36,660 research outputs found

    The Inferred Cardiogenic Gene Regulatory Network in the Mammalian Heart

    Get PDF
    Cardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis. To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory networks was applied to time-course microarray data obtained from the developing mouse heart. Approximately 200 genes of interest were input into the algorithm to generate putative network topologies that are capable of explaining the experimental data via model simulation. To cull specious network interactions, thousands of putative networks are merged and filtered to generate scale-free, hierarchical networks that are statistically significant and biologically relevant. The networks are validated with known gene interactions and used to predict regulatory pathways important for the developing mammalian heart. Area under the precision-recall curve and receiver operator characteristic curve are 9% and 58%, respectively. Of the top 10 ranked predicted interactions, 4 have already been validated. The algorithm is further tested using a network enriched with known interactions and another depleted of them. The inferred networks contained more interactions for the enriched network versus the depleted network. In all test cases, maximum performance of the algorithm was achieved when the purely data-driven method of network inference was combined with a data-independent, functional-based association method. Lastly, the network generated from the list of approximately 200 genes of interest was expanded using gene-profile uniqueness metrics to include approximately 900 additional known mouse genes and to form the most likely cardiogenic gene regulatory network. The resultant network supports known regulatory interactions and contains several novel cardiogenic regulatory interactions. The method outlined herein provides an informative approach to network inference and leads to clear testable hypotheses related to gene regulation

    Analysis of a data matrix and a graph: Metagenomic data and the phylogenetic tree

    Full text link
    In biological experiments researchers often have information in the form of a graph that supplements observed numerical data. Incorporating the knowledge contained in these graphs into an analysis of the numerical data is an important and nontrivial task. We look at the example of metagenomic data---data from a genomic survey of the abundance of different species of bacteria in a sample. Here, the graph of interest is a phylogenetic tree depicting the interspecies relationships among the bacteria species. We illustrate that analysis of the data in a nonstandard inner-product space effectively uses this additional graphical information and produces more meaningful results.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS402 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Elucidation of Directionality for Co-Expressed Genes: Predicting Intra-Operon Termination Sites

    Full text link
    We present a novel framework for inferring regulatory and sequence-level information from gene co-expression networks. The key idea of our methodology is the systematic integration of network inference and network topological analysis approaches for uncovering biological insights. We determine the gene co-expression network of Bacillus subtilis using Affymetrix GeneChip time series data and show how the inferred network topology can be linked to sequence-level information hard-wired in the organism's genome. We propose a systematic way for determining the correlation threshold at which two genes are assessed to be co-expressed by using the clustering coefficient and we expand the scope of the gene co-expression network by proposing the slope ratio metric as a means for incorporating directionality on the edges. We show through specific examples for B. subtilis that by incorporating expression level information in addition to the temporal expression patterns, we can uncover sequence-level biological insights. In particular, we are able to identify a number of cases where (i) the co-expressed genes are part of a single transcriptional unit or operon and (ii) the inferred directionality arises due to the presence of intra-operon transcription termination sites.Comment: 7 pages, 8 figures, accepted in Bioinformatic

    A kernel-based framework for learning graded relations from data

    Get PDF
    Driven by a large number of potential applications in areas like bioinformatics, information retrieval and social network analysis, the problem setting of inferring relations between pairs of data objects has recently been investigated quite intensively in the machine learning community. To this end, current approaches typically consider datasets containing crisp relations, so that standard classification methods can be adopted. However, relations between objects like similarities and preferences are often expressed in a graded manner in real-world applications. A general kernel-based framework for learning relations from data is introduced here. It extends existing approaches because both crisp and graded relations are considered, and it unifies existing approaches because different types of graded relations can be modeled, including symmetric and reciprocal relations. This framework establishes important links between recent developments in fuzzy set theory and machine learning. Its usefulness is demonstrated through various experiments on synthetic and real-world data.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A multi-species functional embedding integrating sequence and network structure

    Full text link
    A key challenge to transferring knowledge between species is that different species have fundamentally different genetic architectures. Initial computational approaches to transfer knowledge across species have relied on measures of heredity such as genetic homology, but these approaches suffer from limitations. First, only a small subset of genes have homologs, limiting the amount of knowledge that can be transferred, and second, genes change or repurpose functions, complicating the transfer of knowledge. Many approaches address this problem by expanding the notion of homology by leveraging high-throughput genomic and proteomic measurements, such as through network alignment. In this work, we take a new approach to transferring knowledge across species by expanding the notion of homology through explicit measures of functional similarity between proteins in different species. Specifically, our kernel-based method, HANDL (Homology Assessment across Networks using Diffusion and Landmarks), integrates sequence and network structure to create a functional embedding in which proteins from different species are embedded in the same vector space. We show that inner products in this space and the vectors themselves capture functional similarity across species, and are useful for a variety of functional tasks. We perform the first whole-genome method for predicting phenologs, generating many that were previously identified, but also predicting new phenologs supported from the biological literature. We also demonstrate the HANDL embedding captures pairwise gene function, in that gene pairs with synthetic lethal interactions are significantly separated in HANDL space, and the direction of separation is conserved across species. Software for the HANDL algorithm is available at http://bit.ly/lrgr-handl.Published versio

    Metric learning pairwise kernel for graph inference

    Full text link
    Much recent work in bioinformatics has focused on the inference of various types of biological networks, representing gene regulation, metabolic processes, protein-protein interactions, etc. A common setting involves inferring network edges in a supervised fashion from a set of high-confidence edges, possibly characterized by multiple, heterogeneous data sets (protein sequence, gene expression, etc.). Here, we distinguish between two modes of inference in this setting: direct inference based upon similarities between nodes joined by an edge, and indirect inference based upon similarities between one pair of nodes and another pair of nodes. We propose a supervised approach for the direct case by translating it into a distance metric learning problem. A relaxation of the resulting convex optimization problem leads to the support vector machine (SVM) algorithm with a particular kernel for pairs, which we call the metric learning pairwise kernel (MLPK). We demonstrate, using several real biological networks, that this direct approach often improves upon the state-of-the-art SVM for indirect inference with the tensor product pairwise kernel

    A framework for list representation, enabling list stabilization through incorporation of gene exchangeabilities

    Full text link
    Analysis of multivariate data sets from e.g. microarray studies frequently results in lists of genes which are associated with some response of interest. The biological interpretation is often complicated by the statistical instability of the obtained gene lists with respect to sampling variations, which may partly be due to the functional redundancy among genes, implying that multiple genes can play exchangeable roles in the cell. In this paper we use the concept of exchangeability of random variables to model this functional redundancy and thereby account for the instability attributable to sampling variations. We present a flexible framework to incorporate the exchangeability into the representation of lists. The proposed framework supports straightforward robust comparison between any two lists. It can also be used to generate new, more stable gene rankings incorporating more information from the experimental data. Using a microarray data set from lung cancer patients we show that the proposed method provides more robust gene rankings than existing methods with respect to sampling variations, without compromising the biological significance
    corecore