332,277 research outputs found

    Using non-speech sounds to provide navigation cues

    Get PDF
    This article describes 3 experiments that investigate the possibiity of using structured nonspeech audio messages called earcons to provide navigational cues in a menu hierarchy. A hierarchy of 27 nodes and 4 levels was created with an earcon for each node. Rules were defined for the creation of hierarchical earcons at each node. Participants had to identify their location in the hierarchy by listening to an earcon. Results of the first experiment showed that participants could identify their location with 81.5% accuracy, indicating that earcons were a powerful method of communicating hierarchy information. One proposed use for such navigation cues is in telephone-based interfaces (TBIs) where navigation is a problem. The first experiment did not address the particular problems of earcons in TBIs such as “does the lower quality of sound over the telephone lower recall rates,” “can users remember earcons over a period of time.” and “what effect does training type have on recall?” An experiment was conducted and results showed that sound quality did lower the recall of earcons. However; redesign of the earcons overcame this problem with 73% recalled correctly. Participants could still recall earcons at this level after a week had passed. Training type also affected recall. With personal training participants recalled 73% of the earcons, but with purely textual training results were significantly lower. These results show that earcons can provide good navigation cues for TBIs. The final experiment used compound, rather than hierarchical earcons to represent the hierarchy from the first experiment. Results showed that with sounds constructed in this way participants could recall 97% of the earcons. These experiments have developed our general understanding of earcons. A hierarchy three times larger than any previously created was tested, and this was also the first test of the recall of earcons over time

    Systematic evaluation of perceived spatial quality

    Get PDF
    The evaluation of perceived spatial quality calls for a method that is sensitive to changes in the constituent dimensions of that quality. In order to devise a method accounting for these changes, several processes have to be performed. This paper shows the development of scales by elicitation and structuring of verbal data, followed by validation of the resulting attribute scales

    Investigating Perceptual Congruence Between Data and Display Dimensions in Sonification

    Get PDF
    The relationships between sounds and their perceived meaning and connotations are complex, making auditory perception an important factor to consider when designing sonification systems. Listeners often have a mental model of how a data variable should sound during sonification and this model is not considered in most data:sound mappings. This can lead to mappings that are difficult to use and can cause confusion. To investigate this issue, we conducted a magnitude estimation experiment to map how roughness, noise and pitch relate to the perceived magnitude of stress, error and danger. These parameters were chosen due to previous findings which suggest perceptual congruency between these auditory sensations and conceptual variables. Results from this experiment show that polarity and scaling preference are dependent on the data:sound mapping. This work provides polarity and scaling values that may be directly utilised by sonification designers to improve auditory displays in areas such as accessible and mobile computing, process-monitoring and biofeedback

    Evaluation of Psychoacoustic Sound Parameters for Sonification

    Get PDF
    Sonification designers have little theory or experimental evidence to guide the design of data-to-sound mappings. Many mappings use acoustic representations of data values which do not correspond with the listener's perception of how that data value should sound during sonification. This research evaluates data-to-sound mappings that are based on psychoacoustic sensations, in an attempt to move towards using data-to-sound mappings that are aligned with the listener's perception of the data value's auditory connotations. Multiple psychoacoustic parameters were evaluated over two experiments, which were designed in the context of a domain-specific problem - detecting the level of focus of an astronomical image through auditory display. Recommendations for designing sonification systems with psychoacoustic sound parameters are presented based on our results

    Evaluation of live human-computer music-making: Quantitative and qualitative approaches

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Human-Computer Studies. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Human-Computer Studies, [VOL 67,ISS 11(2009)] DOI: 10.1016/j.ijhcs.2009.05.00

    Smoothness perception : investigation of beat rate effect on frame rate perception

    Get PDF
    Despite the complexity of the Human Visual System (HVS), research over the last few decades has highlighted a number of its limitations. These limitations can be exploited in computer graphics to significantly reduce computational cost and thus required rendering time, without a viewer perceiving any difference in resultant image quality. Furthermore, cross-modal interaction between different modalities, such as the influence of audio on visual perception, has also been shown as significant both in psychology and computer graphics. In this paper we investigate the effect of beat rate on temporal visual perception, i.e. frame rate perception. For the visual quality and perception evaluation, a series of psychophysical experiments was conducted and the data analysed. The results indicate that beat rates in some cases do affect temporal visual perception and that certain beat rates can be used in order to reduce the amount of rendering required to achieve a perceptual high quality. This is another step towards a comprehensive understanding of auditory-visual cross-modal interaction and could be potentially used in high-fidelity interactive multi-sensory virtual environments

    Using multimedia interfaces for speech therapy

    Get PDF

    Listener evaluations of violins made from composites

    Get PDF
    For centuries, wood, and more specifically spruce, has been the material of choice for violin top plates. Lately, carbon fiber instruments have entered the market. Some studies show that composite materials have potential advantages for making instruments [Damodaran, Lessard, and Babu, Acoust. Aust. 43, 117-122 (2015)]. However, no studies exist that evaluate violins made of different composite materials as judged by listeners. For this study, six prototype violins, differing only by the material of the top plate, were manufactured in a controlled laboratory setting. The six prototype violins were judged by experienced listeners in two double-blind experiments. In contrast to popular opinion that violins made from carbon have or lack a specific sound quality, the study provides insights in the diverse sounds and timbres violins from fiber-reinforced polymers can create. It allows an investigation of the links between the perception and the variations in material properties of the soundboards. Additionally, as neither players nor listeners are acquainted with these instruments, these results provide an interesting view on what type of qualities of violin-like sounds are preferred by listeners
    • 

    corecore