true edge should be minimized. This is

particularly true of stereo and shape from motion, where small disparities

are measured between left and right image or between images produced

at slightly different times.

Canny’s edge detector is in some sense optimal because it attempts to maximize a

measure of these two criteria. Figure 2.5 shows how each method performs on the

same image.4 It is clear from the results the the concept of just detecting edges is

of limited value in segmentation. Exactly what is called an edge depends strongly

on the method used. Even in an essentially noise free image the results are vastly

different. Also, just detecting edges gives no immediate answer to the question of

where the similar regions lie.

Another common method of segmentation is based on textures. With textures

4All of these edge images were create with version 7 of MATLAB by the edge function using
method ‘Sobel’, ‘log’, and ‘Canny’ with the default thresholds.
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(a) original (b) gradient

(c) Laplacian (d) Canny

Figure 2.5: Edge detector examples
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the pixels from a gray scale image are transformed to a different domain before the

segmentation is begun. This has been studied in [33], [53], [57], and elsewhere. Tex-

tures are regions of the image characterized, not by similar intensity levels, but by

similar correlated spatial variation. Typically the textures are obtained by applying

a Gabor type filter to the image. Such filters are described in [15]. They are a special

class of short time Fourier transforms. In the time domain they take the form

(Gφf)(b, ξ) =

∫ ∞

−∞
f(t)e−jξtφ(t− b) dt

where φ(·) is a Gaussian windowing function. In any region, whose minimal size is

governed by the uncertainty principle, this transform exposes the frequency content of

the signal f(t). The same thing applies to spatial frequency when a two dimensional

image is used with an appropriate window function. The values of the transform then

represent the textures of the image and segmentation methods can be applied to the

transformed image.

Other recent developments include the statistical approaches of [24], [30], [55],

[52]. Also, segmentation of hand written documents by a scale space approach is

studied in [38], and in [16] an edge detection scheme is combined with quadrilateral

approximations to the edges to identify the boundaries. In [29] the authors apply

graph partitioning to segmentation. It is evident that there is an extensive litera-

ture on the subject of segmentation and a variety of methods are available. With

this background the focus now turns to the energy functional (2.14) and methods of

solution.
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Chapter 3

l1 Theory

The rest of this thesis focuses on the following problem: Given an observed image u0

defined in some region Ω find a piecewise constant image u that minimizes

E1(u) =

∫∫
Ω

|u− u0| dxdy + λ · |K(u)| = ‖u− u0‖1 + λ · |K(u)| (3.1)

which is essentially the same problem described in equation (2.14) on page 30. The

image u is restricted to have a finite range set. The quantity |K(u)| represents the

length of the boundary between the regions defined by u. This chapter contains a

section devoted to each of the two terms in (3.1).

3.1 Minimizing the l1 Fidelity Term

As noted in chapter 1 there are advantages to being able to predict the value of the

fidelity term in equation 3.1. This section is a departure from image segmentation to
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prove a general theorem that properly belongs in the field of discrete mathematics. It

can be used to efficiently find the minimum possible value of the fidelity term when

using the l1 norm. Parts of the theorem proved here are new as are the application to

practical uses of a non-smooth norm. It gives a necessary condition that can be used

to find the smallest possible value of the fidelity term once the number of different

phases in the solution is chosen. The essence of the theorem is this: Consider the

quantity

S =
∑
i∈I1

|xi − c1|+
∑
i∈I2

|xi − c2|

where I1 and I2 are a partition of some finite index set I and {xi : i ∈ I} ⊂ R. If the

value of S is to be minimum then c1 and c2 must be medians of Y = {xi : i ∈ I1}

and Z = {xi : i ∈ I2} respectively. Moreover, I1 and I2 may be chosen so that the

largest element of Y does not exceed the smallest element of Z, and it must be that

Y and Z are split by 1
2
(c1 + c2). That is, max(Y ) ≤ 1

2
(c1 + c2) ≤ min(Z).1 This

result provides an initial condition for algorithms that seek to approximate a set of

real numbers by two constants, and suggests a method of dividing a statistical sample

into two closely related groups. A generalization of the theorem addresses the case

where the number of subsets in the partition is arbitrary. The description and proof

of the theorem begins with definitions of important terms.

Definition 2. Let X = {x1, x2, . . . , xN} be a nonempty finite set of real num-

bers. A partition of X is a collection of pairwise disjoint nonempty subsets of X,

X1, X2, . . . , Xn, such that ∪n
j=1Xj = X. If X is ordered so that x1 ≤ x2 ≤ · · · ≤ xN

1To be completely correct this statement requires a more general use of the word median. This
more general definition will follow.
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a partition is called ordered if it is of the form

X1 = {x1, . . . , xs1}

X2 = {x1+s1 , . . . , xs2}

...

Xn = {x1+sn−1 , . . . , xN}.

Call two elements Xi and Xj of an ordered partition adjacent if j = i+1 or i = j +1.

Definition 3. Let X = {x1, x2, . . . , xN}2 be any finite set of real numbers with x1 ≤

x2 ≤ · · · ≤ xN and N = 2m+p where p ∈ {0, 1}. The right median, M+
X , is the value

of xm+1. The left median, M−
X , is the value of xm+p.

When N is odd the left and right median are equal and coincide with the usual

definition of the median. When N is even the mean of the left and right median is

the usual definition of the median. In either case M−
X ≤ M+

X .

Lemma 1. If the set X is as described in definition 3 then the quantity

Dc
X =

N∑
i=1

|xi − c|

is minimized by any c satisfying M−
X ≤ c ≤ M+

X .3

2This definition does not require that the elements be unique. In some settings this kind of object
is known as a bag. There is no need for this here because the unique elements that form the set are
the symbols x1, x2, . . . , and xN .

3Notice that this lemma is a slight generalization of the well known fact from statistics that the
absolute deviation, sometimes called the mean deviation, is minimized when c is the median. For
example, see [60].



Mason, Eric, 2006, UMSL, p. 39

Proof. First observe that it must be that c ≤ xN because if c > xN then

Dc
X =

N∑
i=1

(c− xi) >

N∑
i=1

(xN − xi).

Likewise, if c < x1 then

Dc
X =

N∑
i=1

(xi − c) >

N∑
i=1

(xi − x1).

Therefore it must be that x1 ≤ c ≤ xN , so consider c and c′ with xn ≤ c ≤ c′ < xn+1

and 1 ≤ n ≤ N − 1. In this case

Dc′

X −Dc
X =

n∑
i=1

(c′ − xi) +
N∑

i=n+1

(xi − c′)

−
( n∑

i=1

(c− xi) +
N∑

i=n+1

(xi − c)
)

= n(c′ − c)− (N − n)(c′ − c)

= (2n−N)(c′ − c).

This shows that, because c′ − c ≥ 0, Dc
X is non-increasing when n ≤ m and non-

decreasing otherwise. If N is even Dc
X is is constant whenever xm ≤ c ≤ xm+1 because

2m−N = 0. if N is odd 2m−N < 0 and 2(m + 1)−N > 0 so Dc
X is non-increasing

when n < m + 1 and non-decreasing when n ≥ m + 1. In either case the minimum

occurs between the left and right median as required.

Definition 4. The minimum value of Dc
X given by lemma 1 is called the total devi-

ation of X and is represented by the symbol DX .
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The following lemma collects some basic facts about the total deviation that are

useful as computational tools and to simplify subsequent proofs. The purpose is to

determine the value of the total deviation when arbitrary elements are either added

to or removed from the set X. This lemma can be used to give a recursive definition

of the total deviation. All that is needed is to add an algorithm to compute new

values of the left and right median. Such an algorithm need only adjust the index of

the medians after an item is removed or added to the set X. The operation requires

no computation at all. Only the logical operations are necessary.

Lemma 2. If the set X is as described in definition 3 then,

1. The total deviation may be written as

DX =
N∑

i=m+1+p

xi −
m∑

i=1

xi

2. If a new element, say y, is added to X to form a new set X ′ = X ∪ {y} then

DX′ ≥ DX and

DX′ −DX =



y −M+
X if y ≥ M+

X ;

M−
X − y if y ≤ M−

X ;

0 otherwise.

3. If an element, say xk, is removed from X to form a new set X ′ = X \{xk} then



Mason, Eric, 2006, UMSL, p. 41

DX′ ≤ DX and 4

DX′ −DX =



xk −M+
X if xk ≤ M−

X ;

M−
X − xk if xk ≥ M+

X ;

0 otherwise.

Proof. The sections of the proof follow the statement of the lemma.

1. If N is even then by lemma 1

DX =
N∑

i=1

|xi − c|

for any c satisfying xm = M−
X ≤ c ≤ M+

X = xm+1 , so

DX =
N∑

i=m+1

(xi − c) +
m∑

i=1

(c− xi) =
N∑

i=m+1

xi −
m∑

i=1

xi.

If N is odd c = xm+1, so

DX =
N∑

i=m+1

(xi − xm+1) +
m∑

i=1

(xm+1 − xi) =
N∑

i=m+2

xi −
m∑

i=1

xi.

2. There are six cases to consider. All use part (1) of the lemma.

4Notice the difference between this and the result when an element is added to X. The effect is
the difference from the most distant median rather than from the nearest.
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N odd, y ≤ M−
X :

DX′ =
N∑

i=m+1

xi − (y +
m∑

i=1

xi)

= xm+1 − y +
N∑

i=m+2

xi −
m∑

i=1

xi

= M−
X − y + DX

N odd, y ≥ M+
X :

DX′ = y +
N∑

i=m+2

xi −
m+1∑
i=1

xi

= y − xm+1 +
N∑

i=m+2

xi −
m∑

i=1

xi

= y −M+
X + DX

N odd, M−
X ≤ y ≤ M+

X : Note that y = xm+1 because xm+1 = M−
X ≤ y ≤

M+
X = xm+1.

Therefore, DX′ = xm+1 +
N∑

i=m+2

xi −
m+1∑
i=1

xi =
N∑

i=m+2

xi −
m∑

i=1

xi = DX .
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N even, y ≥ M+
X :

DX′ = y +
N∑

i=m+2

xi −
m∑

i=1

xi

= y − xm+1 +
N∑

i=m+1

xi −
m∑

i=1

xi

= y − xm+1 + DX = y −M+
X + DX

N even, y ≤ M−
X :

DX′ =
N∑

i=m+1

xi − (y +
m−1∑
i=1

xi)

=
N∑

i=m+1

xi − (y − xm +
m∑

i=1

xi)

= M−
X − y + DX

N even, M−
X ≤ y ≤ M+

X : In this case y becomes the median of X ′ so

DX′ =
N∑

i=m+1

xi −
m∑

i=1

xi = DX

3. Again there are 6 cases to consider
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N odd, xk ≤ M−
X :

DX′ =
N∑

i=m+2

xi −
m+1∑
i=1
i6=k

xi

=
N∑

i=m+2

xi − (xm+1 − xk +
m∑

i=1

xi)

= xk − xm+1 + DX = xk −M+
X + DX

N odd, xk ≥ M+
X :

DX′ =
N∑

i=m+1
i6=k

xi −
m∑

i=1

xi

=
N∑

i=m+2

xi + xm+1 − xk −
m∑

i=1

xi

= xm+1 − xk + DX = M−
X − xk + DX

N odd, M−
X ≤ xk ≤ M+

X : (i.e., xk = xm+1)

DX′ =
N∑

i=m+2

xi −
m∑

i=1

xi = DX
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N even, xk ≤ M−
X :

DX′ =
N∑

i=m+2

xi −
m∑

i=1
i6=k

xi

=
N∑

i=m+1

xi − xm+1 − (
m∑

i=1

xi − xk)

= xk − xm+1 + DX = xk −M+
X + DX

Neven, xk ≥ M+
X :

DX′ =
N∑

i=m+1
i6=k

xi −
m−1∑
i=1

xi

=
N∑

i=m+1

xi − xk − (
m∑

i=1

xi − xm)

= xm − xk + DX = M−
X − xk + DX

N even, M−
X ≤ xk ≤ M+

X : There is nothing to prove here because the case

M−
X = xm < xk < xm+1 = M+

X cannot occur.

This completes the proof of lemma 2.

The above proof is tedious, but straight forward. Much of the difficulty in the

proof is the need to deal with the different cases depending on whether N is even

or odd. An important feature of lemma 2 is that it eliminates the need to consider

the parity of N when studying the properties of the total deviation. Lemmas 1 and

2 together demonstrate that the usual choice of the median for the case when N is
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even (i.e., the mean of the left median and right median) is somewhat arbitrary. If

the absolute deviation is used as a measure of the spread of a distribution any convex

combination of xm and xm+1 yields exactly the same absolute deviation. Lemma 2

plays a prominent role in the proof of theorem 3.

Theorem 3. Suppose that the set X described in definition 3 is partitioned into two

subsets Y and Z. Let S = DY +DZ. If S is the minimum value over all such partitions

then Y and Z can be written as Y = {x1, x2, . . . , xs} and Z = {xs+1, xs+2, . . . , xN}

with 1 ≤ s < N and xs ≤ 1
2
(M+

Y + M−
Z ) ≤ xs+1.

5

Proof. Let Z and Y be a partition of X that yield the minimum value of S. Such a

partition exists because X is a finite set. To distinguish between the elements write

Y = {y1, y2, . . . , yr} and Z = {z1, z2, . . . , zs}. It is safe to assume, without loss of

generality, that M−
Y ≤ M−

Z for if M−
Y > M−

Z then it is also true that M−
Z ≤ M−

Y and

the role of Y and Z can be reversed in all that follows.

Now, suppose that z1 ≤ M−
Y , and consider the effect on S if z1 is moved to Y .6

By lemma 2(2) DY will increase7 by M−
Y − z1 and, by lemma 2(3), DZ will decrease

by M+
Z − z1. The net change in S will then be

M−
Y − z1 − (M+

Z − z1) = M−
Y −M+

Z ≤ 0 because M−
Y ≤ M−

Z ≤ M+
Z .

It follows that the smallest element of Z can be moved to Y until M−
Y ≤ z1. In fact,

5The partition need not be unique as simple examples demonstrate.
6The word moved as used here is taken to mean the entire process of removing an element from

one set, adding it to the other, ordering both and adjusting the indexes.
7The words increase and decrease are used in a weak sense. e.g., increase can also mean remains

unchanged.
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this can continue until M+
Y ≤ z1 because, by lemma 2(2), if M−

Y ≤ z1 ≤ M+
Y then if

z1 is moved to Y there will be no change in DY and DZ can only decrease.

Next, suppose that yr ≥ M+
Z . If yr is moved to Z then DZ will increase by yr−M+

Z

while DY will decrease by yr −M−
Y . The net change in S is

yr −M+
Z − (yr −M−

Y ) = M−
Y −M+

Z ≤ 0.

So again it follows that the largest element of Y can be moved to Z until yr ≤ M+
Z

and that, in fact, this can continue until yr ≤ M−
Z . Together, these arguments lead

to the conclusion that Y and Z can be arranged so that M+
Y ≤ z1 and yr ≤ M−

Z and

still maintain the minimum value of S.

Now, if z1 < yr then yr can be moved to Z while z1 is moved to Y because

the medians will be unchanged, but both sets will give up an extreme element (i.e.,

largest or smallest) in exchange for an element closer to the median. This process

can continue until yr ≤ z1 which establishes the first conclusion of the theorem.

To prove that the partition must be split as claimed suppose that yr > 1
2
(M−

Z +

M+
Y ). If yr is moved to Z then DY decreases by yr−M−

Y and DZ increases by M−
Z −yr.

The net change in S is

M−
Z − yr − (yr −M−

Y ) = M−
Z + M−

Y − 2yr

≤ M−
Z + M+

Y − 2yr

= 2(
1

2
(M−

Z + M+
Y )− yr) < 0
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contradicting the assumption that S is the minimum. Similarly, if z1 < 1
2
(M−

Z +M+
Y )

and z1 is moved to Y , DZ will decrease by M+
Z − z1 and DY will increase by z1−M+

Y .

The net change in S is

z1 −M+
Y − (M+

Z − z1) = 2z1 − (M+
Z + M+

Y )

≤ 2z1 − (M−
Z + M+

Y )

= 2(z1 −
1

2
(M−

Z + M+
Y )) < 0

again contradicting the minimum nature of S. Taking these together it follows that

yr ≤ 1
2
(M−

Z + M+
Y ) ≤ z1 which completes the proof.

Theorem 3 shows that, in order to minimize the quantity S, the subsets Y and Z

cannot be arbitrarily intertwined. Only partitions of the form Ys = {x1, x2, . . . , xs},

Zs = {xs+1, xs+2, . . . , xN} are of interest. Any such partition can be identified with

the index s, so define the map

S : {0, 1, 2, . . . , N} → R+ by S(s) = DYs + DZs (3.2)

with the understanding that if s = 0 then Y = ∅, and if s = N then Z = ∅. That

is, s is the number of elements in the set Ys. With this definition it follows that

S(0) = S(N) = DX . Furthermore, for s ∈ {1, 2, . . . , N − 1}

S(s) = DYs + DZs ≤ DX = S(0) = S(N). (3.3)
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That this is the case can be seen by applying lemma 1 and definition 4.

S(s) = DYs + DZs

≤
s∑

i=1

|xi −M+
X |+

N∑
i=s+1

|xi −M+
X | (by lemma 1)

=
N∑

i=1

|xi −M+
X | = S(0) = S(N).

It would be helpful if it were true that S(s) is convex for then the minimum value

would occur for some unique range of the argument s. This would give a stopping

point in an algorithm used to find the minimum value of S(s). However, this is not the

case as the example X = {1, 2, 2, 3}8 demonstrates. The definition of S(s) combined

with lemma 2 does suggest an efficient way of computing all the values of S(s). First

compute the value of S(0). The rest of the values can be computed recursively. The

generalization of Theorem 3 includes partitions with more than two subsets of X.

Theorem 4. Let Pn be the set of all partitions of X of size n, and let P ∗
n ⊂ Pn be the

set of all ordered partitions of X of size n. For p ∈ Pn let Sp = DX1 +DX2 +· · ·+DXn.

1. If Sn = minp∈Pn(Sp) and S∗n = minp∈P ∗
n
(Sp) then S∗n = Sn.

2. If p∗ is an ordered partition satisfying Sp∗ = Sn then for any pair of adjacent

elements of p∗, say Xi and Xi+1,

max(Xi) ≤
1

2
(M+

Xi
+ M−

Xi+1
) ≤ min(Xi+1). (3.4)

8i.e., N = 4 with x1 = 1, x2 = x3 = 2, and x4 = 3 as in definition 3.
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Proof. First note that (2) will follow immediately once (1) is established. For if

p∗ ∈ P ∗ is a partition satisfying Sp∗ = S and Xi, Xi+1 are adjacent elements of p∗

then inequality (3.4) must be satisfied. Otherwise it would contradict theorem 3

applied to the set Xi ∪Xi+1.

It only remains then to prove (1). The method of proof is by induction. The case

n = 2 is established by theorem 3. The induction hypothesis is that for a partition

of size n− 1 an ordered partition can be found that yields Sn−1.
9

Let p be a partition of size n that yields Sn. If necessary, rename the ele-

ments of p in such a way that max(Xn) ≥ max(Xj) for all j < n. Now apply

the induction hypothesis to Y = X1 ∪ X2 ∪ · · · ∪ Xn−1 to find an ordered partition

X∗
1 , X

∗
2 , . . . , X

∗
n−1 of Y . If max(Xn−1) ≤ min(Xn) nothing remains to prove because

then X∗
1 , X

∗
2 , . . . , X

∗
n−1, Xn is an ordered partition of X that yields Sn. Therefore,

suppose that for some X∗
j , min(Xn) < max(X∗

j ). Apply theorem 3 to the set X∗
j ∪Xn

to produce the ordered partition X∗∗
j , X∗

n noting that it remains true, by the argu-

ments in the proof of theorem 3, that max(X∗∗
j ) ≤ min(X∗

j+1). Now apply the same

argument to X∗
j+1, X

∗
j+2 and so on until the elements of the partition are exhausted.

The result is an ordered partition of size n that yields Sn.

This shows that the induction hypothesis implies that (1) holds for partitions of

size n and completes the proof.

Now observe that equation (3.2) can be extended to include partitions of arbitrary

size. The mapping then becomes a function of the n − 1 integers s1, s2, . . . , sn−1

9As used here and elsewhere in the proof the phrase “yields S” when applied to a partition p
means, of course, that Sp = S.
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described in definition 2. While the number of possible arguments of S(s1, s2, . . . sn−1)

could still be a very large number it is extremely small compared to the total number

of partitions of X.

The number of partitions of size n of a set with N elements is the Stirling number

of the second kind, S(n)
N .10 If N = 25 and n = 3 then S(3)

25 = 141,197,991,025.11

Instead of this large number of partitions only the ordered partitions are of interest. A

straight forward calculation shows that there are only 276 such partitions, a reduction

of almost 9 orders of magnitude. This example illustrates the benefits of theorem 4

when it is used for very large sets of data. More generally, if n is fixed and N = n+ j

for j = 0, 1, . . . write,

S(n)
N = S(n)

n+j =
1

n!

n∑
k=0

(−1)n−k

(
n

k

)
kn+j ≤ 1

n!

n∑
k=0

(
n

k

)
kn+j

≤ 1

n!

n∑
k=0

(
n

k

)
nn+j =

nn+j

n!
2n =

2n

n!
nN ,

which shows that S(n)
N is O(nN) because the coefficient of nN in the last expression

is constant for fixed n. On the other hand, the number of possible arguments in

S(s1, s2, . . . sn−1) is no more than N(N−1) . . . (N−n+2). This expression is O(Nn−1).

Using |P | and |P ∗| to denote the cardinality of the sets P and P ∗ described in theorem

4 this analysis can be summarized by writing

|P | = O(nN) and |P ∗| = O(Nn−1). (3.5)

10There seems to be no standard notation for Stirling numbers of the second kind. This is the
symbol introduced in [1] page 822.

11Ibid, page 835.



Mason, Eric, 2006, UMSL, p. 52

Therefore, once n is fixed the value of Sn and a partition yielding that value can be

found in polynomial time instead of exponential time.

Theorem 4 leads to a form of non-hierarchical clustering. There is a vast literature

on this subject. See, for example, [34], [39], [58], and [21]. The goal of clustering is to

discover which subsets of a data sample are closely related. Clearly this theorem aids

in that process if one uses DX as the measure of closeness. The most common method

employed is Minimum Sum of Squares Clustering (MSSC) which uses a Euclidian

measure instead of the absolute value. In the clustering literature the l1 norm is

referred to as the taxicab or Manhattan metric. The name comes from the analogy

of distance along streets in a city laid out in a grid. Theorem 4 may seem to be

at odds with the results noted in [3] and proved in [28] and [37] that clustering is

NP-complete. However, those papers address the more general problem of clustering

that uses multi-dimensional values of the data set. The result proved here speaks

only to data sets with a single real dimension.

In [37] Krivanek actually proves a theorem in hierarchical clustering, but cites

Gonzalez [28] as having proved a similar result for non-hierarchical clustering which

is more closely related to theorem 4. Gonzalez proves that, in the case where the

objects in the set have two or more dimensions, the problem of finding a minimal

partition is NP-complete. In that paper Gonzalez states that Fisher showed in [25]

that, in one dimension, the problem can be solved in polynomial time. Fisher’s result

is similar to theorem 4.

Fisher really says nothing about polynomial time. The concept of NP-complete

and polynomial time did not appear until 1971 in Cook’s famous paper [18]. Fisher’s
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paper is from 1958. Fisher proves that part 1 of theorem 4 holds if one uses the squared

distance as a measure of closeness. Instead of the total deviation of definition 4 he

uses,

D =
N∑

i=1

(xi − x)2, where x is the mean.

He uses a combinatorial argument similar to 3.5 to show that the number of partitions

that must be searched for a minimum is substantially reduced. Fisher uses the word

contiguous instead of ordered to describe partitions that do not overlap, and he speaks

of transferring elements instead of moving them. Other than these differences in

terminology his argument is very much like the proof of theorem 3. Of course, his

calculation of the change in D when an element is transferred is not the same because

the measures of closeness differ. There is no result in Fisher’s paper that is analogous

to part 2 of theorem 4.

In [31] Hwang proves the following even more general result:

Theorem 5. If a distance function is used to measure closeness in each partition

then an optimal partition is an ordered partition. In the terminology of theorem 4, if

Sp = DX1 +DX2 + · · ·+DXn where DXi
=

∑
xj∈Xi

d(xj, ci) and ci is the centroid with

respect to the distance function d then Sn = S∗n.
12

Part 1 of theorem 3 is a clearly a special case of theorem 5. Thus the problem of

minimizing the fidelity term for any norm one chooses can be reduced to a search of

just the ordered partitions.

This section concludes with one final observation. Theorem 4 shows how to find
12The centroid is defined to be any ci that minimizes

∑
xj∈Xi

d(xj , ci). As lemma 1 shows the
centroid need not be unique.
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the partitions with the minimum value of Sp. It is natural to ask what can be said

about partitions with the maximum value. The following lemma gives a partial answer

to the question.

Lemma 3. The set of all values of Sp is bounded by the total deviation of X. That

is,

For each p ∈ Pn, Sp ≤ DX . (3.6)

Proof. The proof is similar to the derivation of equation 3.3. If p is any partition of

X in Pn then

Sp = DX1 + DX2 + · · ·+ DXn

=
∑

xi∈X1

|xi −M+
X1
|+

∑
xi∈X2

|xi −M+
X2
|

+ · · ·+
∑

xi∈Xn

|xi −M+
Xn
| , by definition,

≤
∑

xi∈X1

|xi −M+
X |+

∑
xi∈X2

|xi −M+
X |

+ · · ·+
∑

xi∈Xn

|xi −M+
X | , by lemma 1,

= DX , by definition.

This means that the range of the map defined in 3.2 and its natural extension to

partitions of arbitrary size includes both the minimum value of Sp and the maximum.

With these results complete it is now possible to see how to apply them to image
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segmentation. Lemma 1 is analogous to equation (2.5) on page 20. It says that once

an edge set K is known the fidelity term is minimized, not by the mean in each region,

but by the median. Lemma 2 is analogous to Song and Chan’s observation 2 on page

22. A very simple calculation can predict the change in the fidelity if a pixel is moved.

There is even more available now. Recall that the first step in both algorithms

described in chapter 2 was to pick an initial condition. Theorem 4 provides a way

to pick an initial condition that will minimize the l1 fidelity term. The function

S of equation (3.2) will prove useful, along with lemma 3, in predicting where the

local minima are and how to avoid picking an initial condition that finds just a poor

optimization. These observations all apply not just to the two phase models, but to

any number of phases. To complete the development all that remains is a definition

of the length term in equation (2.14) on page 30. That is the subject of the next

section.

3.2 Discretizing the length

In chaper 2 the length term of equation 1.4 on page 4 was discussed in some detail

with no method given of how it is to be calculated. Of course, one could just observe

that the C1 arcs of theorem 1 are rectifiable and the length of K is just the sum of

all the finite number of arcs making up the boundary. This statement answers the

mathematical question, but it does little to advance the development of a practical

algorithm. This section describes a discretization of the length term which is only

moderately difficult to implement and very easy to understand. The method is similar
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to the edge sets described in [11]. That method associates an edge element or “edgel”

with each adjacent pixel pair. This discretization, on the other hand, associates

with each rectangle bounded by four pixels its contribution to the length of the

segmentation boundary K. Thus, if the image is defined on an integer lattice of the

(x, y) plane given by x ∈ {1, 2, . . . ,W} and y ∈ {1, 2, . . . , L} there are (W −1)(L−1)

rectangles. Each of these contributes to the length of K in a way that is dependent

only on the segmentation componentss in which the corner pixels lie. This makes it

just a local property which can be computed quickly. Also, dealing with the rectangles

instead of the pixels simplifies dealing with the image boundary because even along

the edges of the image the rectangles are well defined.

Figure 3.1 helps to define how the length term is computed. The point C is the

center of a typical region. The four points labeled pi,j, pi+1,j, pi,j+1, and pi+1,j+1 are

the four pixels at the corners of the rectangle. Each rectangle contains four possible

length segments. Let R(pi,j) be the segmentation component to which pixel pi,j is

assigned. A length segment is present if two adjacent pixels are in different regions.

The segment is assumed to be perpendicular to the line containing the two pixels and

to connect that line to the center of the rectangle, C. The length of the each segment

is defined to be 1
2

the spatial spacing of the pixels. Assuming the spatial distance

between the pixels is 1, each segment is assigned a length of 1
2
. If, for example,

R(pi,j) 6= R(pi+1,j), segment CD is assigned the value of 1
2
. In all that follows it is

assumed that the spatial distance between the pixels is 1 and is the same in both

x and y. This need not be the case. An example is an aerial photograph taken at

an oblique angle where the ground separation distance of the pixels depends on the
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Figure 3.1: Typical rectangle used to calculate the length
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Figure 3.2: An example of a turn

geometry when the image was captured. The definition given in this section applies

equally well to that case. Care must be taken to give proper attention to the meaning

of the length segments.

Figure 3.2 shows the case where pi,j is in a different segmentation component

than the other three corner pixels of the rectangle. That is, R(pi,j) 6= R(pi+1,j) and

R(pi,j) 6= R(pi,j+1) but R(pi+1,j) = R(pi+1,j+1) = R(pi,j+1). This region contributes 1

to the total length of K.

Figure 3.3 shows an example of small image 8 pixels in height and 8 pixels in

width. The labels on the pixels are either a, b, c, or d and indicate the segmentation
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d d d d a a a a

d d d d a a ab

d d d a ab ba

d d a a ab b a

c c a a ab b c

c a d b a b d c

a a d d dd c b

a b b c c d d d

Figure 3.3: A small image with the entire length term shown

component to which each pixel has been assigned. As in figures 3.1 and 3.2 the small

square in the center of each rectangle is the point at which each segment is joined.

To reduce clutter in the diagram, if a rectangle contains no length segments the small

square in the center is omitted. The heavy lines in the interior regions all count as

one unit of the length of the border. Each of these terminates on both ends in the

center point of a rectangle. The heavy segments around the boundary of the entire

image each count as 1
2

units. The thin lines forming the boundary are not counted in

the length. Thus in the example of figure 3.3 there are 45 segments with length 1 in

the interior and 8 segments with length 1
2

along the image boundary for a total of 49

units of length. The example contains instances of all the possible configurations of

the length segments in a rectangle.



Mason, Eric, 2006, UMSL, p. 59

e e

ee

C

D

E

F

G

pi,j+1 pi+1,j+1

pi,j pi+1,j

Figure 3.4: An example of a continuation
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Figure 3.5: An example of a T-junction

There are five possible configurations of the boundary inside a given region. One

of these is shown in figure 3.2 and is called a turn. If all four pixels at the corners of a

region are in the same segmentation region there is no contribution to the boundary.

The other three possibilities are shown in figures 3.4, 3.5, 3.6, and 3.7. In [11] these

are called a continuation, a T-junction, a mosaic, and a termination, respectively.

The configuration shown in figure 3.5 can be realized when, using the notation of

figure 3.3, R(pi,j) = a, R(pi+1,j) = b, and R(pi,j+1) = R(pi+1,j+1) = c.

The configuration shown in figure 3.6 can be realized by grouping each pair di-

agonal pixels in some component and grouping the other diagonal pair in a different
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Figure 3.6: An example of a mosaic
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Figure 3.7: An example of a termination

component. The same result is obtained if all four pixels are in different components.

The configuration show in figure 3.7, a termination, is not possible with this

definition. That this is so can be seen by observing that if, as in figure 3.7, R(pi,j) 6=

R(pi+1,j) and also R(pi+1,j) = R(pi+1,j+1) = R(pi,j+1) = R(pi,j) then surely R(pi,j) =

R(pi+1,j) which is a contradiction. The exclusion of this kind of region is consistent

with the comments following theorem 1 on page 12. Recall that if an arc is surrounded

by a single region it can be removed and decrease the total energy of the segmentation.

The same comment applies to this definition of the length.

The following definitions, motivated by the preceding discussion, give a formal
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meaning to the length associated with a given segmentation.

Definition 5. Let u0 be an image defined on an integer lattice in R× R

u0 : {1, 2, . . . ,W} × {1, 2, . . . , L} → R,

and let A = {r1, r2, . . . , rn} be a finite set. Call the elements of A component identi-

fiers.13 A segmentation of u0 is a map, R, on the same integer lattice that associates

each pixel with a component identifier, i.e.,

R : {1, 2, . . . ,W} × {1, 2, . . . , L} → A,

along with a real valued approximating function u defined on the same integer lattice.

Definition 6. Let R be a segmentation of an image u. The length of the edge set of

R is defined as

len(R) =
1

2

W−1∑
i=1

L−1∑
j=1

`i,j where,

mapping the the result of a logical expression from “true” or “false” to 0 or 1,14

`i,j = [R(i, j) = R(i + 1, j)] + [R(i + 1, j) = R(i + 1, j + 1)]

+ [R(i + 1, j + 1) = R(i, j + 1)] + [R(i, j + 1) = R(i, j)].

13Nothing is implied about the nature of the component identifiers. They could be real numbers,
integers, or, as in figure 3.3, the symbols a, b, c, and d. The elements of A should be viewed as pure
symbols.

14This is the opposite of the values typically assigned to logical expressions by programming
languages. Using this mapping here avoids negative logical expressions
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Some remarks about definitions 5 and 6 are in order.

1. The possible values of `i,j depends on the cardinality of the set A, denoted

by |A|. There must be at least 3 elements for all values to be possible. If

|A| = 2 the T-junction of figure 3.5 cannot be realized. Also, as shown above,

the termination is never possible. Therefore, with a two phase segmentation

the possible values are 2 for a continuation and 4 for a mosaic.

2. If |A| = 4 all values of `i,j are possible except for 1 because that would be a

termination. In fact, if |A| = 3 all values are possible, but the mosaic borders

two like components that meet at a single corner. An example of that can be

seen in figure 3.3. The observation that only 4 components are needed to obtain

each possible length is an intuitive explanation of the claim made in [13] and

again in [12] that the four color map theorem implies that |A| = 4 suffices for

piece-wise constant segmentation.

3. Once the mapping R which defines the segmentation is known the length follows.

That means that the energy functional E0 is a function of R alone because the

fidelity term can be minimized separately. Moreover, a segmentation can be

viewed as a partition of the image. This observation hints at the utility of

the results in section 3.1 when they are applied to segmentation. It is also

essentially the same as using a level set function to define the boundaries of the

segmentation components.

4. The edge set defined in [11] adds a bit more to the definition. There the ori-

entation of the edges is a random variable. In this definition all the edges are
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assumed to be oriented in either the horizontal or vertical direction.

5. This definition is a special case of the C1 arcs described in theorem 1 on page 12.

Each of the edge segments, see for example figure 3.3, are C1 arcs and the image

can easily be extended to a continuous function by bilinear interpolation.

This section has described the length term as it is used in the subsequent seg-

mentation algorithms. The definition is general enough to apply to any segmentation

that identifies regions and partitions the image into disjoint sets. The next chap-

ter describes how the fidelity term is included to complete the discretization of the

functional defined by (3.1).

Before proceeding there is an interesting observation that can be made about

the length and fidelity terms. The primary difference between (3.1) and the original

Mumford-Shah model is the choice of the norm used in the fidelity term. The length

term as defined here is also an l1 norm in the following sense. If x = (x1, x2) and

y = (y1, y2) are points in the image domain Ω that lie on a boundary between two

regions then as defined here the length of the portion of the boundary between them

is ‖x− y‖1. It is the distance according to the taxi-cab metric instead of a Euclidean

distance. Thus both the fidelity term and the length term make use of the l1 norm

as an essential part of the definition.
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Chapter 4

Application

This chapter formalizes the statement of the segmentation problem introduced in

chapter 3. The first section describes how the length and the fidelity terms are

combined into a discrete version of the model. The second section is the description

of the algorithm used to obtain a solution.

4.1 Formalization of the problem

Only two steps remain to arrive at a complete discretization of the minimization

problem (2.14) on page 30. The first is to settle on a model of the image domain

and range. For that the most practical choice is the rectangular integer lattice with

an integer range as defined in equation (1.3) on page 3. It is exactly the right model

to use for all the images considered in this thesis. The second step is to define the

l1 fidelity term. Having settled on an integer range for the image model there is a

natural way to proceed. As noted in chapter 1 the range of the image function is a
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small finite set of integers, typically 0 to 255. The domain, on the other hand, can

literally have millions of elements. Digital cameras are widely available today with

several million pixels. Therefore, many elements in the domain will likely map to

the same element in the range. Recall from footnote 2 on page 38 that the results

of chapter 3 do not require that the elements of the sets in question be unique. A

simple way to deal with this is with a histogram.

Histograms play a prominent role in image analysis. They can be used to enhance

the contrast of an image and to give a general characteristic of the range set. Using

the notation of chapter 1, if u(i, j) ∈ I then the histogram, h, of u is

h : I → Z+ with h(k) = |{(i, j) : u(i, j) = k}| . (4.1)

That is, h(k) counts the number of points in the image domain that are mapped to

the value k. There is a natural mapping from the histogram of the image to its total

deviation. Let the set X of definition 2 on page 37 contain h(k) copies of the element

k of I. The total deviation of that set will be represented by the symbol Dh. The

median of that set will be represented by the symbol Mh. To make the median well

defined a single value must be chosen. The traditional definition will suffice so, using

the notation of chapter 3, let Mh = 1
2
(M+

X + M−
X ).

All the notation needed is now in place and can be summarized in the following

definition of the fidelity term:

Definition 7. Let R be a segmentation of an image u0 as defined in definition 5 on

page 61. For each element, rl, of the set of component identifiers, A, let hl be the
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histogram of that segmentation component. That is, if Rl = {(i, j) : R(i, j) = rl} then

hl(k) = |{(i, j) ∈ Rl : u0(i, j) = k}|. The l1 fidelity of R is defined to be,

fid(R) =
n∑

l=1

Dhl

Now the optimal segmentation problem can be stated as follows:

Given u0 minimize E(R) = fid(R) + λ · len(R) over all segmentations of u0. (4.2)

Thus, the quantity E(R) is a function that associates with each segmentation (or,

equivalently, with each partition of the image domain of size n) an energy (or cost)

that is to be minimized. The fact that the energy is a function of the segmenta-

tion alone is analogous to the level set formulation of the Euler-Lagrange equation,

equation (2.4) on page 19, of the two phase Chan-Vese algorithm. Recall that in that

formulation the two constants c1 and c2 can be computed for a given level set function

φ. The same is true with this formulation except that the constants are the medians

instead of the means.

Suppose that R∗ is an optimal segmentation, that is E(R∗) minimizes (4.2). Then

the corresponding piece-wise constant image u∗ that solves the original optimization

problem of (2.14) on page 30 is given by

u∗(i, j) = Mhl
where R∗(i, j) = rl. (4.3)

In words this says that once an optimal segmentation is known the approximating
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piece-wise constant image u is defined by the median of each segmentation component.

The edge set K is, of course, defined by the segmentation R∗. The problem has thus

been reduced to finding the optimal R∗. To clarify the significance of this formulation

some observations are in order.

1. All the sets involved are finite. Therefore, the existence of at least one R∗ is

assured. There is no reason to believe there is a unique solution.

2. There are a large number of possible segmentations with n components. As

stated in chapter 3 there are S(n)
N where N = W × L and S(n)

N is a Stirling

number of the second kind. This grows exponentially with N .

3. Even if the problem could be reduced to a search of just the ordered partitions,

which seems unlikely, the processing involved with computing E(R) for each is

prohibitive.

4. This formulation is valid for any number of phases which is defined by the

number of segmentation component identifiers in the set A.

5. While this focuses on the l1 fidelity of definition 7 it is easily modified for any

norm.

6. For a given hl the corresponding set X could be very large and to compute the

medians and total deviations directly requires that X be sorted. This would

be impractical. On the other hand the cardinality of the co-domain I of the

observed image u0 is very small. This means that the domain of hl is very small,

so any practical algorithm should work directly with the histograms.
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There is now available some information to assist with the issue of global minima.

It is the function S of equation (3.2) on page 48. Lacking a more descriptive name

the graph of S will henceforth be called the S curve of the image. Figure 4.1 is the

S curve of a simple photograph. The abscissa of the graph is the index defining the

point where two partitions are split. That is, it is the parameter s in equation (3.2).

The shape of the curve turns out to be very useful. Notice that in this example

there is a clear global minimum and no hint of local minima. Compare that with

the similar graph of figure 4.2. In the second curve there is a global minimum, but

there is also a clear local minimum. An example in chapter 5 will show that this

image is an instance of how local versus global minima affect segmentation results.

This is an important point. The S curve provides at least two pieces of information

that have not been available before. First, if the curve has a single minimum and is

convex as in figure 4.1 the minimum is the best choice for an initial condition. All

that will remain is to move spurious pixels between segmentation components until

(4.2) is sufficiently small. If on the other hand the image has local minima as in figure

4.2 the initial condition should be chosen from the among them as the one with the

smallest total energy. This makes it possible to choose a priori an initial condition

which will converge to a global minimum instead of a local minimum.

The parameter λ in (4.2) is called the scale parameter. A complete description of

the concept is given in [40]. The general idea is that as λ increases the approximating

image approaches a constant while the length approaches zero. In the continuous

model of equation (3.1) on page 36 this is clear. However, any discrete formulation

introduces limitations. In this case, one of the limitations has to do with the len(R)
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Figure 4.1: S curve of the ‘jammies’ image
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Figure 4.2: S curve of the ‘airplane’ image
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Figure 4.3: The local effect of a change in length

term of the discrete form (4.2). As noted previously the length term is a form of

the Manhattan metric. One of the consequences of this is that the shortest path

between two points in not unique. This can be seen by any simple example. Figure

4.3 shows the effect of a change in the length when the segmentation of a given pixel is

changed. Notice that the length of the boundary between segmentation components

‘a’ and ‘b’ is the same in both cases. Thus if the value of λ is so large that changes in

fidelity have a negligible affect on the total energy changes in length are not always

observable. On the other hand, if the value of λ is too small the fid(R) term in (4.2)

will dominate and the segmentation will just be the initial condition. These two facts

imply that there is a range of values λmin ≤ λ ≤ λmax that are a reasonable choice

for the scale parameter. Before showing how those can be computed a description

of the algorithm is needed. That is the subject of the next section. Some detailed

knowledge of the steps involved can be used to select a range of values.
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4.2 The associated algorithm and data structures

The basic steps of the algorithm are as follows:

1. Construct the histogram of the entire image and use it to determine the best

initial condition for the fidelity term.

2. Use the results obtained in step 1 to define an initial segmentation R and

compute an initial value of E(R) as defined in (4.2).

3. Visit each pixel of the image and compute the change in E(R) if the pixel were

to be moved to each of the other segmentation components. If it is possible to

decrease the energy move the pixel to the component yielding the most benefit.

4. Repeat step 3 until E(R) is unchanged.

Notice the similarity between this algorithm and the algorithm of Song and Chan

described in section 2.3. Neither would be practical were it not for the simplicity of

the computation in step 3 above and in step 3 on page 23 of Song and Chan’s method.

It is clear that the histograms of each segmentation component play a pivotal

role. Since the key statistic involved is the median one would be tempted to use

some of the data structures designed for use with searching. Such methods have long

been available. See for example [49] and [17] in which the concept of a median split

tree is studied. These are search trees designed to be balanced to minimize search

time. Insertion times, on the other hand can be large. The requirements for the data

structures needed with this algorithm are best derived by considering the operations

that will be required. Assume that a data structure called ‘hist’ has been defined
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and it will be used to hold the histogram of a segmentation component as describe

in definition 7. Here is a list of the operations needed:

1. hist = InitH(X); which initializes the data structure based on the input data

set ‘X.’ The data set is the pixel values of a segmentation component.

2. x = AdeltaS(hist,v); which returns the change in the total deviation of the

histogram if the value ‘v’ were added. This is an application of Lemma 2 on

page 40, so the value will always be positive.

3. x = RdeltaS(hist,v); which returns the change in the total deviation of the

histogram if the value ‘v’ were removed. This is another application of lemma

2, but in this case the result will always be negative.

4. hist1=AddV(hist,v); which adds to value ‘v’ to the histogram and creates the

new histogram ‘hist1.’

5. hist1=RemoveV(hist,v); which removes value ‘v’ to the histogram and creates

the new histogram ‘hist1.’

These operations lead to the following data structure for a histogram H:

H.hist - the histogram of the values in X

H.chist - the cumulative values of H.hist

H.m - the floor of N/2

H.p - is either 0 or 1 so that N=2*H.m + H.p

H.MXM = X(m+p) when X is sorted in ascending order

H.MXP = X(m+1) with 1 as the first index

H.TD = the total deviation from the median of X



Mason, Eric, 2006, UMSL, p. 73

The elements H.MXM and H.MXP correspond to the left and right medians defined

in definition 3 on page 38. Because the image model assumes a range of 0–255 for

the pixel values the indexes for the elements H.hist and H.chist are likewise 0–255.

The element H.TD is the total deviation as defined in definition 4 on page 39. The

elements H.m and H.p define the number of pixels N in the histogram by N = 2m+p

also as in definition 3. All the operations defined above are based on lemma 2 on 40.

The values of the elements are only changed by the operations AddV and RemoveV.

This fairly complex data structure is only required for the fidelity term. There is no

analogy for the length term because it is, by definition 6 on page 61, strictly a local

property. The potential change can be computed by examining the adjacent pixels

only. A formal statement of the algorithm using the notation of this chapter can now

be given.

n = the desired number of segmentation components.
[r1, r2, . . . , rn] = the set of component identifiers.
u0 = the observed image.
H0 = InitH(u0).
[c1, c2, . . . , cn−1] = split points for best fidelity.
R = the segmentation defined by [c1, c2, . . . , cn−1].
[H1, H2, . . . , Hn] = histograms of initial segmentation components.
repeat

for each pixel p
rp = R(p)
for each rl ∈ A \ {rp}

R′ = R with R(p) changed to rl

Dl = E(R′)− E(R)
Dmin = min(Dl) taken from those just computed.
lmin = index l corresponding to minimum Dl.
if Dmin < 0 set R(p) = rlmin

until no pixels are moved.

A complete listing of MATLAB code for this is presented in appendix B. The line

above where the change in energy is computed uses the AdeltaS and RdeltaS. The
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line where the segmentation is actually changed uses the operations RemoveV and

AddV. The change in length only involves the nearest neighbors to the pixel p. That

is, the pixels directly above, below, right, and left of p. The diagonal pixels do not

play a role because of the way the len(R) term is defined. The boundary rows and

columns can be managed by reflection or by dealing with them explicitly.

Now consider the choice of the parameter λ. It should at least be large enough

so the smallest change in length will dominate a noisy pixel. That is, a pixel that

differs significantly in value from its neighbors. Suppose then, that moving such a

pixel causes a change of 128 in fidelity. This would be the case if a pixel of 255 were

moved from the component with the predominantly bright areas to the component

with the darker areas. The most the length can change is 4, so to make the fid(R)

and len(R) terms carry the same weight a value of λ ∼ 32 is the correct order of

magnitude. Similarly, if the length change is at least 1 then a value of λ ∼ 200. It is

reasonable then just based on these heuristics to set the range of admissible vales of

λ to 10 ≤ λ ≤ 250. Empirical results in the next chapter will demonstrate that for

typical images the results are quite insensitive to the value chosen for λ provided that

it falls within this range. This is true even when significant amounts of simulated

noise are added to an image.
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Chapter 5

Experimental results

This chapter presents the result of running the algorithm described in section 4.2

against several test images. Each of the examples exhibits some important feature.

All the processing was done with MATLAB running on an Apple Macintosh Power-

Book laptop computer running Mac OS version 10.3.9. The execution time depends

on the size of the image, of course, but in no case is the execution time prohibitive.

Figure 5.1 shows the results of the l1 norm applied to the Mumford-Shah model

as described in chapter 4. Parts (c) and (d) of the figure show the edge set and

segmentation components with a two phase solution. That it, it is analogous to the

two phase solution of Chan and Vese. The bar graph in part (b) shows the value

of the iteration after each pass through the entire image. Notice how rapidly the

algorithm converges. It has essentially found the segmentation after just 4 iterations.

This rate of convergence is typical of the images studied.

Figure 5.2 shows the initial condition obtained by applying theorem 3 on 46. In

other words, this is what the segmentation looks like after step 2 on page 71. The
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segmentation problem has almost been solved before any iterations are completed that

will reduce the total energy. This clearly shows the benefits of the theory developed in

chapter 3. This behavior is typical of images with convex S curves which is shown for

this image in figure 5.3. There is a clear global minimum in the S curve of part (a).

Part (b) shows the final approximating image. This means that the two gray scales

shown in the image are the medians of the two segmentation components as described

by equation (4.3) on page 66. There is an important observation to be made about

part (b). It shows that the approximating image u is not of much use by itself. While

it does divide the image showing the gray scales adds little to the information. The

main purpose of computing it is to provide an anchor that ensures the problem does

not stray too far from the original image.

Figure 5.4 shows the behavior of the edge set as the algorithm converges. Notice

how some of the smaller features visible in the first iteration slowly vanish and dis-

appear. This is the affect of the length term. Also note that the edge set shown in

iteration 4 is virtually identical to the final segmentation shown in figure 5.3. Figure

5.5 shows the effect of different scale factors with the Lena Image. The difference

between the edge sets is difficult to perceive showing the insensitivity to the scale pa-

rameter λ. There is, however, an apparent difference when the to images are observed

with a blink comparator. A blink comparator is a tool used to make subtle differences

in images more visible. It is useful in astronomy when one observes images of the

same part of the sky taken at different times. Objects such as planets will stand out

from the fixed star background. There are also applications that focus on changes

in an otherwise static scene. Objects that have moved even slightly become quite
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visible. The two images in part (a) and part (c) of figure 5.5 exhibit this behavior

when viewed with a previewer that makes it possible to switch quickly between the

two images when they are overlaid.

Figure 5.6 is perhaps the most significant example of this chapter. It shows what

can happen when the wrong choice of initial condition is made. The original image

is the airplane image of figure 4.2 on page 69. Recall that the S curve of that image

shows a clear local and a clear global minimum. The segmentation shown in figure 5.6

could hardly be called a good segmentation. It is typical of the results obtained when

an algorithm is stuck in a local minimum. As the authors state in [10], “The result

is blatantly false.” In this case it is the result of picking for an initial condition the

point with the smallest fidelity term. While this usually seems to be the best choice it

clearly is not with this image. The problem is that when the total energy of equation

4.2 on page 66 is considered the global minimum fidelity is not the minimum energy.

In fact, the initial value of the energy is substantially less when the larger value of the

local fidelity is chosen for the initial condition. Compare figure 5.6 with figure 5.7 in

which the second best fidelity minimum was chosen as the initial condition. In this

case the segmentation is clearly correct. Notice that by computing to total energy

at just the two local minima of the S curve the problem of seeking a local minimum

instead of a global minimum is completely avoided.

Figure 5.8 shows the results on a noisy synthetic image. The value of the pixels

represent a two dimensional Gaussian. The darker portion near the center represents

the larger values. The point of this example is to show that simple edge methods

have limitations when no clear edge is available. None of the edge detection methods
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described in section 2.5 produce results anything like those in figure 5.8. Canny’s

method produces concentric circles, but all the others produce no meaningful results.

Part (d) of figure 5.8 shows the results obtained with the L2 norm in the Mumford-

Shah model using the algorithm of Song and Chan. The result is similar, but notice

the flattening in the north west portion of the circle. It turns out that that algorithm

never really converges with this example. If the iterations are allowed to continue

indefinitely the circle begins to loose its shape altogether. The algorithm described in

this thesis, on the other hand, terminates normally producing the result in part (c).

Figure 5.9 shows the initial condition obtained when the number of phases is

chosen to be 4. Such an image is, in a very real sense, the best possible representation

of the original with only 4 gray scales. Notice the very clear edge between the child’s

right leg and the couch. This edge is not even visible when the image is segmented with

only 2 phases. On the other hand, the fading light along the wall in the background

becomes different segments. It is clear then that, as this example shows, it is advisable

to proceed with caution when increasing the number of segmentation components.

There is no clear rule that says what the correct number ought to be.

The final example addresses the issue of performance with noise. Figure 5.10

shows an image with additive noise. The peak signal to noise ratio is 22db. The

result should be compared with figure 5.5. Some residuals are clearly visible in figure

5.10 that are not present in gure 5.5. This is to be expected considering the high level

of noise. The basic segmentation is still the same, however. Not shown is the result

using the L2 norm. That algorithm does not even converge with this image. That

the l1 norm should be less sensitive to noise was one of the claims made in chapter 1.
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(a) original (b) convergence

(c) edge set (d) regions

Figure 5.1: Results from the ‘dog’ image

Both this example and the result shown in figure 5.8 support that assertion.

The results presented here are intended to be representative of the issues likely to

be encountered. They are not an exhaustive test, but do indicate that this method

is fairly robust. Two points are especially important. As expected it is possible to

converge to an incorrect solution that is a local minimum. However, there is a way

to pick an initial condition that avoids the problem. Also, at least in the presence of

Gaussian noise, the performance is superior to the model using a square error fidelity

term.
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(a) original (b) Initial l1 condition

Figure 5.2: Initial Condition with minimum fidelity
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(a) S curve (b) final gray levels

Figure 5.3: Lena image S curve and final gray scales



Mason, Eric, 2006, UMSL, p. 81

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 5.4: Convergence with the Lena Image
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(a) Edges, λ = 10 (b) Components, λ = 10

(c) Edges, λ = 40 (d) Components, λ = 40

Figure 5.5: Comparison of final results with different scales
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(a) edges (b) Segmentation Components

Figure 5.6: The effect of local minimums (best fidelity)

(a) edges (b) Segmentation Components

Figure 5.7: The effect of local minimums (second best fidelity)
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(a) original (b) with noise of 20 db PSNR

(c) edges with l1 (d) edges with L2

Figure 5.8: Segmentation with a synthetic Gaussian spot
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(a) 2 phase (b) 4 phase

Figure 5.9: A four phase example

(a) noisy image (b) boundary set

Figure 5.10: A real image with additive noise
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Chapter 6

Conclusion

This thesis has developed a new model for image segmentation. The starting point

was the energy functional first studied by Mumford and Shah. The particular class

of that model used was the piece-wise constant version in which the approximating

image takes on only a small number of values. The regions where the value is constant

defines the segmentation components and the length is derived from their boundaries.

6.1 Summary and additional examples

The fundamental change made to the model in this thesis is the introduction of the

l1 fidelity term and a precise definition of the length. Moreover, it was shown how to

predict a priori the minimum possible value of the fidelity term with relatively simple

calculations. This is then used as the initial condition in a greedy algorithm that

reduces the total energy. This strategy bypasses the need for the calculus of variation

and regularization that would otherwise be required with traditional partial differen-



Mason, Eric, 2006, UMSL, p. 87

tial equation schemes. The method has been shown to converge consistently and to

produce excellent results. While not immune to local minima it was shown how to

use a characteristic curve generated directly from the image to predict them. Several

examples of performance with both synthetic and natural images were presented, and

all the code used is included in an appendix. Most of the examples used the so called

two-phase model meaning that the approximating function takes on only two distinct

values. However, the method can be extended to an arbitrary number of phases. This

chapter presents some additional examples and proposes areas for future work.

Recall that figure 4.2 on page 69 presented an image in which the algorithm could

fall into local solution. It is natural to ask what about the image causes this. To

that end a synthetic image with similar S curve would be helpful. Such an image is

shown in figure 6.1. Notice that the curve is similar to the S curve of the natural

image shown in figure 4.2. The salient features are the dark square in the middle of

the image and the slowly changing light background. The dark square is analogous

to the airplane in figure 4.2. The background simulates the desert floor surrounding

the plane. The small gradient in the background appears to be caused by the grazing

angle at which the image was captured. The S curve of the synthetic image bears

a close resemblance to that of the natural image. The two local minima shown in

part (b) correspond to one incorrect and one correct segmentation (the square and

the background). The false segmentation is analogous to figure 5.6 on page 83. It

divides the image into left and right components using the dark square as part of the

boundary. These are shown in part (c) and part (d) of figure 6.1.

A final example is shown in figure 6.2 which is a beautiful photograph of the
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(a) Image
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(b) S curve

(c) wrong segmentation (d) correct segmentation

Figure 6.1: The S curve of a synthetic image
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Andromeda galaxy. Part (c) and part (d) show the results using the l1 norm. Except

for a few of the bright stars in the background it essentially captures the two main

features—the Andromeda galaxy and the smaller galaxy in the upper right portion

of the image. While the L2 method captures the same features the border between

the regions is not nearly as well defined. This is another example of the relative

insensitivity to noise. In this image little or noise is present, but it contains more

clutter in the background.

In summary the advantages of the algorithm developed are:

1. There is a way to determine the initial condition from the image itself.

2. Using a characteristic of the image it is possible to predict and avoid local

minimum solutions.

3. It uses a simple but effective definition of the length of the boundary.

4. It is reasonably insensitive to a noisy image.

5. The greedy algorithm employed works directly with the energy functional and

avoids differential equations.

6.2 Future work

This section concludes the thesis by proposing ideas for further research. The function

S(s) (referred to as S curves) defined in equation (3.2) on page 48 has been shown to

be helpful in analyzing the image. It almost seems to be a fundamental characteristic
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(a) original (b) with l2 norm

(c) edges with l1 (d) regions with l1

Figure 6.2: l2 and l1 comparison with the M31 galaxy
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of the image similar to the histogram. A more detailed study of this function would

be useful. Lemma 3 on page 54 shows that its range completely contains the possible

values of the fidelity term. Since it is so useful, better methods of computing it need

to be developed. Even when just the histogram is used to compute points it tends

to take more processing time than would be expected. An improvement would be to

develop a version of Lemma 2 that could be applied when a number of elements with

the same value are transfered from one partition element to the other.

The model becomes much more complicated when more than two phase segmen-

tations are involved. This is clear from the pseudo-code shown in section 4.2. In the

inner loop the possibility of moving a pixel to each of the other components has to be

explored. Each individual test is fast, but there are a great number of them. There

should be opportunities for parallelization here that would be worth exploring.

Both of the previous paragraphs only suggest improvements to the algorithm

presented here. There is also the interesting possibility of applying different norms

to the fidelity term and of easing the restriction to piecewise constant approximating

images. Theorem 5 shows that the same ideas that have been applied here to the l1

norm would be applicable to any norm used for the fidelity term. The only caveat

would be the need for an analogy to lemma 2. Without that a similar algorithm

would be impractical. However, all the comments regarding the selection of an initial

condition apply. Some authors have addressed the question of approximating images

that are other than piece-wise constant. Examples are [59] that also adopts an integer

lattice model, and [5] where the approximating image is allowed to very linearly. There

is progress being made in this area, but much remains to be done. One of the benefits
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of this kind of approach is that soft edges that fade into the background can be more

precisely detected. An example is shown in figure 5.1 on page 79. The dog’s back

fades slowly into the fabric of the couch. As can easily be seen from part (c) of the

figure the edge is not detected even though it is clearly visible to a human observer.

Finally, the question of how many phases are required for a good segmentation is

unanswered. The field badly needs an answer to this question that can be derived

from the image. This thesis has shown how it is possible in the case of the l1 norm

to detect and avoid local minimum traps, but there remains the question of how to

select the value of the parameter n in definition 5.

The bibliography of this thesis shows that this is still an active area of research

and a great deal remains to be learned. It is the author’s hope that others will be able

to build on the ideas described here and further advance this useful and interesting

field of study.
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Appendix A

Code for Song and Chan’s
algorithm

This is the MATLAB code used to generate the examples of the two phase Mumford-
Shah model. It requires the image processing toolbox. It was processed with student
version 7 of MATLAB. This code was written in its entirety by the author of this
thesis. It is based on the description of the algorithm given in Bing Song’s dissertation
[50]. Every effort has been made to exactly reproduce the algorithm as it is explained
there. However, no code is provided in [50] so misinterpretations are possible.

% An implementation of the fast algorithm of Song and Chan

% This script assumes that the image exits

% in a variable ’img’ of type double.

% weighting parameter used in Song’s thesis

lambda=1;

mu=0.045;

height=size(img,1);

width=size(img,2);

% initialize level set function (a large circle)

center=size(img)*.5;

radius=min(center)-4;

phi=zeros(size(img));

for y=1:height,

for x=1:width,

if norm([y,x]-center)<radius

phi(y,x)=1;

end

end

end
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% initial values of parameters

n=sum(sum(phi));

m=height*width-n;

c0=sum(sum((1-phi).*img))/m;

c1=sum(sum(phi.*img))/n;

% first visit each pixel just reducing the fidelity term.

for y=1:height,

for x=1:width,

% compute change in fidelity and modify phi if necessary

u=img(y,x);

if phi(y,x)==1

m1=m+1;

n1=n-1;

DE=(m*((c0-u)^2)/m1) - (n*((c1-u)^2)/n1);

if DE<0

phi(y,x)=0;

c0=(m*c0+u)/m1;

c1=(n*c1-u)/n1;

m=m1;

n=n1;

end

else

m1=m-1;

n1=n+1;

DE=(n*((c1-u)^2)/n1) - (m*((c0-u)^2)/m1);

if DE<0

phi(y,x)=1;

c0=(m*c0-u)/m1;

c1=(n*c1+u)/n1;

m=m1;

n=n1;

end

end

end

end

imshow(Overlay(img,phi));

% Now include the length term.

num_changes=1;

lookup=[sqrt(2) 1 0 1 sqrt(2)];

aj=[0 0];

while num_changes~=0,

num_changes=0;



Mason, Eric, 2006, UMSL, p. 95

for i=1:height-1,

for j=1:width-1,

% compute the change in length

pij=phi(i,j);

pijn=1-pij;

aj(1)=phi(i,j+1);

aj(2)=phi(i+1,j);

nowl=lookup(3+sum(aj-pij));

newl=lookup(3+sum(aj-pijn));

DL=newl-nowl;

% now compute the change in fidelity

u=img(i,j);

if pij==1

m1=m+1;

n1=n-1;

DF=(m*((c0-u)^2)/m1) - (n*((c1-u)^2)/n1);

if (mu*DF+lambda*DL)<0

phi(i,j)=0;

c0=(m*c0+u)/m1;

c1=(n*c1-u)/n1;

m=m1;

n=n1;

num_changes=num_changes+1;

end

else

m1=m-1;

n1=n+1;

DF=(n*((c1-u)^2)/n1) - (m*((c0-u)^2)/m1);

if (mu*DF+lambda*DL)<0

phi(i,j)=1;

c0=(m*c0-u)/m1;

c1=(n*c1+u)/n1;

m=m1;

n=n1;

num_changes=num_changes+1;

end

end

end

end % for i=1:height-1;

figure;

imshow(Overlay(img,phi));

end % while num_changes~=0

% set up two phase image

imgs=uint8(img);
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C=[uint8(c0+.5) uint8(c1+.5)];

for i=1:height,

for j=1:width,

imgs(i,j)=C(1+phi(i,j));

end

end

figure;

imshow(imgs);

The function Overlay shown below is used to display the original image with an
overlay of the edge set. It is used both here and in the implementation of the L1

version in appendix B.

function ovy = Overlay(im, phi)

Dims=size(phi);

temp( :, :, 1 ) = im;

temp( :, :, 2 ) = im;

temp( :, :, 3 ) = im;

phix=circshift(phi,[0;-1]);

phix(:,Dims(2))=phi(:,Dims(2));

phiy=circshift(phi,[-1;0]);

phiy(Dims(1),:)=phi(Dims(1),:);

dx=phix-phi;

dy=phiy-phi;

Len=255*sqrt(dx.^2 + dy.^2);

temp(:,:,1) = temp(:,:,1)+Len;

for i=1:Dims(1),

for j=1:Dims(2),

if Len(i,j)~=0,

temp(i,j,2)=0;

temp(i,j,3)=0;

end

end

end

ovy=uint8(temp);

%end Overlay
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Appendix B

Code for Mumford-Shah model
with l1 norm

This appendix contains the MATLAB code used to produce the examples of segmen-
tation with the l1 norm used in place of the l2 norm in the Mumford-Shah model.
First, there is a short script that produces the S curves described in chapter 3. The
plots shown there are of the array S.

% script assumes image is in a variable named img

X=double(sort(reshape(img,[size(img,1)*size(img,2),1])));

N=size(X,1);

S=X(1:N-1);

Dy=0;

ym=0;

yp=1;

zm=floor((N-1)/2);

zp=(N-1) - 2*zm;

Dz=sum(X((1+zm+1+zp):N))-sum(X((1+1):(1+zm)));

Dx=Dz+X(1+zm)-X(1);

Smin=Dz;

for n=1:N-1,

S(n)=Dy+Dz;

if S(n)<Smin,

Smin=S(n);

Minn=n;

end

Myp=X(ym+1);

Mzp=X(n+zm+1);

Dy=Dy+X(n+1)-Myp;

Dz=Dz+X(n+1)-Mzp;

if yp==0,

yp=1;

else
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yp=0;

ym=ym+1;

end

if zp==1,

zp=0;

else

zp=1;

zm=zm-1;

end

end

The following script is the code for two phase segmentation examples. The key
elements of the greedy algorithm is set apart by comments in the code. It is the
ability to quickly predict what will happen to the energy if the pixel is moved that
really makes the algorithm practical.

% 2 phase segmentation

% script assumes a uint8 image named img exists

width=size(img,2);

height=size(img,1);

H=InitH(reshape(img,width*height,1));

MD=TotDev2(H);

if MD(1)>1

error(’multiple minimums’);

else

Fmin=MD(3); % minimum fidelity term

MD=uint8(MD(2)); % split point

end

Hs=SplitH(H,MD);

Hs0=Hs;

phi=img>MD;

phi0=phi;

Lv=xor(phi(:,1:(width-1)),phi(:,2:width));

Lh=xor(phi(1:(height-1),:),phi(2:height,:));

L=Lv(1:(height-1),:)+Lv(2:height,:);

L=L+Lh(:,1:(width-1))+Lh(:,2:width);

K0=sum(sum(L));

lambda=40;

lambda2=-4*lambda;

Num_Changes=1;

E0=Hs(1).TD+Hs(2).TD + lambda*K0



Mason, Eric, 2006, UMSL, p. 99

while Num_Changes>0,

Num_Changes=0;

for i=2:height-1,

ip1=i+1;

im1=i-1;

for j=2:width-1,

jp1=j+1;

jm1=j-1;

pij=phi(i,j);

pijn=~pij;

Uij=img(i,j);

% Key elements of the greedy algorithm:

% Predict change in fidelity if pixel is moved.

DF=RdeltaS(Hs(1+pij),Uij) + AdeltaS(Hs(1+pijn),Uij);

% Predict change in length if pixel is moved.

DL=(pij~=phi(i,jp1)) + (pij~=phi(i,jm1)) + ...

(pij~=phi(ip1,j)) + (pij~=phi(im1,j)) - 2.0;

% Move the pixel if the energy will decrease

if (DF+lambda2*DL)<0

phi(i,j)=pijn;

HT=RemoveV(Hs(1+pij),Uij);

Hs(1+pij)=HT;

HT=AddV(Hs(1+pijn),Uij);

Hs(1+pijn)=HT;

Num_Changes=Num_Changes+1;

end

end

end

Lv=xor(phi(:,1:(width-1)),phi(:,2:width));

Lh=xor(phi(1:(height-1),:),phi(2:height,:));

L1=Lv(1:(height-1),:)+Lv(2:height,:);

L1=L1+Lh(:,1:(width-1))+Lh(:,2:width);

K1=sum(sum(L1));

E1=Hs(1).TD+Hs(2).TD + lambda*K1

end % while Num_Changes>0

% set up piecwise constant image:

imgs=img;

for i=1:2,

C(i)=0.5*(Hs(i).MXM+Hs(i).MXP);

end

for i=1:height,

for j=1:width,

imgs(i,j)=C(1+phi(i,j));
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end

end

imshow(img),figure,imshow(imgs),figure,imshow(uint8(63*L1));

The function InitH sets up the data structures described in section 4.2.

function H=InitH(X);

% H=InitH(X) creates the data structure described below when

% X is a vector of values of type UINT8

% arranged so that size(X)=[N,1].

% The data structure produced is as follows:

% H.hist - histogram of the values in X

% H.chist - cumulative values of H.hist

% H.m

% H.p is either 0 or 1 so that N=2*H.m + H.p

% H.MXM = X(m+p) when X is sorted in ascending order

% H.MXP = X(m+1) with 1 as the first index

% H.TD = the total deviation from the median of X

% Note that the value associated with both the histogram and the

% cummulative histogram is the index-1.

N=size(X,1);

m=int32(floor(N/2));

p=int32(N-2*m);

T.hist=histc(X, 0:255);

T.chist=T.hist;

i=int32(1);

if (p==0),

% N is even

while(T.chist(i)<m),

j=i+1;

T.chist(j)=T.chist(i)+T.hist(j);

i=j;

end

T.MXM=i-1;

while(T.chist(i)<m+1),

j=i+1;

T.chist(j)=T.chist(i)+T.hist(j);

i=j;

end

T.MXP=i-1;

else

% N is odd

while(T.chist(i)<m+1),

j=i+1;

CP=T.chist(i);

T.chist(j)=CP+T.hist(j);
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i=j;

end

T.MXM=i-1;

T.MXP=T.MXM;

end

while(i<256),

j=i+1;

T.chist(j)=T.chist(i)+T.hist(j);

i=j;

end

T.TD=abs((0:255)-double(T.MXM))*double(T.hist);

T.m=m;

T.p=p;

H=T;

%END InitH

The function TotDev2 searches for the split in the intensity histogram that will result
in the minimum L1 fidelity term. Note that it only computes the total deviation at
discrete points in the range of the image. This is in contrast to the calculation of the
more general S curves described in chapter 3.

function SA=TotDev2(H)

% SA=TotDev2(H) returns these values in the Array SA: SA(1) is the

% number of occurences of the minimum and should be 1. SA(2) is

% the point where the best split will occur. SA(3) is the

% value of the minimum value of ’S.’ The minimum point is found

% looking only at the points in the histogram.

% find all the values of S in the points of the histogram

S=zeros([256 1]);

for i=0:255,

S(i+1)=SifSplit(H,i);

end

[Smin,imin]=min(S);

Nmins=sum(S==Smin);

% check for adjacent minimums

if (Nmins>1)

i=1;

while (S(imin+i)==Smin)

i=i+1;

end

if i==Nmins

% All the minimums are adjacent. Use the average index.

imin=mean(imin:(imin+Nmins-1));

Nmins=1;

end
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end

SA=[Nmins imin-1 Smin];

The function SplitH divides the histogram of the image into two parts. It is used
to separate the intensity values for an initial condition with the minimum value of
the fidelity term. There is a nested function named SetUp that makes separate data
structures for each portion. These are then used as part of the minimization algorithm
to record the histograms of the to phases of the segmentation.

function G=SplitH(H,Xs)

% G=SplitH(H,Xs) divides H into two histograms.

% G(1) contains all the values <= Xs.

% G(2) contains all the values > Xs.

% Xs should be uint8 and H should be the data structure

% described in function InitH.

% G(1), G(2) will have the same form as H.

if ~strcmp(class(Xs),’uint8’)

error(’split level must be uint8’);

end

if Xs==255

error(’unable to split with maximum uint8’);

end

HL=H;

HU=H;

is=int32(Xs+1);

HL.hist(is+1:end)=0;

HU.hist(1:is)=0;

G=[SetUp(HL), SetUp(HU)];

% end SplitH

function H=SetUp(H)

% from the histogram H.hist, adds the rest of the parameters.

N=double(sum(H.hist));

m=int32(floor(N/2));

p=int32(N-2*m);

T=H;

T.chist(1)=T.hist(1);

i=int32(1);

if (p==0),

% N is even

while(T.chist(i)<m),

j=i+1;

T.chist(j)=T.chist(i)+T.hist(j);

i=j;

end

T.MXM=i-1;
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while(T.chist(i)<m+1),

j=i+1;

T.chist(j)=T.chist(i)+T.hist(j);

i=j;

end

T.MXP=i-1;

else

% N is odd

while(T.chist(i)<m+1),

j=i+1;

CP=T.chist(i);

T.chist(j)=CP+T.hist(j);

i=j;

end

T.MXM=i-1;

T.MXP=T.MXM;

end

while(i<256),

j=i+1;

T.chist(j)=T.chist(i)+T.hist(j);

i=j;

end

T.TD=abs((0:255)-double(T.MXM))*double(T.hist);

T.m=m;

T.p=p;

H=T;

%END SetUp

The functions AdeltaS and RdeltaS predict how the total deviation of a segmentation
component will change if the given element is added or removed. They exploit the
results of lemma 2 on page 40. The two functions are used by the greedy algorithm
to decide whether or not to move a pixel from one segment to another.

function D=AdeltaS(H,v)

%D=AdeltaS(H,v)

% D is the change in Total Deviation if the value v

% were to be added to H. H is not changed.

v1=int32(v);

if v1<=H.MXM

DV=H.MXM-v1;

elseif v1>=H.MXP

DV=v1-H.MXP;

else

DV=0;

end

D=double(DV);
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%END AdeltaS

function D=RdeltaS(H,v)

%D=RdeltaS(H,v)

% D is the change in Total Deviation if the value v

% were to be removed from H. H is not changed.

v1=int32(v); % v is typically uint8

if v1<=H.MXM

DV=v1-H.MXP;

elseif v1>=H.MXP

DV=H.MXM-v1;

else

DV=0;

end

D=double(DV);

%END RdeltaS

The functions RemoveV and AddV actually change the histograms of each segment
when the greedy algorithm decides that such a change is beneficial. These are time
consuming operations in MATLAB because parameters are passed by value. All that
is really needed is to change a few elements of the data structure.

function H1=RemoveV(H,v);

% H1=RemoveV(H,V)

% Returns an new histogram with the value V removed, the left and

% right medians, and total deviation adjusted.

v1=int32(v);

if H.hist(v1+1)==0

error(’Attempted to remove a non-occuring value’);

end

DTD=RdeltaS(H,v1);

if H.p==0

if v1<=H.MXM

MXM=H.MXP;

else

MXM=H.MXM;

end

MXP=MXM;

H.p=1;

H.m=H.m-1;

else

% find X(m)

i=int32(1);

while H.chist(i)<H.m

i=i+1;



Mason, Eric, 2006, UMSL, p. 105

end

XM=i-1;

% find X(m+2)

i=H.MXM+1;

while H.chist(i)<H.m+2

i=i+1;

end

XM2=i-1;

if v1<H.MXM

MXM=H.MXM;

MXP=XM2;

elseif v1>H.MXM

MXM=XM;

MXP=H.MXM;

else

MXM=XM;

MXP=XM2;

end

H.p=0;

end

H.MXM=MXM;

H.MXP=MXP;

H.TD=H.TD+DTD;

%

v1=int32(v)+1; % need because MatLab uses 1 based array indexing

H.hist(v1)=H.hist(v1)-1;

H.chist(v1:256)=H.chist(v1:256)-1;

H1=H;

%END RemoveV

function H1=AddV(H,v);

% H1=AddV(H,v)

% Returns an new histogram with the value v added, the left and

% right medians, and total deviation adjusted.

v1=int32(v);

DTD=AdeltaS(H,v1);

if H.p==0

if v1<=H.MXM

MXM=H.MXM;

elseif v1>=H.MXP

MXM=H.MXP;

else

MXM=v1;

end

MXP=MXM;
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H.p=1;

else

% find X(m) (this algorithm is correct, but inefficient)

i=int32(1);

while H.chist(i)<H.m

i=i+1;

end

XM=i-1;

%find X(m+1)

XM1=H.MXM; % H.MXP would be the same since N=2m+p is odd.

% find X(m+2)

i=H.MXM+1;

while H.chist(i)<H.m+2

i=i+1;

end

XM2=i-1;

% find the new medians

if v1<=XM

MXM=XM;

MXP=XM1;

elseif v1>=XM2

MXM=XM1;

MXP=XM2;

elseif v1>=XM1

MXM=XM1;

MXP=v1;

else

MXM=v1;

MXP=XM1;

end

H.m=H.m+1;

H.p=0;

end

H.MXM=MXM;

H.MXP=MXP;

H.TD=H.TD+DTD;

%

v1=int32(v)+1; % need because MatLab uses 1 based array indexing

H.hist(v1)=H.hist(v1)+1;

H.chist(v1:256)=H.chist(v1:256)+1;

H1=H;

%END AddV



Mason, Eric, 2006, UMSL, p. 107

Appendix C

Notes and acknowledgments
regarding the images

All the images used as examples are from public sources or from the author’s pri-
vate collection. Information and ackowledgments for each image are listed in this
appendix. References to the “USC SIPI database” mean the Signal and Image Pro-
cessing Institute image database

http://sipi.usc.edu/database/

at the University of Southern California.

1. Figure 2.5 on page 34 is a standard test image from the USC SIPI database.

2. Figure 4.1 on page 69 is from the author’s private collection. The child is the
author’s granddaughter. The image is included with her parent’s permission for
use in this thesis and this thesis only.

3. Figure 4.2 on page 69 is a standard test image from the USC SIPI database.
The original image is 512 × 512 pixels. It was down-sampled to 256 × 256 to
produce the curve.

4. Figure 5.1 on page 79 is from the authors private collection. It is a photograph
of the family dog ‘Charlie’ captured by Elizabeth Mason on the date shown.

5. Figure 5.2 on page 80 is another standard test image from the USC SIPI
database. It is the familiar Lena image that appears so frequently in the image
analysis literature.

6. Figure 5.8 on page 84 is a synthetic image. It is called a gaussian spot because
the pixel values represent the value of a two dimensional gaussian. The 3σ point
of the spot is near the edge of the image, so it contains most of the dynamic
range. The image was constructed with the following Java code segment.
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for (int x=0; x<width; x++)

for (int y=0; y<height; y++) {

r=(double)((x-centerX)*(x-centerX)+(y-centerY)*(y-centerY));

GB[y][x]=scale*(1.0d - Math.exp(r/sigma2));

}

Notice that the image is inverted in the sense that the darker areas represent
larger values of the function.

7. Figure 6.1 on page 88 is a synthetic image constructed with the following code:

X=[]; img=[];

for j=1:256

X(j)=200+50*(j-1)/256; end

for j=1:256

img=[img ; X]; end

hs=32; cntr=128; rng=(cntr-hs):(cntr+hs); img(rng,rng)=25;

The image illustrates characteristics that can cause local minima. The border
is for visual separation and is not part of the image.

8. Figure 6.2 on page 90 shows the Andromeda Galaxy also known as M31. Image
credit: NOAO/AURA/NSF. Obtained from

http://www.noao.edu/image_gallery/html/im0424.html
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[37] Mirko Krivánek and Jaroslav Morávek. NP-hard problems in hierarchical tree
clustering. Acta Informatica, 23(3):311–323, June 1986.

[38] R. Manmatha and Jamie L. Rothfeder. A scale space approach for automatically
segmenting words from historical handwritten documents. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(8):1212–1225, August 2005.

[39] Boriana L. Milenova and Marcos M. Campos. O-cluster: Scalable clustering of
large high dimensional data sets. In Proceedings of the 2002 IEEE International
Conference on Data Mining, page 290. IEEE Computer Society, 2002.

[40] Jean-Michel Morel and Sergio Solimini. Variational Methods in Image Segmen-
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