14,688 research outputs found

    Application of computational physics within Northrop

    Get PDF
    An overview of Northrop programs in computational physics is presented. These programs depend on access to today's supercomputers, such as the Numerical Aerodynamical Simulator (NAS), and future growth on the continuing evolution of computational engines. Descriptions here are concentrated on the following areas: computational fluid dynamics (CFD), computational electromagnetics (CEM), computer architectures, and expert systems. Current efforts and future directions in these areas are presented. The impact of advances in the CFD area is described, and parallels are drawn to analagous developments in CEM. The relationship between advances in these areas and the development of advances (parallel) architectures and expert systems is also presented

    Realistic time-scale fully atomistic simulations of surface nucleation of dislocations in pristine nanopillars

    Get PDF
    We use our recently proposed accelerated dynamics algorithm (Tiwary and van de Walle, 2011) to calculate temperature and stress dependence of activation free energy for surface nucleation of dislocations in pristine Gold nanopillars under realistic loads. While maintaining fully atomistic resolution, we achieve the fraction of a second time-scale regime. We find that the activation free energy depends significantly and non-linearly on the driving force (stress or strain) and temperature, leading to very high activation entropies. We also perform compression tests on Gold nanopillars for strain-rates varying between 7 orders of magnitudes, reaching as low as 10^3/s. Our calculations bring out the perils of high strain-rate Molecular Dynamics calculations: we find that while the failure mechanism for compression of Gold nanopillars remains the same across the entire strain-rate range, the elastic limit (defined as stress for nucleation of the first dislocation) depends significantly on the strain-rate. We also propose a new methodology that overcomes some of the limits in our original accelerated dynamics scheme (and accelerated dynamics methods in general). We lay out our methods in sufficient details so as to be used for understanding and predicting deformation mechanism under realistic driving forces for various problems

    Parallel three-dimensional simulations of quasi-static elastoplastic solids

    Get PDF
    Hypo-elastoplasticity is a flexible framework for modeling the mechanics of many hard materials under small elastic deformation and large plastic deformation. Under typical loading rates, most laboratory tests of these materials happen in the quasi-static limit, but there are few existing numerical methods tailor-made for this physical regime. In this work, we extend to three dimensions a recent projection method for simulating quasi-static hypo-elastoplastic materials. The method is based on a mathematical correspondence to the incompressible Navier-Stokes equations, where the projection method of Chorin (1968) is an established numerical technique. We develop and utilize a three-dimensional parallel geometric multigrid solver employed to solve a linear system for the quasi-static projection. Our method is tested through simulation of three-dimensional shear band nucleation and growth, a precursor to failure in many materials. As an example system, we employ a physical model of a bulk metallic glass based on the shear transformation zone theory, but the method can be applied to any elastoplasticity model. We consider several examples of three-dimensional shear banding, and examine shear band formation in physically realistic materials with heterogeneous initial conditions under both simple shear deformation and boundary conditions inspired by friction welding.Comment: Final version. Accepted for publication in Computer Physics Communication

    Privacy CURE: Consent Comprehension Made Easy

    Get PDF
    Although the General Data Protection Regulation (GDPR) defines several potential legal bases for personal data processing, in many cases data controllers, even when they are located outside the European Union (EU), will need to obtain consent from EU citizens for the processing of their personal data. Unfortunately, existing approaches for obtaining consent, such as pages of text followed by an agreement/disagreement mechanism, are neither specific nor informed. In order to address this challenge, we introduce our Consent reqUest useR intErface (CURE) prototype, which is based on the GDPR requirements and the interpretation of those requirements by the Article 29 Working Party (i.e., the predecessor of the European Data Protection Board). The CURE prototype provides transparency regarding personal data processing, more control via a customization, and, based on the results of our usability evaluation, improves user comprehension with respect to what data subjects actually consent to. Although the CURE prototype is based on the GDPR requirements, it could potentially be used in other jurisdictions also

    Parallel-in-Time Multi-Level Integration of the Shallow-Water Equations on the Rotating Sphere

    Full text link
    The modeling of atmospheric processes in the context of weather and climate simulations is an important and computationally expensive challenge. The temporal integration of the underlying PDEs requires a very large number of time steps, even when the terms accounting for the propagation of fast atmospheric waves are treated implicitly. Therefore, the use of parallel-in-time integration schemes to reduce the time-to-solution is of increasing interest, particularly in the numerical weather forecasting field. We present a multi-level parallel-in-time integration method combining the Parallel Full Approximation Scheme in Space and Time (PFASST) with a spatial discretization based on Spherical Harmonics (SH). The iterative algorithm computes multiple time steps concurrently by interweaving parallel high-order fine corrections and serial corrections performed on a coarsened problem. To do that, we design a methodology relying on the spectral basis of the SH to coarsen and interpolate the problem in space. The methods are evaluated on the shallow-water equations on the sphere using a set of tests commonly used in the atmospheric flow community. We assess the convergence of PFASST-SH upon refinement in time. We also investigate the impact of the coarsening strategy on the accuracy of the scheme, and specifically on its ability to capture the high-frequency modes accumulating in the solution. Finally, we study the computational cost of PFASST-SH to demonstrate that our scheme resolves the main features of the solution multiple times faster than the serial schemes

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time

    Application-Specific Energy Modeling of Multi-Core Processors

    Get PDF
    Recent developments of high-end processors recognize energy monitoring and tuning as one of the main challenges towards achieving higher performance given the growing power and temperature constraints. Our thermal energy model is based on application-specific parameters such as consumed power, execution time, and equilibrium temperature as well as hardware-specific parameters such as half time for thermal rise or fall. As observed with the out-of-band instrumentation and monitoring infrastructure on our experimental cluster with air cooling, the temperature changes follow a relatively slow capacitor-style charge-discharge process. Therefore, we use the lumped thermal model that initiates an exponential process whenever there is a change in processor’s power consumption. Experiments with two codes – Firestarter and Nekbone – validate our approach and demonstrate its use for analyzing and potentially improving the application-specific balance between temperature, power, and performance
    • …
    corecore